1
|
Knytl M, Fornaini NR. Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus Carassius. Cells 2021; 10:2343. [PMID: 34571992 PMCID: PMC8471844 DOI: 10.3390/cells10092343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 11/23/2022] Open
Abstract
The widely distributed ray-finned fish genus Carassius is very well known due to its unique biological characteristics such as polyploidy, clonality, and/or interspecies hybridization. These biological characteristics have enabled Carassius species to be successfully widespread over relatively short period of evolutionary time. Therefore, this fish model deserves to be the center of attention in the research field. Some studies have already described the Carassius karyotype, but results are inconsistent in the number of morphological categories for individual chromosomes. We investigated three focal species: Carassius auratus, C. carassius and C. gibelio with the aim to describe their standardized diploid karyotypes, and to study their evolutionary relationships using cytogenetic tools. We measured length (q+plength) of each chromosome and calculated centromeric index (i value). We found: (i) The relationship between q+plength and i value showed higher similarity of C. auratus and C. carassius. (ii) The variability of i value within each chromosome expressed by means of the first quartile (Q1) up to the third quartile (Q3) showed higher similarity of C. carassius and C. gibelio. (iii) The fluorescent in situ hybridization (FISH) analysis revealed higher similarity of C. auratus and C. gibelio. (iv) Standardized karyotype formula described using median value (Q2) showed differentiation among all investigated species: C. auratus had 24 metacentric (m), 40 submetacentric (sm), 2 subtelocentric (st), 2 acrocentric (a) and 32 telocentric (T) chromosomes (24m+40sm+2st+2a+32T); C. carassius: 16m+34sm+8st+42T; and C. gibelio: 16m+22sm+10st+2a+50T. (v) We developed R scripts applicable for the description of standardized karyotype for any other species. The diverse results indicated unprecedented complex genomic and chromosomal architecture in the genus Carassius probably influenced by its unique biological characteristics which make the study of evolutionary relationships more difficult than it has been originally postulated.
Collapse
Affiliation(s)
- Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
| | | |
Collapse
|
2
|
Menezes RST, Cabral-de-Mello DC, Milani D, Bardella VB, Almeida EAB. The relevance of chromosome fissions for major ribosomal DNA dispersion in hymenopteran insects. J Evol Biol 2021; 34:1466-1476. [PMID: 34331340 DOI: 10.1111/jeb.13909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/04/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023]
Abstract
Ribosomal DNA (rDNA) loci are essential for cellular metabolism due to their participation in ribosome biogenesis. Although these genes have been widely cytogenetically mapped, the evolutionary mechanisms behind their variability in number and chromosomal location remain elusive, even in well-known biological groups, such as ants, bees and wasps (Insecta: Hymenoptera). To address this question in Hymenoptera and therefore advance the understanding of rDNA evolution in insects in general, we integrated molecular cytogenetic data, a phylogenomic framework, model-based predictions and genome sequencing. Hence, we assessed the main evolutionary trends shaping the chromosomal distribution of rDNA loci in Hymenoptera. We noticed the conservation of one site of rDNA per haploid genome, suggesting that a single 45S rDNA locus is the putative ancestral pattern for aculeate Hymenoptera. Moreover, our results highlighted a nonrandom distribution of rDNA in Hymenoptera karyotypes, as well as a lineage-specific preferential location. The proximal location of rDNA is favoured in species with multiple loci and in the two families of Hymenoptera that show the highest range of chromosome numbers: Formicidae and Vespidae. We propose that chromosome fissions have played a crucial role in the distribution pattern of rDNA loci through the evolutionary diversification of Hymenoptera. Moreover, our genomic analysis of two species, one with a single locus of rDNA and one with multiple loci, supported that loci multiplication is followed by sequence divergence. Our results provide detailed information about the number and chromosomal position of rDNA in Hymenoptera and, therefore, broaden our knowledge regarding rDNA evolutionary dynamics in insects.
Collapse
Affiliation(s)
- Rodolpho S T Menezes
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras (FFCLRP), Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras (FFCLRP), Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Teixeira GA, de Aguiar HJAC, Petitclerc F, Orivel J, Lopes DM, Barros LAC. Evolutionary insights into the genomic organization of major ribosomal DNA in ant chromosomes. INSECT MOLECULAR BIOLOGY 2021; 30:340-354. [PMID: 33586259 DOI: 10.1111/imb.12699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
The major rDNA genes are composed of tandem repeats and are part of the nucleolus organizing regions (NORs). They are highly conserved and therefore useful in understanding the evolutionary patterns of chromosomal locations. The evolutionary dynamics of the karyotype may affect the organization of rDNA genes within chromosomes. In this study, we physically mapped 18S rDNA genes in 13 Neotropical ant species from four subfamilies using fluorescence in situ hybridization. Furthermore, a survey of published rDNA cytogenetic data for 50 additional species was performed, which allowed us to detect the evolutionary patterns of these genes in ant chromosomes. Species from the Neotropical, Palearctic, and Australian regions, comprising a total of 63 species from 19 genera within six subfamilies, were analysed. Most of the species (48 out of 63) had rDNA genes restricted to a single chromosome pair in their intrachromosomal regions. The position of rDNA genes within the chromosomes appears to hinder their dispersal throughout the genome, as translocations and ectopic recombination are uncommon in intrachromosomal regions because they can generate meiotic abnormalities. Therefore, rDNA genes restricted to a single chromosome pair seem to be a plesiomorphic feature in ants, while multiple rDNA sites, observed in distinct subfamilies, may have independent origins in different genera.
Collapse
Affiliation(s)
- G A Teixeira
- Programa de Pós-graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Viçosa, Brazil
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - H J A C de Aguiar
- Universidade Federal do Amapá, Campus Binacional, BR 156, n° 3051, Bairro Universidade, Oiapoque, 68980-000, Brazil
| | - F Petitclerc
- CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, France
| | - J Orivel
- CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, France
| | - D M Lopes
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - L A C Barros
- Universidade Federal do Amapá, Campus Binacional, BR 156, n° 3051, Bairro Universidade, Oiapoque, 68980-000, Brazil
| |
Collapse
|
4
|
Nascimento CND, Troy WP, Alves JCP, Carvalho ML, Oliveira C, Foresti F. Molecular cytogenetic analyses reveal extensive chromosomal rearrangements and novel B chromosomes in Moenkhausia (Teleostei, Characidae). Genet Mol Biol 2020; 43:e20200027. [PMID: 33156889 PMCID: PMC7649911 DOI: 10.1590/1678-4685-gmb-2020-0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
The cytogenetic characteristics of five fish species of the Moenkhausia are described, based on the analysis of specimens collected in different headwater. All the species analyzed presented 2n=50 chromosomes. The C-banding revealed a similar distribution pattern of heterochromatic blocks in all the species, except Moenkhausia nigromarginata. The 5S rDNA sites were distributed on multiple chromosome pairs in all five species. Single and multiple histone H1 sites were observed in all the species, and histone H1 was shown to be co-located with the 18S rRNA gene in a single chromosome pair. The U2 snDNA gene was distributed at multiple sites in all the Moenkhausia species. The presence of B microchromosomes was confirmed in Moenkhausia forestii, while individuals of the three study populations of Moenkhausia oligolepis presented three morphologically distinct types of B chromosome. The chromosomal mapping of the 18S rDNA sites using the FISH technique revealed signals in the B chromosomes of M. forestii, while clusters of the H1 histone and U2 snDNA genes were found in the B chromosomes of M. forestii and M. oligolepis. The classical and molecular cytogenetic markers used in this study revealed ample variation in the Moenkhausia karyotypes, reflecting the dynamic nature of the chromosomal evolution.
