1
|
Abdollahpour H, Jafari Pastaki N, Falahatkar B. The interplay between thyroxine and cortisol in zebrafish: Effects on growth, physiology, and reproduction. Anim Reprod Sci 2025; 274:107795. [PMID: 39954485 DOI: 10.1016/j.anireprosci.2025.107795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/25/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
In the current study, the role of thyroxine (T4) and cortisol (CO) on growth, reproduction, and whole-body hormone levels in male and female zebrafish was assayed. Fifty-seven days post-fertilization, zebrafish [132 females; initial weight: 0.3 ± 0.0 g and 132 males (initial weight: 0.2 ± 0.0 g)] were fed with diets including 10 mg T4 kg feed-1 (T4), 10 mg CO kg feed-1 (CO), 10 mg T4 kg feed-1 + 10 mg CO kg feed-1 (T4 + CO), and a control group (without hormones) for 28 days. At the end of the experiment, growth performance, feed utilization, whole-body hormone levels, gonadal development, and spawning performance were determined. The growth performance was improved following T4 administration in both males and females. Viscerosomatic and gonadosomatic indices in females were significantly enhanced in the T4 group compared with the other groups. Regarding oocyte developmental stages, a lower number of oocytes at final maturation were found in the CO group compared with the other treatments. Oocyte diameter was significantly increased in T4 compared with the other groups. Whole-body CO levels in both males and females were increased and decreased in CO and T4 treatments, respectively. Moreover, whole-body thyroid hormone levels in both sexes were higher in T4 group than the other groups. The hatching rate and survival rate at three days post-hatch were increased in the T4 group. Overall, the findings of this study underscore the stimulatory role of T4 in enhancing the physiological performance of zebrafish, leading to improved growth and increased reproductive output in both males and females.
Collapse
Affiliation(s)
- Hamed Abdollahpour
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Naghmeh Jafari Pastaki
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran.
| |
Collapse
|
2
|
Yu Y, Chen M, Shen ZG. Molecular biological, physiological, cytological, and epigenetic mechanisms of environmental sex differentiation in teleosts: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115654. [PMID: 37918334 DOI: 10.1016/j.ecoenv.2023.115654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Human activities have been exerting widespread stress and environmental risks in aquatic ecosystems. Environmental stress, including temperature rise, acidification, hypoxia, light pollution, and crowding, had a considerable negative impact on the life histology of aquatic animals, especially on sex differentiation (SDi) and the resulting sex ratios. Understanding how the sex of fish responds to stressful environments is of great importance for understanding the origin and maintenance of sex, the dynamics of the natural population in the changing world, and the precise application of sex control in aquaculture. This review conducted an exhaustive search of the available literature on the influence of environmental stress (ES) on SDi. Evidence has shown that all types of ES can affect SDi and universally result in an increase in males or masculinization, which has been reported in 100 fish species and 121 cases. Then, this comprehensive review aimed to summarize the molecular biology, physiology, cytology, and epigenetic mechanisms through which ES contributes to male development or masculinization. The relationship between ES and fish SDi from multiple aspects was analyzed, and it was found that environmental sex differentiation (ESDi) is the result of the combined effects of genetic and epigenetic factors, self-physiological regulation, and response to environmental signals, which involves a sophisticated network of various hormones and numerous genes at multiple levels and multiple gradations in bipotential gonads. In both normal male differentiation and ES-induced masculinization, the stress pathway and epigenetic regulation play important roles; however, how they co-regulate SDi is unclear. Evidence suggests that the universal emergence or increase in males in aquatic animals is an adaptation to moderate ES. ES-induced sex reversal should be fully investigated in more fish species and extensively in the wild. The potential aquaculture applications and difficulties associated with ESDi have also been addressed. Finally, the knowledge gaps in the ESDi are presented, which will guide the priorities of future research.
