1
|
Huang KR, Liu QY, Zhang YF, Luo YL, Fu C, Pang X, Fu SJ. Whether hypoxia tolerance improved after short-term fasting is closely related to phylogeny but not to foraging mode in freshwater fish species. J Comp Physiol B 2024; 194:843-853. [PMID: 39347810 DOI: 10.1007/s00360-024-01588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
The combined stresses of fasting and hypoxia are common events during the life history of freshwater fish species. Hypoxia tolerance is vital for survival in aquatic environments, which requires organisms to down-regulate their maintenance energetic expenditure while simultaneously preserving physiological features such as oxygen supply capacity under conditions of food deprivation. Generally, infrequent-feeding species who commonly experience food shortages might evolve more adaptive strategies to cope with food deprivation than frequent-feeding species. Thus, the present study aimed to test whether the response of hypoxia tolerance in fish to short-term fasting (2 weeks) varied with different foraging modes. Fasting resulted in similar decreases in maintenance energetic expenditure and similar decreases in Pcrit and Ploe between fishes with different foraging modes, whereas it resulted in decreased oxygen supply capacity only in frequent-feeding fishes. Furthermore, independent of foraging mode, fasting decreased Pcrit and Ploe in all Cypriniformes and Siluriformes species but not in Perciformes species. The mechanism for decreased Pcrit and Ploe in Cypriniformes and Siluriformes species is at least partially due to the downregulated metabolic demand and/or the maintenance of a high oxygen supply capacity while fasting. The present study found that the effect of fasting on hypoxia tolerance depends upon phylogeny in freshwater fish species. The information acquired in the present study is highly valuable in aquaculture industries and can be used for species conservation in the field.
Collapse
Affiliation(s)
- Ke-Ren Huang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, Chongqing, 401331, China
| | - Qian-Ying Liu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, Chongqing, 401331, China
| | - Yong-Fei Zhang
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, Chongqing, 401331, China
| | - Yu-Lian Luo
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, Chongqing, 401331, China
| | - Cheng Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, Chongqing, 401331, China
| | - Xu Pang
- College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
2
|
Ashraf MU, Nyqvist D, Comoglio C, Nikora V, Marion A, Domenici P, Manes C. Decoding burst swimming performance: a scaling perspective on time-to-fatigue. J R Soc Interface 2024; 21:20240276. [PMID: 39353564 PMCID: PMC11444792 DOI: 10.1098/rsif.2024.0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Fatigue curves quantify fish swimming performance, providing information about the time ([Formula: see text]) fish can swim against a steady flow velocity (Uf) before fatiguing. Such curves represent a key tool for many applications in ecological engineering, especially for fish pass design and management. Despite years of research, though, our current ability to model fatigue curves still lacks theoretical foundations and relies primarily on fitting empirical data, as obtained from time-consuming and costly experiments. In the present article, we address this shortcoming by proposing a theoretical analysis that builds upon concepts of fish hydrodynamics to derive scaling laws linking statistical properties of [Formula: see text] to velocities Uf, pertaining to the so-called burst range. Theoretical arguments, in the present study, suggest that the proposed scaling laws may hold true for all fish species and sizes. A new experimental database obtained from over 800 trials and five small-sized Cypriniformes support theoretical predictions satisfactorily and calls for further experiments on more fish species and sizes to confirm their general validity.
Collapse
Affiliation(s)
- Muhammad Usama Ashraf
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| | - Daniel Nyqvist
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| | - Claudio Comoglio
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| | - Vladimir Nikora
- Department of Engineering, University of Aberdeen, Aberdeen, Scotland, UK
| | - Andrea Marion
- Department of Industrial Engineering, Università di Padova, Padova, Italy
| | - Paolo Domenici
- CNR-IAS, Italian National Research Council, Institute of Anthropic Impacts and Sustainability in the Marine Environment, Oristano, Italy
- CNR-IBF, Institute of Biophysics, Pisa, Italy
| | - Costantino Manes
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
| |
Collapse
|
3
|
Almeida J, Lopes AR, Ribeiro L, Castanho S, Candeias-Mendes A, Pousão-Ferreira P, Faria AM. Effects of exposure to elevated temperature and different food levels on the escape response and metabolism of early life stages of white seabream, Diplodus sargus. CONSERVATION PHYSIOLOGY 2022; 10:coac023. [PMID: 35586725 PMCID: PMC9109722 DOI: 10.1093/conphys/coac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Recent literature suggests that anthropogenic stressors can disrupt ecologically relevant behaviours in fish, such as the ability to escape from predators. Disruption of these behaviours at critical life history transitions, such as the transition from the pelagic environment to the juvenile/adult habitat, may have even greater repercussions. The literature suggests that an increase in temperature can affect fish escape response, as well as metabolism; however, few studies have focused on the acute sensitivity responses and the potential for acclimation through developmental plasticity. Here, we aimed at evaluating the acute and long-term effects of exposure to warming conditions on the escape response and routine metabolic rate (RMR) of early life stages of the white seabream, Diplodus sargus. Additionally, as food availability may modulate the response to warming, we further tested the effects of long-term exposure to high temperature and food shortage, as individual and interacting drivers, on escape response and RMR. Temperature treatments were adjusted to ambient temperature (19°C) and a high temperature (22°C). Feeding treatments were established as high ration and low ration (50% of high ration). Escape response and RMR were measured after the high temperature was reached (acute exposure) and after 4 weeks (prolonged exposure). Acute warming had a significant effect on escape response and generated an upward trend in RMR. In the long term, however, there seems to be an acclimation of the escape response and RMR. Food shortage, interacting with high temperature, led to an increase in latency response and a significant reduction in RMR. The current study provides relevant experimental data on fishes' behavioural and physiological responses to the combined effects of multiple stressors. This knowledge can be incorporated in recruitment models, thereby contributing to fine-tuning of models required for fisheries management and species conservation.