Collapse
Affiliation(s)
- Cristiano Neves do Nascimento
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| | - Waldo Pinheiro Troy
- Universidade do Estado de Mato Grosso - UNEMAT, Departamento de Ciências Biológicas, Tangará da Serra, MT, Brazil
| | | | - Margarida Lima Carvalho
- Universidade Federal do Acre - UFAC, Centro de Ciências Biológicas e Naturais, Rio Branco, AC, Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| | - Fausto Foresti
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Departamento de Biologia Estrutural e Funcional, Botucatu, SP, Brazil
| |
Collapse
|
5
|
Coluccia E, Deidda F, Lobina C, Melis R, Porcu C, Agus B, Salvadori S. Chromosome Mapping of 5S Ribosomal Genes in Indo-Pacific and Atlantic Muraenidae: Comparative Analysis by Dual Colour Fluorescence In Situ Hybridisation. Genes (Basel) 2020; 11:genes11111319. [PMID: 33172170 PMCID: PMC7694744 DOI: 10.3390/genes11111319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
The Muraenidae is one of the largest and most complex anguilliform families. Despite their abundance and important ecological roles, morays are little studied, especially cytogenetically, and both their phylogenetic relationships and the taxonomy of their genera are controversial. With the aim of extending the karyology of this fish group, the chromosomal mapping of the 5S ribosomal gene family was performed on seven species belonging to the genera Muraena and Gymnothorax from both the Atlantic and Pacific oceans. Fluorescence in situ hybridisation (FISH) experiments were realized using species-specific 5S rDNA probes; in addition, two-colour FISH was performed to investigate the possible association with the 45S ribosomal gene family. Multiple 5S rDNA clusters, located either in species-specific or in possibly homoeologous chromosomes, were found. Either a syntenic or different chromosomal location of the two ribosomal genes was detected. Our results revealed variability in the number and location of 5S rDNA clusters and confirmed a substantial conservation of the number and location of the 45S rDNA.
Collapse
|
6
|
Su D, Chen L, Sun J, Zhang L, Gao R, Li Q, Han Y, Li Z. Comparative Chromosomal Localization of 45S and 5S rDNA Sites in 76 Purple-Fleshed Sweet Potato Cultivars. PLANTS 2020; 9:plants9070865. [PMID: 32650507 PMCID: PMC7412053 DOI: 10.3390/plants9070865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
In recent years, the purple-fleshed sweet potato has attracted more attention because of its high nutritional value. The cytogenetics of this crop is relatively unexplored, limiting our knowledge on its genetic diversity. Therefore, we conducted cytogenetic analysis of 76 purple-fleshed sweet potato cultivars to analyze the chromosome structure and distribution of 45S and 5S rDNA. We noted that only 62 cultivars had 90 chromosomes, and the others were aneuploid with 88, 89, 91, or 92 chromosomes. The number of 45S rDNA in the 76 cultivars varied from 16 to 21; these sites showed different signal sizes and intensities and were localized at the chromosomal termini or satellite. The number of 5S rDNA was relatively stable; 74 cultivars showed six sites located at the chromosomal sub-terminal or near the centromere. Only the ‘Quanzishu 96’ and ‘Yuzixiang 10’ showed seven and five 5S rDNA sites, respectively. Additionally, both parent cultivars of ‘Quanzishu 96’ showed 18 45S and six 5S rDNA sites. Overall, our results indicate a moderate diversity in the distribution pattern of rDNAs. Our findings provide comprehensive cytogenetic information for the identification of sweet potato chromosomes, which can be useful for developing a high-quality germplasm resource.
Collapse
Affiliation(s)
- Dan Su
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Lei Chen
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Jianying Sun
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Luyue Zhang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
| | - Runfei Gao
- Jiangsu Xuhuai Regional Xuzhou Institute of Agricultural Sciences/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221100, China; (R.G.); (Q.L.)
| | - Qiang Li
- Jiangsu Xuhuai Regional Xuzhou Institute of Agricultural Sciences/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221100, China; (R.G.); (Q.L.)
| | - Yonghua Han
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
- Correspondence: (Y.H.); (Z.L.); Tel.: +86-0516-8350-0083 (Y.H. & Z.L.)
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221100, China; (D.S.); (L.C.); (J.S.); (L.Z.)
- Correspondence: (Y.H.); (Z.L.); Tel.: +86-0516-8350-0083 (Y.H. & Z.L.)