Collapse
Affiliation(s)
- Yue Yu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Min Chen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China
| | - Zhi-Gang Shen
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
3
|
Identification and expression analysis of thyroid-stimulating hormone β subunit, and effects of T3 on gonadal differentiation-related gene expression in rice field eel, Monopterus albus. Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110681. [PMID: 34688906 DOI: 10.1016/j.cbpb.2021.110681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/12/2023]
Abstract
Thyroid-stimulating hormone (TSH) is an important glycoprotein in hypothalamic-pituitary-thyroid axis, which plays a crucial role in the synthesis and release of thyroid hormones in vertebrates. Rice field eel, Monopterus albus, a protogynous hermaphroditic fish, which undergoes sex reversal from a functional female to a male, is an ideal model to investigate the regulation of sex differentiation. In this study, we obtained the cDNA sequence of thyroid-stimulating hormone β subunit (tshβ) from rice field eel, which contained a complete open reading frame and encoded a putative protein of 151 amino acids. Multiple alignment of protein sequences showed that tshβ was highly conserved in teleost. The tissue distribution indicated that tshβ showed high expression in the pituitary, moderate expression in the brain region, gonad, intestine and liver, and low expression in other peripheral tissues. During natural sex reversal, the expression of tshβ had no significant difference in the pituitary. Compared to that in the ovary, the expression of tshβ increased significantly in the gonad at late intersexual and male stages. After treatment by different doses of triiodothyronine (T3) (1 μg/g, 10 μg/g and 100 μg/g body weight), serum T3 and free triiodothyronine (FT3) increased sharply, while the expression of tshβ were inhibited significantly in the pituitary. Although T3 had no significant effect on the levels of serum E2, it stimulated the release of serum 11-KT at high-dose group. We also detected the effects of T3 on the expression of gonadal differentiation-related genes in rice field eel. T3 treatment inhibited the expression of foxl2, cyp19a1a and dax1, while stimulated the expression of sox9a1. These results indicate that TSH may be involved in sex differentiation, and THs may play roles in the regulation of male development and sex reversal in rice field eel.
Collapse
|
4
|
Abstract
In all vertebrates, the thyroid axis is an endocrine feedback system that affects growth, differentiation, and reproduction, by sensing and translating central and peripheral signals to maintain homeostasis and a proper thyroidal set-point. Fish, the most diverse group of vertebrates, rely on this system for somatic growth, metamorphosis, reproductive events, and the ability to tolerate changing environments. The vast majority of the research on the thyroid axis pertains to mammals, in particular rodents, and although some progress has been made to understand the role of this endocrine axis in non-mammalian vertebrates, including amphibians and teleost fish, major gaps in our knowledge remain regarding other groups, such as elasmobranchs and cyclostomes. In this review, we discuss the roles of the thyroid axis in fish and its contributions to growth and development, metamorphosis, reproduction, osmoregulation, as well as feeding and nutrient metabolism. We also discuss how thyroid hormones have been/can be used in aquaculture, and potential threats to the thyroid system in this regard.
Collapse
|
5
|
Guellard T, Kalamarz-Kubiak H, Kulczykowska E. Concentrations of melatonin, thyroxine, 17β-estradiol and 11-ketotestosterone in round goby (Neogobius melanostomus) in different phases of the reproductive cycle. Anim Reprod Sci 2019; 204:10-21. [DOI: 10.1016/j.anireprosci.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 11/26/2022]
|
6
|
Campbell DEK, Montgomerie RD, Langlois VS. Lifecycle exposure to perchlorate differentially alters morphology, biochemistry, and transcription as well as sperm motility in Silurana tropicalis frogs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:196-204. [PMID: 29482025 DOI: 10.1016/j.envpol.2018.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Perchlorate (ClO4-) contamination has been reported in ground and surface waters across North America. However, few studies have examined the effects of prolonged exposure to this thyroid hormone disrupting chemical, particularly at environmentally relevant concentrations in lower vertebrates, such as amphibians. The aim of this study was to examine the effects of a yearlong chronic exposure to ClO4- in adult male and female Western clawed frogs (Silurana tropicalis). Frogs were spawned and raised from fertilized embryo until sexual maturity in potassium perchlorate (KClO4)-treated water at different concentrations (0, 20, 53, and 107 μg/L). Developmental and reproductive indices - including adult morphology, androgen plasma levels, gonadal thyroid hormone- and sex steroid-related transcript levels, and sperm motility - were evaluated in male and female adult frogs. Female growth (e.g., body mass, snout-vent length, and hind limb length) was significantly reduced following chronic exposure to environmentally relevant concentrations of KClO4 resulting in females with morphometric indices similar to those of control males - indicating potential sex-specific sensitivities to KClO4. Changes to reproductive indices (i.e., plasma androgen levels, gonadal thyroid hormone- and sex steroid-related transcript levels, and sperm motility) were also observed in both sexes and suggest that KClO4 exposure may also have indirect secondary effects on the reproductive axes in male and female adult frogs. These effects were observed at concentrations at or below those reported in surface waters contaminated with ClO4- suggesting that this contaminant may have developmental and reproductive effects post-metamorphosis in natural amphibian populations.
