1
|
Molleman F, Sokół‐Łętowska A, Mallick S, Prinzing A, Walczak U. Adaptation to Leaf Traits of Individual Trees in a Forest Appears Rare in Caterpillars. Ecol Evol 2025; 15:e71038. [PMID: 40083738 PMCID: PMC11904093 DOI: 10.1002/ece3.71038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
High herbivore abundances on trees surrounded by distantly related neighbors (phylogenetic isolation) might in part be due to local adaptation of herbivores to host trees, but this has not been tested. We studied if free-feeding and semi-concealed (shelter-building) Lepidoptera can be adapted to leaf traits of individual trees, and if this is affected by phylogenetic isolation. We performed a reciprocal transplant experiment on free-feeding and semi-concealed lepidopteran caterpillars collected from oak trees (Quercus petraea) in a mixed forest in Poland. Within a set of trees with early and a set with late budburst, we selected oak trees that varied from being surrounded by other oak trees (low phylogenetic isolation) to oaks surrounded by pine trees (high phylogenetic isolation), and collected canopy branches to obtain caterpillars. We then fed half of the caterpillars leaves from the tree they were collected from (home tree) and others on the leaves of another tree in the set (away trees) in the laboratory. We measured caterpillar mass over a five-day interval to calculate growth rate and determined aspects of leaf chemistry of each tree. Five species of Lepidoptera (Acrobasis repandana, Eudemis profundana, Operopthera brumata, Phycita roborella, Zeiraphera isertana) yielded sufficient sample sizes for statistical analyses. Overall, we found faster growth on home trees, which could be attributed to one species, E. profundana. There was no effect of phylogenetic isolation. Our results indicate that local adaptation to leaf traits of individual trees is rare in these lepidopterans, and we found no evidence that local adaptation would be more pronounced on trees that are more phylogenetically isolated from their neighbors. Therefore, the effects phylogenetic isolation on herbivory are not likely to be mediated by local adaptation to individual trees.
Collapse
Affiliation(s)
- Freerk Molleman
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Anna Sokół‐Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of the Biotechnology and Food ScienceWrocław University of Environmental and Life SciencesWrocławPoland
| | - Soumen Mallick
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, BiocenterUniversity of WürzburgWürzburgGermany
| | - Andreas Prinzing
- Research Unit Ecosystemes, Biodiversité, EvolutionUniversité de Rennes 1, Centre National de la Recherche ScientifiqueRennesFrance
| | - Urszula Walczak
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| |
Collapse
|
2
|
Yu XF, Wang X, Gou JY, Shen XX, Wu HZ, Huang CY, Yang MF. Intraguild species presence alters Aphidoletes aphidimyza (Diptera: Cecidomyiidae) and Aphidius gifuensis (Hymenoptera: Braconidae) foraging responses. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1769-1779. [PMID: 39042518 DOI: 10.1093/jee/toae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
The predatory gall midge, Aphidoletes aphidimyza (Rondani), and tobacco aphid cocoon wasp, Aphidius gifuensis Ashmead, are important natural enemies of Myzus persicae (Sulzer) (Hemiptera: Aphididae). Predation by A. aphidimyza and A. gifuensis can regulate M. persicae; however, how interspecific interference competition affects their foraging efficiency is unknown. Here, we investigated the consumption and parasitization abilities of A. aphidimyza 3rd instar larva and A. gifuensis adults under various conditions. Consumption of parasitized aphids by A. aphidimyza 3rd instar larvae was significantly lower than that of nonparasitized controls, with a substantial increase in handling time. The presence of A. gifuensis adults did not significantly affect the predation capacity of A. aphidimyza larvae. Relative to controls, A. aphidimyza larvae predation trace (PT) and imago activity significantly decreased A. gifuensis parasitism rates at different aphid densities. Further, A. aphidimyza larvae PT increased the A. gifuensis handling time of M. persicae, whereas the presence of A. aphidimyza adults had the opposite effect. Coexistence with heterospecific natural enemies reduced the parasitic capacity of A. gifuensis, whereas A. aphidimyza larvae predation capability was influenced to a lesser extent. Our results demonstrate that intraguild interactions strongly influence the predatory and parasitic efficacy of A. aphidimyza and A. gifuensis, although the effect on A. gifuensis was more pronounced. For effective biological control of M. persicae using A. aphidimyza and A. gifuensis, we recommend releasing A. aphidimyza first to mitigate intraguild predation and enhance the overall success of the pest control program.