| |
Collapse
|
7
|
Dutra RT, Bitencourt JDA, Barreto Netto MRDC, Paim FG, Sarmento-Soares LM, Affonso PRADM. Chromosomal Markers Are Useful to Species Identification in Rivulidae (Cyprinodontiformes, Aplocheiloidei), Including the Resolution of Taxonomic Uncertainties in a Vulnerable Species Complex. Zebrafish 2020; 17:48-55. [DOI: 10.1089/zeb.2019.1822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rayana Tiago Dutra
- Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia, Bahia, Brazil
| | | | | | - Fabilene Gomes Paim
- Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | | | | |
Collapse
|
8
|
How dynamic could be the 45S rDNA cistron? An intriguing variability in a grasshopper species revealed by integration of chromosomal and genomic data. Chromosoma 2019; 128:165-175. [DOI: 10.1007/s00412-019-00706-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
9
|
Menezes RST, Gazoni T, Costa MA. Cytogenetics of warrior wasps (Vespidae:Synoeca) reveals intense evolutionary dynamics of ribosomal DNA clusters and an unprecedented number of microchromosomes in Hymenoptera. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rodolpho S T Menezes
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras – Universidade de São Paulo (FFCLRP/USP), Ribeirão Preto, SP, Brazil
| | - Thiago Gazoni
- Departamento de Biologia – Universidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claro, SP, Brazil
| | - Marco A Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
10
|
Komissarov A, Vij S, Yurchenko A, Trifonov V, Thevasagayam N, Saju J, Sridatta PSR, Purushothaman K, Graphodatsky A, Orbán L, Kuznetsova I. B Chromosomes of the Asian Seabass ( Lates calcarifer) Contribute to Genome Variations at the Level of Individuals and Populations. Genes (Basel) 2018; 9:E464. [PMID: 30241368 PMCID: PMC6211105 DOI: 10.3390/genes9100464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 12/01/2022] Open
Abstract
The Asian seabass (Lates calcarifer) is a bony fish from the Latidae family, which is widely distributed in the tropical Indo-West Pacific region. The karyotype of the Asian seabass contains 24 pairs of A chromosomes and a variable number of AT- and GC-rich B chromosomes (Bchrs or Bs). Dot-like shaped and nucleolus-associated AT-rich Bs were microdissected and sequenced earlier. Here we analyzed DNA fragments from Bs to determine their repeat and gene contents using the Asian seabass genome as a reference. Fragments of 75 genes, including an 18S rRNA gene, were found in the Bs; repeats represented 2% of the Bchr assembly. The 18S rDNA of the standard genome and Bs were similar and enriched with fragments of transposable elements. A higher nuclei DNA content in the male gonad and somatic tissue, compared to the female gonad, was demonstrated by flow cytometry. This variation in DNA content could be associated with the intra-individual variation in the number of Bs. A comparison between the copy number variation among the B-related fragments from whole genome resequencing data of Asian seabass individuals identified similar profiles between those from the South-East Asian/Philippines and Indian region but not the Australian ones. Our results suggest that Bs might cause variations in the genome among the individuals and populations of Asian seabass. A personalized copy number approach for segmental duplication detection offers a suitable tool for population-level analysis across specimens with low coverage genome sequencing.
Collapse
Affiliation(s)
- Aleksey Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg 199004, Russia.
| | - Shubha Vij
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore 117604, Singapore.
- School of Applied Science, Republic Polytechnic 9 Woodlands Avenue 9, Singapore 738964, Singapore.
| | - Andrey Yurchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg 199004, Russia.
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
- Department of Natural Science, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Natascha Thevasagayam
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore 117604, Singapore.
| | - Jolly Saju
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore 117604, Singapore.
| | | | - Kathiresan Purushothaman
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore 117604, Singapore.
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| | - Alexander Graphodatsky
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
- Department of Natural Science, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - László Orbán
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore 117604, Singapore.
- Department of Animal Sciences, Georgikon Faculty, University of Pannonia, H-8360 Keszthely, Hungary.
- Center for Comparative Genomics, Murdoch University, 6150 Murdoch, Australia.
| | - Inna Kuznetsova
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore 117604, Singapore.
| |
Collapse
|
11
|
Pazza R, Dergam JA, Kavalco KF. Trends in Karyotype Evolution in Astyanax (Teleostei, Characiformes, Characidae): Insights From Molecular Data. Front Genet 2018; 9:131. [PMID: 29713335 PMCID: PMC5911472 DOI: 10.3389/fgene.2018.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/03/2018] [Indexed: 12/05/2022] Open
Abstract
The study of patterns and evolutionary processes in neotropical fish is not always an easy task due the wide distribution of major fish groups in large and extensive river basins. Thus, it is not always possible to detect or correlate possible effects of chromosome rearrangements in the evolution of biodiversity. In the Astyanax genus, chromosome data obtained since the 1970s have shown evidence of cryptic species, karyotypic plasticity, supernumerary chromosomes, triploidies, and minor chromosomal rearrangements. In the present work, we map and discuss the main chromosomal events compatible with the molecular evolution of the genus Astyanax (Characiformes, Characidae) using mitochondrial DNA sequence data, in the search for major chromosome evolutionary trends within this taxon.
Collapse
Affiliation(s)
- Rubens Pazza
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa, Rio Paranaíba, Brazil
| | - Jorge A. Dergam
- Laboratory of Molecular Systematics “Beagle”, Department of Animal Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Karine F. Kavalco
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa, Rio Paranaíba, Brazil
| |
Collapse
|
12
|
Teixeira TKSS, Venere PC, Ferreira DC, Mariotto S, Castro JP, Artoni RF, Centofante L. Comparative cytogenetics of Astyanax (Teleostei: Characidae) from the upper Paraguay basin. NEOTROPICAL ICHTHYOLOGY 2018. [DOI: 10.1590/1982-0224-20170092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Astyanax is one of the most abundant and diverse taxa of fishes in the Neotropical region. In order to increase the amount of cytogenetic information for Astyanax as well as to exhibit data to subsidize future taxonomic studies, this work analyzed three species of Astyanax: two species are cryptic, and are here reported to live in syntopy (A. abramis and A. lacustris); the first karyotype description for A. pirapuan is also presented. Cytogenetic analyzes reveal a diploid number of 2n=50 chromosomes for three species, yet with differences in their karyotype morphology. The physical mapping of 18S rDNA showed up to thirteen sites in A. pirapuan and two in A. abramis and A. lacustris. The physical mapping of 5S rDNA has proven to be an effective marker for the characterization of species of Astyanax studied in this work.
Collapse
Affiliation(s)
| | | | | | - Sandra Mariotto
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Brazil
| | | | - Roberto F. Artoni
- Universidade Federal de São Carlos, Brazil; Universidade Estadual de Ponta Grossa, Brazil
| | | |
Collapse
|
13
|
Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma 2018; 127:141-150. [PMID: 29192338 PMCID: PMC5818627 DOI: 10.1007/s00412-017-0651-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/24/2022]
Abstract
Ribosomal DNA (rDNA) loci encoding 5S and 45S (18S-5.8S-28S) rRNAs are important components of eukaryotic chromosomes. Here, we set up the animal rDNA database containing cytogenetic information about these loci in 1343 animal species (264 families) collected from 542 publications. The data are based on in situ hybridisation studies (both radioactive and fluorescent) carried out in major groups of vertebrates (fish, reptiles, amphibians, birds, and mammals) and invertebrates (mostly insects and mollusks). The database is accessible online at www.animalrdnadatabase.com . The median number of 45S and 5S sites was close to two per diploid chromosome set for both rDNAs despite large variation (1-74 for 5S and 1-54 for 45S sites). No significant correlation between the number of 5S and 45S rDNA loci was observed, suggesting that their distribution and amplification across the chromosomes follow independent evolutionary trajectories. Each group, irrespective of taxonomic classification, contained rDNA sites at any chromosome location. However, the distal and pericentromeric positions were the most prevalent (> 75% karyotypes) for 45S loci, while the position of 5S loci was more variable. We also examined potential relationships between molecular attributes of rDNA (homogenisation and expression) and cytogenetic parameters such as rDNA positions, chromosome number, and morphology.