Collapse
Affiliation(s)
| | | | - Valérie S Langlois
- Department of Biology, Queen's University, Kingston, ON, Canada; Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada; Institut national de la recherche scientifique, INRS - Centre Eau Terre Environnement, Quebec, QC, Canada.
| |
Collapse
|
7
|
Sayed AEDH, Ismail RFK. Endocrine disruption, oxidative stress, and testicular damage induced by 4-nonylphenol in Clarias gariepinus: the protective role of Cydonia oblonga. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1095-1104. [PMID: 28285354 DOI: 10.1007/s10695-017-0355-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/23/2017] [Indexed: 02/07/2023]
Abstract
Exposure to xenoestrogens like 4-nonylphenol (NP) is recognized by disrupting endocrine functions and causes reproductive dysfunction in male fish. The present study aimed at investigating the 4-nonylphenol propensity to induce oxidative stress and hormonal disturbances in male catfish and at studying the protective role of quince (Cydonia oblonga). To fulfill this aim, catfish Clarias gariepinus were exposed to pure 100 μg/L 4-NP and to quince the leaf extract added to 4-NP, both for 15 days. The 4-NP exposure induced a marked increase in 17ß-estradiol (E2), LH, and cortisol, while thyroid hormone (TSH, T3), testosterone (T), and FSH levels noticeably decreased; however, 4-NP had no effect on T4 level. Moreover, 4-NP exposure was accompanied by histological impairments in testes. Existence of 4-NP was associated with oxidative damage as evidenced by the significant increase (p < 0.05) of the enzymes, superoxidase dismutase (SOD), catalase (CAT), acetylcholinesterase (AchE), glutathione s-transferase, total antioxidant capacity (TAC), and malondialdehyde (MDA). Adding quince was effective to neutralize hormonal levels and to repair the testicular histological alterations. In response to quince remedy, the enzymes AchE and MDA reduced significantly (p < 0.05), while limited or no response was detected for other tested enzymes. Our results concluded that quince can antagonize 4-NP toxicity in catfish, confirming that quince leaf extract displayed antioxidant activities against the toxicity of hazardous chemicals.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Laboratory of Fish Biology and Pollution, Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Rania F K Ismail
- Laboratory of Fish Reproduction, Aquaculture Division, National Institute of Oceanography Fisheries, Alexandria, 21556, Egypt
| |
Collapse
|
8
|
Atli G, Ariyurek SY, Kanak EG, Canli M. Alterations in the serum biomarkers belonging to different metabolic systems of fish (Oreochromis niloticus) after Cd and Pb exposures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:508-515. [PMID: 26310509 DOI: 10.1016/j.etap.2015.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
The serum of vertebrates including human gives sufficient data about the current health status of organism in concern. Biomarkers have gained importance in evaluation of data from biological monitoring studies. In this study, freshwater fish Oreochromis niloticus were individually exposed Cd or Pb using acute (10μM, 2 d) and chronic (20μM, 20 d) exposure protocols to investigate the alterations in serum parameters (ALP, ALT, AST, LDH, lipase, glucose, protein, cholesterol and triglyceride) and response of the endocrine system functioning in different axis, namely HPI (cortisol), HPT (TSH, T3, T4), gonadal (LH, FSH) and prolactin. Data showed that except LH, the levels of all hormones decreased significantly following exposure to Cd and Pb both in acute and chronic exposures. In acute exposures, the activity of ALP and levels of cholesterol and triglyceride decreased significantly following both Cd and Pb exposures, while glucose levels increased only after Cd exposure. In chronic exposures, both metal exposures caused significant decreases in ALP activity and levels of cholesterol and triglyceride, though there were increases in glucose level after Cd exposure and AST, ALT and LDH levels after Pb exposure. Data emphasized the importance of biomarker selection and multiparameter usage of relevant systems in ecotoxicological research to achieve proper evaluation of environmental data.