Collapse
Affiliation(s)
- Xiao-Fei Yu
- College of Tobacco Science and Institute of Entomology, Guizhou University, Guiyang, PR China
| | - Xiong Wang
- College of Tobacco Science and Institute of Entomology, Guizhou University, Guiyang, PR China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, PR China
| | - Jian-Yu Gou
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, PR China
| | - Xiu-Xian Shen
- College of Tobacco Science and Institute of Entomology, Guizhou University, Guiyang, PR China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, PR China
| | - Hui-Zi Wu
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, PR China
| | | | - Mao-Fa Yang
- College of Tobacco Science and Institute of Entomology, Guizhou University, Guiyang, PR China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, PR China
| |
Collapse
|
3
|
Aamer NA, El-Moaty ZA, Augustyniak M, El-Samad LM, Hussein HS. Impacts of Combining Steinernema carpocapsae and Bracon hebetor Parasitism on Galleria mellonella Larvae. INSECTS 2024; 15:588. [PMID: 39194793 DOI: 10.3390/insects15080588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
The greater wax moth, Galleria mellonella, is a significant pest in apiculture and a well-established model organism for immunological and ecotoxicological studies. This investigation explores the individual and combined effects of the ectoparasite Bracon hebetor (B.h.) and the entomopathogenic nematode Steinernema carpocapsae (S.c.) on G. mellonella larvae. We evaluated the activity of oxidative stress enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA) levels, cytochrome P450 activity, cell viability using Annexin V-FITC, DNA damage via comet assay, and larval morphology through scanning electron microscopy (SEM). Control larvae exhibited higher GPx and GST activities compared to those treated with B.h., S.c., or the B.h. + S.c. combination. Conversely, MDA levels displayed the opposite trend. SOD activity was reduced in the B.h. and S.c. groups but significantly higher in the combined treatment. Cytochrome P450 activity increased in response to parasitism by B. hebetor. The Annexin V-FITC assay revealed decreased cell viability in parasitized groups (B.h. 79.4%, S.c. 77.3%, B.h. + S.c. 70.1%) compared to controls. DNA damage analysis demonstrated significant differences between groups, and SEM observations confirmed severe cuticle abnormalities or malformations in G. mellonella larvae. These findings highlight the complex interactions between B. hebetor, S. carpocapsae, and their host, G. mellonella. Additionally, they illuminate the intricate physiological responses triggered within the host larvae.
Collapse
Affiliation(s)
- Neama A Aamer
- Department of Applied Entomology and Zoology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Zeinab A El-Moaty
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsaa 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Moharam Bey, Alexandria 21511, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Moharam Bey, Alexandria 21511, Egypt
| | - Hanaa S Hussein
- Department of Applied Entomology and Zoology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
4
|
Malinski KH, Elizabeth Moore M, Kingsolver JG. Heat stress and host-parasitoid interactions: lessons and opportunities in a changing climate. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101225. [PMID: 38936473 DOI: 10.1016/j.cois.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Ongoing climate change is increasing the frequency and magnitude of high-temperature events (HTEs), causing heat stress in parasitoids and their hosts. We argue that HTEs and heat stress should be viewed in terms of the intersecting life cycles of host and parasitoid. Recent studies illustrate how the biological consequences of a given HTE may vary dramatically depending on its timing within these lifecycles. The temperature sensitivity of host manipulation by parasitoids, and by viral endosymbionts of many parasitoids, can contribute to differing responses of hosts and parasitoids to HTEs. In some cases, these effects can result in reduced parasitoid success and increased host herbivory and may disrupt the ecological interactions between hosts and parasitoids. Because most studies to date involve endoparasitoids of aphid or lepidopteran hosts in agricultural systems, our understanding of heat responses of host-parasitoid interactions in natural systems is quite limited.