Collapse
Affiliation(s)
- Jana Sochorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265, Brno, Czech Republic
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, 08038, Barcelona, Catalonia, Spain
| | - Francisco Gálvez
- Bioscripts-Centro de Investigación y Desarrollo de Recursos Científicos, 41012, Sevilla, Andalusia, Spain
| | - Radka Symonová
- Faculty of Science, University of Hradec Kralove, Hradecka 1285, CZ-50003, Hradec Kralove, Czech Republic
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265, Brno, Czech Republic.
| |
Collapse
|
14
|
Knytl M, Kalous L, Rylková K, Choleva L, Merilä J, Ráb P. Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: A threat for the threatened crucian carp, C. carassius, L. PLoS One 2018; 13:e0190924. [PMID: 29360831 PMCID: PMC5779652 DOI: 10.1371/journal.pone.0190924] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/25/2017] [Indexed: 01/10/2023] Open
Abstract
The crucian carp Carassius carassius (Linnaeus, 1758), is native to many European freshwaters. Despite its wide distribution, the crucian carp is declining in both the number and sizes of populations across much of its range. Here we studied 30 individuals of a putative pure population from Helsinki, Finland. Despite clear external morphological features of C. carassius, an individual was of a higher ploidy level than the others. We therefore applied a set of molecular genetic (S7 nuclear and cytochrome b mitochondrial genes) and cytogenetic tools (sequential fluorescent 4’, 6-diamidino-2-phenylindole [DAPI], Chromomycin A3 [CMA3], C-banding and in situ hybridization [FISH] with both 5S and 28S ribosomal DNA probes) to determine its origin. While all examined characteristics of a diploid representative male (CCAHe2Fi) clearly corresponded to those of C. carassius, a triploid individual (CCAHe1Fi) was more complex. Phylogenetic analysis revealed that the nuclear genome of CCAHe1Fi contained three haploid sets: two C. gibelio and one C. carassius. However the mitochondrial DNA was that of C. gibelio, demonstrating its hybrid origin. The FISH revealed three strong (more intensive) 5S rDNA loci, confirming the triploid status, and an additional 24 weak (less intensive) signals were observed in the chromosome complement of CCAHe1Fi. On the other hand, only two strong and 16 weak 5S rDNA signals were visible on the chromosomes of the CCAHe2Fi male. 28S rDNA FISH revealed four strong signals in both CCAHe1Fi and CCAHe2Fi individuals. CMA3 staining revealed four to six CMA3-positive bands of CCAHe1Fi, while that of diploids contained only two to four. The fact that a polyploid hybrid Carassius female with a strong invasive potential may share morphological characters typical for endangered C. carassius highlights a need to combine genetic investigations of Carassius cryptic diversity with conservation measures of C. carassius in Europe.
Collapse
Affiliation(s)
- Martin Knytl
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| | - Lukáš Kalous
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kateřina Rylková
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Lukáš Choleva
- The Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Juha Merilä
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Finland
| | - Petr Ráb
- The Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, Liběchov, Czech Republic
| |
Collapse
|
15
|
Barbosa P, Leal EV, da Silva M, de Almeida MC, Moreira-Filho O, Artoni RF. Variability and evolutionary implications of repetitive DNA dynamics in genome of Astyanax scabripinnis (Teleostei, Characidae). COMPARATIVE CYTOGENETICS 2017; 11:143-162. [PMID: 28919955 PMCID: PMC5599702 DOI: 10.3897/compcytogen.v11i1.11149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/30/2017] [Indexed: 06/11/2023]
Abstract
DNA sequences of multiple copies help in understanding evolutionary mechanisms, genomic structures and karyotype differentiation. The current study investigates the organization and distribution of different repetitive DNA in the standard complement and B chromosomes in Astyanax scabripinnis (Jenyns, 1842) chromosomes from three allopatric populations in Campos do Jordão region, São Paulo State, Brazil. The location of microsatellite sequences showed different chromosome distribution between Lavrinha Farm Stream (LFS) and Lake of Pedalinho (LP) populations. However, the karyotype of these populations basically followed the pattern of dispersed distribution in the A complement, conspicuous in telomeric/interstitial regions and preferential accumulation in the B chromosome. The B chromosome showed heterogeneous location of microsatellite probes CA, CAC and GA. The H3 and H4 histone genes were isolated from the total genome of the species and then the chromosomal mapping was performed by fluorescence in situ hybridization (FISH). The FISH signals showed high similarity for the probes H3 and H4 mapping in genomes of the populations analyzed. The sequences (GATA) n revealed a sex-specific trend between the chromosomal location in males and females at (LFS) and (LP) populations. Although species that comprise the Astyanax scabripinnis complex do not have morphologically differentiated sex chromosomes, the preferential GATA location - sex-associated - may represent a sex chromosome in differentiation.
Collapse
Affiliation(s)
- Patrícia Barbosa
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, Rodovia Washington Luís Km 235, São Carlos, SP, 13565-905, Brazil
| | - Eliza Viola Leal
- Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti 4748, Ponta Grossa, PR, 84030-900, Brazil
| | - Maelin da Silva
- Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti 4748, Ponta Grossa, PR, 84030-900, Brazil
| | - Mara Cristina de Almeida
- Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti 4748, Ponta Grossa, PR, 84030-900, Brazil
| | - Orlando Moreira-Filho
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, Rodovia Washington Luís Km 235, São Carlos, SP, 13565-905, Brazil
- Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti 4748, Ponta Grossa, PR, 84030-900, Brazil
| | - Roberto Ferreira Artoni
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, Rodovia Washington Luís Km 235, São Carlos, SP, 13565-905, Brazil
- Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti 4748, Ponta Grossa, PR, 84030-900, Brazil
| |
Collapse
|
16
|
Guimarães EMC, Carvalho NDM, Schneider CH, Feldberg E, Gross MC. Karyotypic Comparison of Hoplias malabaricus (Bloch, 1794) (Characiformes, Erythrinidae) in Central Amazon. Zebrafish 2017; 14:80-89. [PMID: 28129102 DOI: 10.1089/zeb.2016.1283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hoplias malabaricus comprises seven karyomorphs (A-G) and evolutionary units have been described in some of them. In this study, the karyotypic composition and genomic organization of individual H. malabaricus from Central Amazon are described and to verify whether they can be classified according to known karyomorphs. Individuals from the Ducke Reserve have 2n = 42 chromosomes, similar to karyomorph A. Individuals from Catalão Lake and Marchantaria Island exhibit 2n = 40 chromosomes, similar to karyomorph C. Regarding the constitutive heterochromatin, individuals from all locations present centromeric/pericentromeric blocks, in addition to some bitelomeric and interstitial markings. The number of chromosomes with nucleolar organizer region, 5S rDNA and 18S rDNA sites varied among the different locations. The Rex 3 element has a compartmentalized distribution at the terminal and centromeric regions of most chromosomes, with subtle differences among populations. Fluorescence in situ hybridization performed with a telomeric probe allowed the detection of these regions only at the terminal ends of the chromosomes. Thus, only the chromosomal macrostructure (karyomorphs A-G) is not sufficient to establish evolutionary units within the H. malabaricus group, considering differences in the genome organization that are found among their populations. Such differences in the genomic organization could be mainly caused by the sedentary habits of this species.