Collapse
Affiliation(s)
- Gülüzar Atli
- Çukurova University, Vocational School of Imamoglu, Adana, Turkey
| | | | - Esin G Kanak
- Çukurova University, Faculty of Science and Letters, Department of Biology, Adana, Turkey
| | - Mustafa Canli
- Çukurova University, Faculty of Science and Letters, Department of Biology, Adana, Turkey.
| |
Collapse
|
9
|
Furin CG, von Hippel FA, Postlethwait JH, Buck CL, Cresko WA, O'Hara TM. Developmental timing of sodium perchlorate exposure alters angiogenesis, thyroid follicle proliferation and sexual maturation in stickleback. Gen Comp Endocrinol 2015; 219:24-35. [PMID: 25865142 PMCID: PMC4508251 DOI: 10.1016/j.ygcen.2015.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 03/15/2015] [Accepted: 04/03/2015] [Indexed: 11/25/2022]
Abstract
Perchlorate, a common aquatic contaminant, is well known to disrupt homeostasis of the hypothalamus-pituitary-thyroid axis. This study utilizes the threespine stickleback (Gasterosteus aculeatus) fish to determine if perchlorate exposure during certain windows of development has morphological effects on thyroid and gonads. Fish were moved from untreated water to perchlorate-contaminated water (30 and 100mg/L) starting at 0, 3, 7, 14, 21, 42, 154 and 305 days post fertilization until approximately one year old. A reciprocal treatment (fish in contaminated water switched to untreated water) was conducted on the same schedule. Perchlorate exposure increased angiogenesis and follicle proliferation in thyroid tissue, delayed gonadal maturity, and skewed sex ratios toward males; effects depended on concentration and timing of exposure. This study demonstrates that perchlorate exposure beginning during the first 42 days of development has profound effects on stickleback reproductive and thyroid tissues, and by implication can impact population dynamics. Long-term exposure studies that assess contaminant effects at various stages of development provide novel information to characterize risk to aquatic organisms, to facilitate management of resources, and to determine sensitive developmental windows for further study of underlying mechanisms.
Collapse
Affiliation(s)
- Christoff G Furin
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, 902 N. Koyukuk Dr., P.O. Box 757000, Fairbanks, AK 99775, USA.
| | - Frank A von Hippel
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA.
| | - John H Postlethwait
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, 324 Huestis Hall, Eugene, OR 97403, USA.
| | - C Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, 312 Pacific Hall, Eugene, OR 97403, USA.
| | - Todd M O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, P.O. Box 757750, Fairbanks, AK 99775-7750, USA.