Collapse
Affiliation(s)
- João Almeida
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, 1149-041, Lisbon, Portugal
| | - Ana Rita Lopes
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, 1149-041, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, 8700-194, Lisbon, Portugal
| | - Laura Ribeiro
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Sara Castanho
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Ana Candeias-Mendes
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Pedro Pousão-Ferreira
- Portuguese Institute for the Ocean and Atmosphere - IPMA, Aquaculture Research Station, 1749-016, Olhão, Portugal
| | - Ana M Faria
- Corresponding author: MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisbon, Portugal. Tel: + 351 218 811 700. E-mail:
| |
Collapse
|
4
|
Schakmann M, Becker V, Søgaard M, Johansen JL, Steffensen JF, Domenici P. Latency of mechanically stimulated escape responses in the Pacific spiny dogfish, Squalus suckleyi. J Exp Biol 2021; 224:jeb.230698. [PMID: 33431597 DOI: 10.1242/jeb.230698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022]
Abstract
Fast escape responses to a predator threat are fundamental to the survival of mobile marine organisms. However, elasmobranchs are often underrepresented in such studies. Here, we measured the escape latency (time interval between the stimulus and first visible reaction) of mechanically induced escape responses in the Pacific spiny dogfish, Squalus suckleyi, and in two teleosts from the same region, the great sculpin, Myoxocephalus polyacanthocephalus, and the pile perch, Rhacochilus vacca We found that the dogfish had a longer minimum latency (66.7 ms) compared with that for the great sculpin (20.8 ms) and pile perch (16.7 ms). Furthermore, the dogfish had a longer latency than that of 48 different teleosts identified from 35 different studies. We suggest such long latencies in dogfish may be due to the absence of Mauthner cells, the giant neurons that control fast escape responses in fishes.
Collapse
Affiliation(s)
- Mathias Schakmann
- Department of Natural Sciences, Hawaii Pacific University, 1 Aloha Tower Drive, Honolulu, HI 96815, USA .,Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI 96744, USA
| | - Victoria Becker
- Marine Biological Section, University of Copenhagen, 3000 Helsingør, Denmark
| | - Mathias Søgaard
- Marine Biological Section, University of Copenhagen, 3000 Helsingør, Denmark
| | - Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI 96744, USA
| | - John F Steffensen
- Marine Biological Section, University of Copenhagen, 3000 Helsingør, Denmark
| | - Paolo Domenici
- CNR- IAS, Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino Torregrande, 09072 Torregrande, Oristano, Italy
| |
Collapse
|
5
|
Domenici P, Allan BJM, Lefrançois C, McCormick MI. The effect of climate change on the escape kinematics and performance of fishes: implications for future predator-prey interactions. CONSERVATION PHYSIOLOGY 2019; 7:coz078. [PMID: 31723432 PMCID: PMC6839432 DOI: 10.1093/conphys/coz078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 10/18/2019] [Indexed: 05/21/2023]
Abstract
Climate change can have a pronounced impact on the physiology and behaviour of fishes. Notably, many climate change stressors, such as global warming, hypoxia and ocean acidification (OA), have been shown to alter the kinematics of predator-prey interactions in fishes, with potential effects at ecological levels. Here, we review the main effects of each of these stressors on fish escape responses using an integrative approach that encompasses behavioural and kinematic variables. Elevated temperature was shown to affect many components of the escape response, including escape latencies, kinematics and maximum swimming performance, while the main effect of hypoxia was on escape responsiveness and directionality. OA had a negative effect on the escape response of juvenile fish by decreasing their directionality, responsiveness and locomotor performance, although some studies show no effect of acidification. The few studies that have explored the effects of multiple stressors show that temperature tends to have a stronger effect on escape performance than OA. Overall, the effects of climate change on escape responses may occur through decreased muscle performance and/or an interference with brain and sensory functions. In all of these cases, since the escape response is a behaviour directly related to survival, these effects are likely to be fundamental drivers of changes in marine communities. The overall future impact of these stressors is discussed by including their potential effects on predator attack behaviour, thereby allowing the development of potential future scenarios for predator-prey interactions.