Collapse
Affiliation(s)
- Erika Milena Corrêa Guimarães
- 1 Departamento de Genética, Laboratório de Citogenômica Animal, Universidade Federal do Amazonas , Instituto de Ciências Biológicas, Manaus, Brazil
| | - Natália Dayane Moura Carvalho
- 1 Departamento de Genética, Laboratório de Citogenômica Animal, Universidade Federal do Amazonas , Instituto de Ciências Biológicas, Manaus, Brazil
| | - Carlos Henrique Schneider
- 1 Departamento de Genética, Laboratório de Citogenômica Animal, Universidade Federal do Amazonas , Instituto de Ciências Biológicas, Manaus, Brazil
| | - Eliana Feldberg
- 2 Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia , Manaus, Brazil
| | - Maria Claudia Gross
- 1 Departamento de Genética, Laboratório de Citogenômica Animal, Universidade Federal do Amazonas , Instituto de Ciências Biológicas, Manaus, Brazil
| |
Collapse
|
17
|
Supiwong W, Saenjundaeng P, Maneechot N, Chooseangjaew S, Pinthong K, Tanomtong A. A Discovery of Nucleolar Organizer Regions (NORs) Polymorphism and Karyological Analysis of Crystal Eye Catfish, Hemibagrus wyckii (Siluriformes, Bagridae) in Thailand. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Weerayuth Supiwong
- Faculty of Applied Science and Engineering, Khon Kaen University, Nong Khai Campus
| | | | - Nuntiya Maneechot
- Department of Fundamental Science, Faculty of Science and Technology, Surindra Rajabhat University
| | - Supatcha Chooseangjaew
- Marine Shellfish Breeding Research Unit, Department of Marine Science, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang Campus
| | - Krit Pinthong
- Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University
| | - Alongklod Tanomtong
- Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University
| |
Collapse
|
18
|
Gouveia JG, Wolf IR, de Moraes-Manécolo VPO, Bardella VB, Ferracin LM, Giuliano-Caetano L, da Rosa R, Dias AL. Isolation and characterization of 5S rDNA sequences in catfishes genome (Heptapteridae and Pseudopimelodidae): perspectives for rDNA studies in fish by C 0t method. Cytotechnology 2016; 68:2711-2720. [PMID: 27344147 PMCID: PMC5101342 DOI: 10.1007/s10616-016-9996-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/10/2016] [Indexed: 10/21/2022] Open
Abstract
Sequences of 5S ribosomal RNA (rRNA) are extensively used in fish cytogenomic studies, once they have a flexible organization at the chromosomal level, showing inter- and intra-specific variation in number and position in karyotypes. Sequences from the genome of Imparfinis schubarti (Heptapteridae) were isolated, aiming to understand the organization of 5S rDNA families in the fish genome. The isolation of 5S rDNA from the genome of I. schubarti was carried out by reassociation kinetics (C0t) and PCR amplification. The obtained sequences were cloned for the construction of a micro-library. The obtained clones were sequenced and hybridized in I. schubarti and Microglanis cottoides (Pseudopimelodidae) for chromosome mapping. An analysis of the sequence alignments with other fish groups was accomplished. Both methods were effective when using 5S rDNA for hybridization in I. schubarti genome. However, the C0t method enabled the use of a complete 5S rRNA gene, which was also successful in the hybridization of M. cottoides. Nevertheless, this gene was obtained only partially by PCR. The hybridization results and sequence analyses showed that intact 5S regions are more appropriate for the probe operation, due to conserved structure and motifs. This study contributes to a better understanding of the organization of multigene families in catfish's genomes.
Collapse
Affiliation(s)
- Juceli Gonzalez Gouveia
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Ivan Rodrigo Wolf
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | | | - Vanessa Belline Bardella
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Lara Munique Ferracin
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Lucia Giuliano-Caetano
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Renata da Rosa
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Ana Lúcia Dias
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil.
| |
Collapse
|
19
|
Chromosomal characterization in two species of an Astyanax bimaculatus complex (Characidae, Characiformes) using different techniques of chromosome banding. Cytotechnology 2016; 68:1277-86. [PMID: 27456346 DOI: 10.1007/s10616-015-9888-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 05/13/2015] [Indexed: 10/23/2022] Open
Abstract
Astyanax has been the subject of extensive cytogenetic studies due to its wide karyotypic diversity. This genus comprises species complexes, namely groups of fish of difficult morphological differentiation, such as the bimaculatus complex, which includes the characids with a rounded humeral spot. Thence, the present study proposed to accomplish a cytogenetic characterization of two species of this complex: A. asuncionensis and A. altiparanae, aiming to find chromosomal markers that differentiate these species, as well as achieve a better understanding of the karyotype evolution in the genus. For this we used different techniques of chromosome banding as C-banding, impregnation by silver nitrate, fluorochrome staining and FISH with 18S rDNA probe. This is the first cytogenetic study in A. asuncionensis, from Miranda river, which presented 2n = 50 and 18 m + 22sm + 6st + 4a (FN = 96) and single NORs. The populations of A. altiparanae also presented 2n = 50, but with different karyotypic formulae: the population of the Quexada river presented 16 m + 24sm + 4st + 6a (FN = 94) and the Esperança stream and Jacutinga river showed 16 m + 20sm + 4st + 10a (FN = 90). All analyzed populations showed an interindividual variation in the number and location of the nucleolar organizer regions (NORs). Single and multiple NORs were detected either by impregnation with silver nitrate or by FISH with 18S rDNA probe. After C-banding, the two species differed in relation to the composition and heterochromatin distribution. The meiotic cells of A. altiparanae male individuals were also analyzed, showing that, despite the high karyotype variability, chromosome pairing occurs normally. The data show that A. altiparanae and A. asuncionensis share some characteristics with other species of the bimaculatus complex, suggesting a close phylogenetic relationship among those species. However, some features can be used as differentiation chromosomal markers in altiparanae/asuncionensis morphotypes, which could result from a natural speciation process.