Collapse
Affiliation(s)
| | - Megan Elizabeth Moore
- Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center, 538 Tower Road, Ithaca, NY 14850, USA
| | - Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Scheifler M, Wilhelm L, Visser B. Lipid Metabolism in Parasitoids and Parasitized Hosts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38977639 DOI: 10.1007/5584_2024_812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parasitoids have an exceptional lifestyle where juvenile development is spent on or in a single host insect, but the adults are free-living. Unlike parasites, parasitoids kill the host. How parasitoids use such a limiting resource, particularly lipids, can affect chances to survive and reproduce. In part 1, we describe the parasitoid lifestyle, including typical developmental strategies. Lipid metabolism in parasitoids has been of interest to researchers since the 1960s and continues to fascinate ecologists, evolutionists, physiologists, and entomologists alike. One reason of this interest is that the majority of parasitoids do not accumulate triacylglycerols as adults. Early research revealed that some parasitoid larvae mimic the fatty acid composition of the host, which may result from a lack of de novo triacylglycerol synthesis. More recent work has focused on the evolution of lack of adult triacylglycerol accumulation and consequences for life history traits. In part 2 of this chapter, we discuss research efforts on lipid metabolism in parasitoids from the 1960s onwards. Parasitoids are also master manipulators of host physiology, including lipid metabolism, having evolved a range of mechanisms to affect the release, synthesis, transport, and take-up of lipids from the host. We lay out the effects of parasitism on host physiology in part 3 of this chapter.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
6
|
Dang YQ, Duan JJ, Li AY. Parasitoid-induced changes in metabolic rate and feeding activity of the emerald ash borer (Coleoptera: Buprestidae): implications for biological control. Sci Rep 2023; 13:22663. [PMID: 38114572 PMCID: PMC10730522 DOI: 10.1038/s41598-023-50147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Parasitoid-host interactions form the foundation of biological control strategies against many agriculture and forest insect pests. The emerald ash borer (EAB), Agrilus planipennis (Coleoptera: Buprestidae), is a serious invasive pest of ash (Fraxinus spp.) trees in North America. Tetrastichus planipennisi (Hymenoptera: Eulophidae) is a gregarious, koinobiont endoparasitoid, attacking late (3rd to 4th) instars of EAB larvae, which feed in the live phloem of ash trunks or branches, making serpentine-like galleries filled with larval frass. In the present study, we tested the hypothesis that T. planipennisi regulates the host metabolism and feeding activity to optimize its offspring development and fitness. We first compared the respiration rate of parasitized and unparasitized host larvae at different times after parasitism, and then measured feeding activity of both parasitized and unparasitized host larvae inside their feeding galleries. Although parasitized host larvae increased metabolic rate and feeding activity in the first few days of parasitism, T. planipennisi parasitism induced an overall reduction of the metabolic rate and decrease in feeding activity of parasitized host larvae over their development period. In addition, there was a negative relationship between feeding activity of parasitized hosts and brood sizes of the parasitoid progeny-i.e., the more parasitoid progeny a host larva received, the less feeding activity the host had. These findings suggest that T. planipennisi has limited ability to optimize its offspring development and fitness through regulations of the host metabolism and feeding activity and its parasitism reduces feeding damage of parasitized EAB larvae to infested ash trees.
Collapse
Affiliation(s)
- Ying-Qiao Dang
- Agriculture Research Service, Beneficial Insects Introduction Research Unit, U.S. Department of Agriculture, Newark, DE, 19713, USA
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jian J Duan
- Agriculture Research Service, Beneficial Insects Introduction Research Unit, U.S. Department of Agriculture, Newark, DE, 19713, USA.
| | - Andrew Y Li
- Agriculture Research Service, Invasive Insect Biocontrol and Behavior Laboratory, U.S. Department of Agriculture, Beltsville, MD, 20705, USA
| |
Collapse
|
7
|
Cuny MAC, Pierron R, Gols R, Poelman EH. Indirect plant-mediated interactions between heterospecific parasitoids that develop in different caterpillar species. Oecologia 2023; 203:311-321. [PMID: 37889312 PMCID: PMC10684628 DOI: 10.1007/s00442-023-05465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023]
Abstract
Parasitoids induce physiological changes in their herbivorous hosts that affect how plants respond to herbivory. The signature of parasitoids on induced plant responses to feeding by parasitized herbivores indirectly impacts insect communities interacting with the plant. The effect may extend to parasitoids and cause indirect interaction between parasitoids that develop inside different herbivore hosts sharing the food plant. However, this type of interactions among parasitoid larvae has received very little attention. In this study, we investigated sequential and simultaneous plant-mediated interactions among two host-parasitoid systems feeding on Brassica oleracea plants: Mamestra brassicae parasitized by Microplitis mediator and Pieris rapae parasitized by Cotesia rubecula. We measured the mortality, development time, and weight of unparasitized herbivores and performance of parasitoids that had developed inside the two herbivore species when sharing the food plant either simultaneously or sequentially. Plant induction by parasitized or unparasitized hosts had no significant effect on the performance of the two herbivore host species. In contrast, the two parasitoid species had asymmetrical indirect plant-mediated effects on each other's performance. Cotesia rubecula weight was 15% higher on plants induced by M. mediator-parasitized hosts, compared to control plants. In addition, M. mediator development time was reduced by 30% on plants induced by conspecific but not heterospecific parasitoids, compared to plants induced by its unparasitized host. Contrary to sequential feeding, parasitoids had no effect on each other's performance when feeding simultaneously. These results reveal that indirect plant-mediated interactions among parasitoid larvae could involve any parasitoid species whose hosts share a food plant.