| |
Collapse
|
10
|
Zhu L, Li W, Zha J, Wang M, Yuan L, Wang Z. Butachlor causes disruption of HPG and HPT axes in adult female rare minnow (Gobiocypris rarus). Chem Biol Interact 2014; 221:119-26. [DOI: 10.1016/j.cbi.2014.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/09/2014] [Accepted: 07/29/2014] [Indexed: 01/16/2023]
|
11
|
Castañeda Cortés DC, Langlois VS, Fernandino JI. Crossover of the hypothalamic pituitary-adrenal/interrenal, -thyroid, and -gonadal axes in testicular development. Front Endocrinol (Lausanne) 2014; 5:139. [PMID: 25221542 PMCID: PMC4145579 DOI: 10.3389/fendo.2014.00139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023] Open
Abstract
Besides the well-known function of thyroid hormones (THs) for regulating metabolism, it has recently been discovered that THs are also involved in testicular development in mammalian and non-mammalian species. THs, in combination with follicle stimulating hormone, lead to androgen synthesis in Danio rerio, which results in the onset of spermatogenesis in the testis, potentially relating the hypothalamic-pituitary-thyroid (HPT) gland to the hypothalamic-pituitary-gonadal (HPG) axes. Furthermore, studies in non-mammalian species have suggested that by stimulating the thyroid-stimulating hormone (TSH), THs can be induced by corticotropin-releasing hormone. This suggests that the hypothalamic-pituitary-adrenal/interrenal gland (HPA) axis might influence the HPT axis. Additionally, it was shown that hormones pertaining to both HPT and HPA could also influence the HPG endocrine axis. For example, high levels of androgens were observed in the testis in Odonthestes bonariensis during a period of stress-induced sex-determination, which suggests that stress hormones influence the gonadal fate toward masculinization. Thus, this review highlights the hormonal interactions observed between the HPT, HPA, and HPG axes using a comparative approach in order to better understand how these endocrine systems could interact with each other to influence the development of testes.
Collapse
Affiliation(s)
- Diana C. Castañeda Cortés
- Laboratorio de Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín y Consejo Nacional de Investigaciones Científicas y Técnicas, Chascomús, Argentina
| | - Valerie S. Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada
| | - Juan I. Fernandino
- Laboratorio de Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín y Consejo Nacional de Investigaciones Científicas y Técnicas, Chascomús, Argentina
| |
Collapse
|
12
|
Duarte-Guterman P, Navarro-Martín L, Trudeau VL. Mechanisms of crosstalk between endocrine systems: regulation of sex steroid hormone synthesis and action by thyroid hormones. Gen Comp Endocrinol 2014; 203:69-85. [PMID: 24685768 DOI: 10.1016/j.ygcen.2014.03.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 01/20/2023]
Abstract
Thyroid hormones (THs) are well-known regulators of development and metabolism in vertebrates. There is increasing evidence that THs are also involved in gonadal differentiation and reproductive function. Changes in TH status affect sex ratios in developing fish and frogs and reproduction (e.g., fertility), hormone levels, and gonad morphology in adults of species of different vertebrates. In this review, we have summarized and compared the evidence for cross-talk between the steroid hormone and thyroid axes and present a comparative model. We gave special attention to TH regulation of sex steroid synthesis and action in both the brain and gonad, since these are important for gonad development and brain sexual differentiation and have been studied in many species. We also reviewed research showing that there is a TH system, including receptors and enzymes, in the brains and gonads in developing and adult vertebrates. Our analysis shows that THs influences sex steroid hormone synthesis in vertebrates, ranging from fish to pigs. This concept of crosstalk and conserved hormone interaction has implications for our understanding of the role of THs in reproduction, and how these processes may be dysregulated by environmental endocrine disruptors.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Laia Navarro-Martín
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Sayed AEDH, Mahmoud UM, Mekkawy IA. Reproductive biomarkers to identify endocrine disruption in Clarias gariepinus exposed to 4-nonylphenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 78:310-9. [PMID: 22177982 DOI: 10.1016/j.ecoenv.2011.11.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/26/2011] [Accepted: 11/28/2011] [Indexed: 02/07/2023]
Abstract
The present study investigated the hormones concentrations and gonads alterations of Clarias gariepinus caused by sublethel concentrations of 4-nonylphenol (0, 0.05, 0.08 and 0.1 mg/l). The changes in the activities of the hormones after exposure to these sublethel doses of 4-nonylpenol referred to endocrine disruption in Clarias gariepinus in association with histopathological changes in reproductive tissues. The levels of thyroid stimulating hormone (TSH), triiodothyronine (T3), total thyroxine (T4), follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone concentrations significantly decreased (P<0.05) in the treated fish in comparison with control. 17-β-estradiol increased significantly (P<0.05) with 4-nonylphenol concentrations increase. Reduction in the gonadosomatic index was evident with increase of sublethal doses of 4-nonylphenol. The histopathological changes of NP-treated were recorded in gonads of Clarias gariepinus reflecting their sensitivity to NP-estrogenic like effects.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | | | | |
Collapse
|