Collapse
|
20
|
Zhang ZT, Yang SQ, Li ZA, Zhang YX, Wang YZ, Cheng CY, Li J, Chen JF, Lou QF. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis. Genome 2016; 59:449-57. [PMID: 27334092 DOI: 10.1139/gen-2015-0207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosomal DNAs are useful cytogenetic markers for chromosome analysis. Studies investigating site numbers and distributions of rDNAs have provided important information for elucidating genome organization and chromosomal relationships of many species by fluorescence in situ hybridization. But relevant studies are scarce for species of the genus Cucumis, especially in wild species. In the present study, FISH was conducted to investigate the organization of 45S and 5S rDNA among 20 Cucumis accessions, including cultivars and wild accessions. Our results showed that the number of 45S rDNA sites varied from one to five pairs in different accessions, and most of these sites are located at the terminal regions of chromosomes. Interestingly, up to five pairs of 45S rDNA sites were observed in C. sativus var. sativus, the species which has the lowest chromosome number, i.e., 2n = 14. Only one pair of 5S rDNA sites was detected in all accessions, except for C. heptadactylus, C. sp, and C. spp that had two pairs of 5S rDNA sites. The distributions of 5S rDNA sites showed more variation than 45S rDNA sites. The phylogenetic analysis in this study showed that 45S and 5S rDNA have contrasting evolutionary patterns. We find that 5S rDNA has a polyploidization-related tendency towards the terminal location from an interstitial location but maintains a conserved site number, whereas the 45S rDNA showed a trend of increasing site number but a relatively conserved location.
Collapse
Affiliation(s)
- Zhen-Tao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Shu-Qiong Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Zi-Ang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Yun-Xia Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Yun-Zhu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Chun-Yan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Jin-Feng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| | - Qun-Feng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing 210095, China
| |
Collapse
|
21
|
The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci Rep 2016; 6:24501. [PMID: 27089831 PMCID: PMC4835728 DOI: 10.1038/srep24501] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/30/2016] [Indexed: 11/09/2022] Open
Abstract
The Asian arowana (Scleropages formosus), one of the world's most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas.
Collapse
|
22
|
de A Silva DMZ, Daniel SN, Camacho JPM, Utsunomia R, Ruiz-Ruano FJ, Penitente M, Pansonato-Alves JC, Hashimoto DT, Oliveira C, Porto-Foresti F, Foresti F. Origin of B chromosomes in the genus Astyanax (Characiformes, Characidae) and the limits of chromosome painting. Mol Genet Genomics 2016; 291:1407-18. [PMID: 26984341 DOI: 10.1007/s00438-016-1195-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
Abstract
Eukaryote genomes are frequently burdened with the presence of supernumerary (B) chromosomes. Their origin is frequently investigated by chromosome painting, under the hypothesis that sharing the repetitive DNA sequences contained in the painting probes is a sign of common descent. However, the intragenomic mobility of many anonymous DNA sequences contained in these probes (e.g., transposable elements) adds high uncertainty to this conclusion. Here we test the validity of chromosome painting to investigate B chromosome origin by comparing its results for seven B chromosome types in two fish species genus Astyanax, with those obtained (1) by means of the physical mapping of 18S ribosomal DNA (rDNA), H1 histone genes, the As51 satellite DNA and the (AC)15 microsatellite, and (2) by comparing the nucleotide sequence of one of these families (ITS regions from ribosomal DNA) between genomic DNA from B-lacking individuals in both species and the microdissected DNA from two metacentric B chromosomes found in these same species. Intra- and inter-specific painting suggested that all B chromosomes that were assayed shared homologous DNA sequences among them, as well as with a variable number of A chromosomes in each species. This finding would be consistent with a common origin for all seven B chromosomes analyzed. By contrast, the physical mapping of repetitive DNA sequences failed to give support to this hypothesis, as no more than two B-types shared a given repetitive DNA. Finally, sequence analysis of the ITS regions suggested that at least some of the B chromosomes could have had a common origin.
Collapse
Affiliation(s)
- Duílio M Z de A Silva
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, 18618-970, Brazil.
| | - Sandro Natal Daniel
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru., Bauru, SP, 17033-360, Brazil
| | | | - Ricardo Utsunomia
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, 18618-970, Brazil
| | | | - Manolo Penitente
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru., Bauru, SP, 17033-360, Brazil
| | - José Carlos Pansonato-Alves
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, 18618-970, Brazil
| | - Diogo Teruo Hashimoto
- CAUNESP, Universidade Estadual Paulista, Campus Jaboticabal, Jaboticabal, SP, 14884-900, Brazil
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, 18618-970, Brazil
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Campus de Bauru., Bauru, SP, 17033-360, Brazil
| | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, Botucatu, SP, 18618-970, Brazil
| |
Collapse
|
23
|
Piscor D, Parise-Maltempi PP. Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes. Genome 2016; 59:167-72. [DOI: 10.1139/gen-2015-0112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genus Astyanax is widely distributed from the southern United States to northern Patagonia, Argentina. While cytogenetic studies have been performed for this genus, little is known about the histone gene families. The aim of this study was to examine the chromosomal relationships among the different species of Astyanax. The chromosomal locations of the 5S rRNA and H3 histone genes were determined in A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, A. mexicanus (all 2n = 50), A. fasciatus (2n = 46), and A. schubarti (2n = 36). All eight species exhibited H3 histone clusters on two chromosome pairs. In six species (A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, and A. fasciatus), syntenic clusters of H3 histone and 5S rDNA were observed on metacentric (m) or submetacentric (sm) chromosomes. In seven species, clusters of 5S rDNA sequences were located on one or two chromosome pairs. In A. mexicanus, 5S rDNA clusters were located on four chromosome pairs. This study demonstrates that H3 histone clusters are conserved on two chromosome pairs in the genus Astyanax, and specific chromosomal features may contribute to the genomic organization of the H3 histone and 5S rRNA genes.
Collapse
Affiliation(s)
- Diovani Piscor
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Av. 24A, 1515, ZIP: 13506-900, Rio Claro, SP, Brazil
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Av. 24A, 1515, ZIP: 13506-900, Rio Claro, SP, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Av. 24A, 1515, ZIP: 13506-900, Rio Claro, SP, Brazil
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Av. 24A, 1515, ZIP: 13506-900, Rio Claro, SP, Brazil
| |
Collapse
|
24
|
Barreto SB, Cioffi MB, Medrado AS, Silva AT, Affonso PRAM, Diniz D. Allopatric chromosomal variation in Nematocharax venustus Weitzman, Menezes & Britski, 1986 (Actinopterygii: Characiformes) based on mapping of repetitive sequences. NEOTROPICAL ICHTHYOLOGY 2016. [DOI: 10.1590/1982-0224-20150141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Characiformes is the most cytogenetically studied group of freshwater Actinopterygii, but karyotypical data of several taxa remain unknown. This is the case of Nematocharax , regarded as a monotypic genus and characterized by marked sexual dimorphism. Therefore, we provide the first cytogenetic report of allopatric populations of Nematocharax venustus based on distinct methods of chromosomal banding and fluorescence in situ hybridization (FISH) with repetitive DNA probes (18S and 5S rDNA). The karyotype macrostructure was conserved in all specimens and populations, independently on sex, since they shared a diploid number (2n) of 50 chromosomes divided into 8m+26sm+14st+2a. The heterochromatin was mainly distributed at pericentromeric regions and base-specific fluorochrome staining revealed a single pair bearing GC-rich sites, coincident with nucleolar organizer regions (NORs). On the other hand, interpopulation variation in both number and position of repetitive sequences was observed, particularly in relation to 5S rDNA. Apparently, the short life cycles and restricted dispersal of small characins, such as N. venustus , might have favored the divergence of repetitive DNA among populations, indicating that this species might encompass populations with distinct evolutionary histories, which has important implications for conservation measures.