Collapse
Affiliation(s)
- Paolo Domenici
- CNR-IAS, Oristano, 09170 Italy
- Corresponding author: CNR-IAS, Oristano 09170, Italy.
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | | | - Mark I McCormick
- Department of Marine Biology and Aquaculture, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
6
|
Li J, Li W, Zhang X. Effects of dissolved oxygen, starvation, temperature, and salinity on the locomotive ability of juvenile Chinese shrimp Fenneropenaeus chinensis. ETHOL ECOL EVOL 2018. [DOI: 10.1080/03949370.2018.1526215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jiangtao Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Wentao Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiumei Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266072, China
| |
Collapse
|
7
|
Hou Y, Cai L, Wang X, Chen X, Zhu D, Johnson D, Shi X. Swimming performance of 12 Schizothoracinae species from five rivers. JOURNAL OF FISH BIOLOGY 2018; 92:2022-2028. [PMID: 29660139 DOI: 10.1111/jfb.13632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
A series of stepped velocity tests were carried out in a Brett-type swimming respirometer and the overall range in swimming performance for 12 Schizothoracinae species was measured. The relative critical swimming speed Ucrit and burst speed Uburst decreased with body length, while absolute Ucrit and Uburst increased with body length. Ucrit increased with temperature up to approximately 15° C and then decreased. Species with a high Ucrit also displayed a higher Uburst .
Collapse
Affiliation(s)
- Y Hou
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - L Cai
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - X Wang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China
| | - X Chen
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - D Zhu
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - D Johnson
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
- China Three Gorges University, Yichang 430002, China
| | - X Shi
- China Three Gorges University, Yichang 430002, China
| |
Collapse
|
8
|
Pang X, Fu SJ, Li XM, Zhang YG. The effects of starvation and re-feeding on growth and swimming performance of juvenile black carp (Mylopharyngodon piceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1203-1212. [PMID: 26932844 DOI: 10.1007/s10695-016-0210-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
We investigated the effects of starvation and re-feeding on growth and swimming performance and their relationship in juvenile black carp (Mylopharyngodon piceus). We measured the specific growth rate (SGR), resting metabolic rate (RMR) and constant acceleration test speed (U CAT, the maximum swimming speed at exhaustion by constant acceleration test with 0.1667 cm s(-2) rate) in a treatment group (21 days of starvation then 21 days of re-feeding) and control group (routine feeding) (n = 20). Starvation resulted in a 17 % decrease in body mass of black carp (P < 0.05). After 21 days of re-feeding, body mass was greater than that of pre-starvation but still less than that of the control group at 42 days. During the re-feeding phase, the SGR of the treatment group was higher than that of the control group (P < 0.05). Starvation resulted in a significant decrease in the RMR and U CAT. After 21 days of re-feeding, both the RMR and U CAT recovered to the pre-starvation levels. In the control group, individual juvenile black carp displayed strong repeatability of the RMR and U CAT across the measurement periods (P ≤ 0.002). In the treatment group, RMR showed significant repeatability between pre-starvation and re-feeding (P = 0.007), but not between pre-starvation and starvation or between starvation and re-feeding. U CAT showed significant repeatability between pre-starvation and starvation (P = 0.006) and between pre-starvation and re-feeding (P = 0.001), but not between starvation and re-feeding. No correlation or only a weak correlation was found between any two variables of RMR, U CAT and SGR, whereas the increment of the U CAT (ΔU CAT) was negatively correlated with that of SGR during the starvation phase (r = -0.581, n = 20, P = 0.007) and re-feeding phase (r = -0.568, n = 20, P = 0.009). This suggested that within individual black carp, there is a trade-off between growth and maintenance (or development) of swimming performance under food-limited conditions.
Collapse
Affiliation(s)
- Xu Pang
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behaviour, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Xiu-Ming Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
- Laboratory of Evolutionary Physiology and Behaviour, Chongqing Key Laboratory of Animal Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Yao-Guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Education of Ministry, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|