Collapse
Affiliation(s)
- Maximilien A C Cuny
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Romain Pierron
- Laboratoire Vigne Biotechnologies et Environnement, Université de Haute-Alsace, Colmar, France
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
8
|
Bourne ME, Gloder G, Weldegergis BT, Slingerland M, Ceribelli A, Crauwels S, Lievens B, Jacquemyn H, Dicke M, Poelman EH. Parasitism causes changes in caterpillar odours and associated bacterial communities with consequences for host-location by a hyperparasitoid. PLoS Pathog 2023; 19:e1011262. [PMID: 36947551 PMCID: PMC10069771 DOI: 10.1371/journal.ppat.1011262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Microorganisms living in and on macroorganisms may produce microbial volatile compounds (mVOCs) that characterise organismal odours. The mVOCs might thereby provide a reliable cue to carnivorous enemies in locating their host or prey. Parasitism by parasitoid wasps might alter the microbiome of their caterpillar host, affecting organismal odours and interactions with insects of higher trophic levels such as hyperparasitoids. Hyperparasitoids parasitise larvae or pupae of parasitoids, which are often concealed or inconspicuous. Odours of parasitised caterpillars aid them to locate their host, but the origin of these odours and its relationship to the caterpillar microbiome are unknown. Here, we analysed the odours and microbiome of the large cabbage white caterpillar Pieris brassicae in relation to parasitism by its endoparasitoid Cotesia glomerata. We identified how bacterial presence in and on the caterpillars is correlated with caterpillar odours and tested the attractiveness of parasitised and unparasitised caterpillars to the hyperparasitoid Baryscapus galactopus. We manipulated the presence of the external microbiome and the transient internal microbiome of caterpillars to identify the microbial origin of odours. We found that parasitism by C. glomerata led to the production of five characteristic volatile products and significantly affected the internal and external microbiome of the caterpillar, which were both found to have a significant correlation with caterpillar odours. The preference of the hyperparasitoid was correlated with the presence of the external microbiome. Likely, the changes in external microbiome and body odour after parasitism were driven by the resident internal microbiome of caterpillars, where the bacterium Wolbachia sp. was only present after parasitism. Micro-injection of Wolbachia in unparasitised caterpillars increased hyperparasitoid attraction to the caterpillars compared to untreated caterpillars, while no differences were found compared to parasitised caterpillars. In conclusion, our results indicate that host-parasite interactions can affect multi-trophic interactions and hyperparasitoid olfaction through alterations of the microbiome.
Collapse
Affiliation(s)
- Mitchel E Bourne
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marijn Slingerland
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Andrea Ceribelli
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
9
|
Dai M, Yang J, Liu X, Gu H, Li F, Li B, Wei J. Parasitism by the Tachinid Parasitoid Exorista japonica Leads to Suppression of Basal Metabolism and Activation of Immune Response in the Host Bombyx mori. INSECTS 2022; 13:insects13090792. [PMID: 36135493 PMCID: PMC9506100 DOI: 10.3390/insects13090792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 05/26/2023]
Abstract
The dipteran tachinid parasitoids are important biocontrol agents, and they must survive the harsh environment and rely on the resources of the host insect to complete their larval stage. We have previously demonstrated that the parasitism by the tachinid parasitoid Exoristajaponica, a pest of the silkworm, causes pupation defects in Bombyx mori. However, the underlying mechanism is not fully understood. Here, we performed transcriptome analysis of the fat body of B. mori parasitized by E. japonica. We identified 1361 differentially expressed genes, with 394 genes up-regulated and 967 genes down-regulated. The up-regulated genes were mainly associated with immune response, endocrine system and signal transduction, whereas the genes related to basal metabolism, including energy metabolism, transport and catabolism, lipid metabolism, amino acid metabolism and carbohydrate metabolism were down-regulated, indicating that the host appeared to be in poor nutritional status but active in immune response. Moreover, by time-course gene expression analysis we found that genes related to amino acid synthesis, protein degradation and lipid metabolism in B. mori at later parasitization stages were inhibited. Antimicrobial peptides including Cecropin A, Gloverin and Moricin, and an immulectin, CTL11, were induced. These results indicate that the tachinid parasitoid perturbs the basal metabolism and induces the energetically costly immunity of the host, and thus leading to incomplete larval-pupal ecdysis of the host. This study provided insights into how tachinid parasitoids modify host basal metabolism and immune response for the benefit of developing parasitoid larvae.
Collapse
Affiliation(s)
- Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jin Yang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Xinyi Liu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Haoyi Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Sericulture Institute, Soochow University, Suzhou 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Sericulture Institute, Soochow University, Suzhou 215123, China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Sericulture Institute, Soochow University, Suzhou 215123, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|