Collapse
Affiliation(s)
| | | | | | - André T. Silva
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| | | | - Débora Diniz
- Universidade Estadual do Sudoeste da Bahia, Brazil
| |
Collapse
|
25
|
Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol 2015; 15:251. [PMID: 26573692 PMCID: PMC4647339 DOI: 10.1186/s12862-015-0532-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/04/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Loaches of the family Nemacheilidae are one of the most speciose elements of Palearctic freshwater ichthyofauna and have undergone rapid ecological adaptations and colonizations. Their cytotaxonomy is largely unexplored; with the impact of cytogenetical changes on this evolutionary diversification still unknown. An extensive cytogenetical survey was performed in 19 nemacheilid species using both conventional (Giemsa staining, C- banding, Ag- and Chromomycin A3/DAPI stainings) and molecular (fluorescence in situ hybridization with 5S rDNA, 45S rDNA, and telomeric (TTAGGG)n probes) methods. A phylogenetic tree of the analysed specimens was constructed based on one mitochondrial (cytochrome b) and two nuclear (RAG1, IRBP) genes. RESULTS Seventeen species showed karyotypes composed of 2n = 50 chromosomes but differentiated by fundamental chromosome number (NF = 68-90). Nemachilichthys ruppelli (2n = 38) and Schistura notostigma (2n = 44-48) displayed reduced 2n with an elevated number of large metacentric chromosomes. Only Schistura fasciolata showed morphologically differentiated sex chromosomes with a multiple system of the XY1Y2 type. Chromomycin A3 (CMA3)- fluorescence revealed interspecific heterogeneity in the distribution of GC-rich heterochromatin including its otherwise very rare association with 5S rDNA sites. The 45S rDNA sites were mostly located on a single chromosome pair contrasting markedly with a pattern of two (Barbatula barbatula, Nemacheilus binotatus, N. ruppelli) to 20 sites (Physoschistura sp.) of 5S rDNA. The cytogenetic changes did not follow the phylogenetic relationships between the samples. A high number of 5S rDNA sites was present in species with small effective population sizes. CONCLUSION Despite a prevailing conservatism of 2n, Nemacheilidae exhibited a remarkable cytogenetic variability on microstructural level. We suggest an important role for pericentric inversions, tandem and centric fusions in nemacheilid karyotype differentiation. Short repetitive sequences, genetic drift, founder effect, as well as the involvement of transposable elements in the dispersion of ribosomal DNA sites, might also have played a role in evolutionary processes such as reproductive isolation. These remarkable dynamics of their genomes qualify river loaches as a model for the study of the cytogenetic background of major evolutionary processes such as radiation, endemism and colonization of a wide range of habitats.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.
| | - Jörg Bohlen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| | - Vendula Šlechtová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague 2, Czech Republic.
| | - Radka Symonová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Research Institute for Limnology, University of Innsbruck, Mondseestraße 9, A-5310, Mondsee, Austria.
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| |
Collapse
|
26
|
Silva DMZA, Utsunomia R, Pansonato-Alves JC, Oliveira C, Foresti F. Chromosomal Mapping of Repetitive DNA Sequences in Five Species of Astyanax (Characiformes, Characidae) Reveals Independent Location of U1 and U2 snRNA Sites and Association of U1 snRNA and 5S rDNA. Cytogenet Genome Res 2015; 146:144-152. [PMID: 26329975 DOI: 10.1159/000438813] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
Astyanax is a genus of Characidae fishes currently composed of 155 valid species. Previous cytogenetic studies revealed high chromosomal diversification among them, and several studies have been performed using traditional cytogenetic techniques to investigate karyotypes and chromosomal locations of 18S and 5S rDNA genes. However, only a few studies are currently available about other repetitive sequences. Here, the chromosomal location of small nuclear RNA genes, identified as U1 and U2 snRNA clusters, was established and compared to the distribution of 5S rDNA and histone clusters in 5 Astyanax species (A. paranae, A. fasciatus, A. bockmanni, A. altiparanae, and A. jordani) using FISH. The cytogenetic mapping of U1 and U2 snRNA demonstrated a conserved pattern in the number of sites per genome independent of the location in Astyanax species. The location of the U1 snRNA gene was frequently associated with 5S rDNA sequences, indicating a possible interaction between the distinct repetitive DNA families. Finally, comparisons involving the location of U1 and U2 snRNA clusters in the chromosomes of Astyanax species revealed a very diverse pattern, suggesting that many rearrangements have occurred during the diversification process of this group.
Collapse
Affiliation(s)
- Duilio M Z A Silva
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | | | | | | | | |
Collapse
|
27
|
Shapoval NA, Lukhtanov VA. Intragenomic variations of multicopy ITS2 marker in Agrodiaetus blue butterflies (Lepidoptera, Lycaenidae). COMPARATIVE CYTOGENETICS 2015; 9:483-97. [PMID: 26753069 PMCID: PMC4698565 DOI: 10.3897/compcytogen.v9i4.5429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/20/2015] [Indexed: 05/31/2023]
Abstract
The eukaryotic ribosomal DNA cluster consists of multiple copies of three genes, 18S, 5. 8S and 28S rRNAs, separated by multiple copies of two internal transcribed spacers, ITS1 and ITS2. It is an important, frequently used marker in both molecular cytogenetic and molecular phylogenetic studies. Despite this, little is known about intragenomic variations within the copies of eukaryotic ribosomal DNA genes and spacers. Here we present data on intraindividual variations of ITS2 spacer in three species of Agrodiaetus Hübner, 1822 blue butterflies revealed by cloning technique. We demonstrate that a distinctly different intragenomic ITS2 pattern exists for every individual analysed. ITS2 sequences of these species show significant intragenomic variation (up to 3.68% divergence), setting them apart from each other on inferred phylogenetic tree. This variation is enough to obscure phylogenetic relationships at the species level.
Collapse
Affiliation(s)
- Nazar A. Shapoval
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
- Department of Entomology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| | - Vladimir A. Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia
- Department of Entomology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
| |
Collapse
|
28
|
Medrado AS, de Mello Affonso PRA, Carneiro PLS, Vicari MR, Artoni RF, Costa MA. Allopatric divergence in Astyanax aff. fasciatus Cuvier, 1819 (Characidae, Incertae sedis) inferred from DNA mapping and chromosomes. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Daniel SN, Penitente M, Hashimoto DT, de Andrade Silva DMZ, Foresti F, Porto-Foresti F. New insights into karyotypic relationships among populations of Astyanax bockmanni (Teleostei, Characiformes) of different watersheds. Zebrafish 2015; 12:181-8. [PMID: 25714526 DOI: 10.1089/zeb.2014.1053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fish constitute about 50% of all vertebrates, including a wide morphological and biological diversity, where the genus Astyanax is the most common and diverse, as described in virtually all freshwater environments. By occupying a basal position in the phylogeny of vertebrates, fish are an extremely favorable group for cytogenetic and evolutionary studies. The karyotype found in genus Astyanax diversity may involve a number of polymorphisms, which may be related to ploidy and karyotypic macrostructure, presence of B chromosomes, heterochromatin polymorphisms, and location of ribosomal genes. Nevertheless, the relationship between populations of this species is still poorly studied. Thus, the present work aimed to investigate karyotype variation, chromosomal relationships, and the behavior of 5S and 18S ribosomal genes in six populations of Astyanax bockmanni. The results confirmed the diploid number of 50 chromosomes in all the populations sampled, with the occurrence of one supernumerary chromosome in just one of them. In addition, all populations showed divergent patterns of constitutive heterochromatin and repetitive nucleolar sites. The fluorescence in situ hybridization (FISH) technique using 5S and 18S rDNA probes revealed distinct patterns of distribution for these conserved genes, while 5S rDNA genes were found located in two chromosome pairs, the 18S genes showed multiple marks dispersed in the genome characterizing an inter and intraindividual polymorphic behavior, as previously reported to occur with the utilization of the Ag-NOR technique. Thus, besides minor modifications observed in chromosome morphology, the populations of A. bockmanni analyzed revealed a preserved macrostructural feature, especially concerning to the diploid number; on the other hand, differences in microstructural characteristics indicated by the nucleolus organizer region (NOR) location, constitutive heterochromatin patterns, and distribution of ribosomal genes along the genome were clearly evident in the populations from different river basins, even located at short distances.
Collapse
Affiliation(s)
- Sandro Natal Daniel
- 1 Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista (UNESP) , Bauru, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Paiz LM, Baumgärtner L, da Graça WJ, Margarido VP. Basic cytogenetics and physical mapping of ribosomal genes in four Astyanax species (Characiformes, Characidae) collected in Middle Paraná River, Iguassu National Park: considerations on taxonomy and systematics of the genus. COMPARATIVE CYTOGENETICS 2015; 9:51-65. [PMID: 25893074 PMCID: PMC4387380 DOI: 10.3897/compcytogen.v9i1.9002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Karyotypes and chromosomal characteristics of both minor and major rDNAs in four fish species known popularly as "lambaris", namely Astyanaxabramis (Jenyns, 1842), Astyanaxasuncionensis Géry, 1972, Astyanaxcorrentinus (Holmberg, 1891) and Astyanax sp. collected from downstream of the Iguassu Falls (Middle Paraná River basin), preservation area of the Iguassu National Park, were analyzed by conventional and molecular protocols. Astyanaxabramis had diploid chromosome number 2n=50 (4m+30sm+8st+8a) and single AgNORs (pair 22), Astyanaxasuncionensis had 2n=50 (8m+24sm+6st+12a) and single AgNORs (pair 20), Astyanax sp. had 2n=50 (4m+26sm+8st+12a) and single AgNORs (pair 25), and Astyanaxcorrentinus had 2n=36 (12m+16sm+2st+6a) and multiple AgNORs (pairs 12, 15, 16, 17). FISH with 18S rDNA showed a single site for Astyanaxabramis, Astyanaxasuncionensis and Astyanax sp. and multiple for Astyanaxcorrentinus (14 sites). FISH with 5S rDNA showed single 5S-bearing loci chromosome pair only for Astyanaxasuncionensis and multiple for Astyanaxabramis (four sites), Astyanaxcorrentinus (five sites) and Astyanax sp. (four sites). Distinct distribution patterns of heterochromatin were observed for karyotypes of all species, with the exception of the first acrocentric chromosome pair characterized by centromeric, interstitial-proximal and telomeric blocks of heterochromatin on the long arm, which may represent homeology between karyotypes of Astyanaxabramis and Astyanaxasuncionensis. Our study showed species-specific characteristics which can serve in diagnosis and differentiation between Astyanaxabramis and Astyanaxasuncionensis, considered cryptic species, as well as strengthening the occurrence of a species of Astyanax not yet described taxonomically. In addition, the data obtained from first cytogenetic studies in Astyanaxcorrentinus suggest a high similarity with Astyanaxschubarti Britski, 1964, suggesting that these species may belong to the same morphological group and that can be phylogenetically related.
Collapse
Affiliation(s)
- Leonardo Marcel Paiz
- Universidade Estadual do Oeste do Paraná,,Centro de Ciências Biológicas e da Saúde, CEP: 85819-110, Cascavel, PR, Brazil
| | - Lucas Baumgärtner
- Universidade Estadual de Maringá, Departamento de Biologia Celular e Genética, CEP 87020-900, Maringá, Paraná, Brazil
| | - Weferson Júnio da Graça
- Universidade Estadual de Maringá, Departamento de Biologia, Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura (Nupélia), CEP 87020-900, Maringá, Paraná, Brazil
| | - Vladimir Pavan Margarido
- Universidade Estadual do Oeste do Paraná,,Centro de Ciências Biológicas e da Saúde, CEP: 85819-110, Cascavel, PR, Brazil
| |
Collapse
|
31
|
Utsunomia R, Pansonato-Alves JC, Costa-Silva GJ, Mendonça FF, Scacchetti PC, Oliveira C, Foresti F. Molecular and cytogenetic analyses of cryptic species within the Synbranchus marmoratus Bloch, 1795 (Synbranchiformes: Synbranchidae) grouping: species delimitations, karyotypic evolution and intraspecific diversification. NEOTROPICAL ICHTHYOLOGY 2015. [DOI: 10.1590/1982-0224-20140039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fish species Synbranchus marmoratushas been reported to exist as a species complex due to high intraspecific karyotypic variability in spite of the difficulty or impossibility to distinguish them using morphological traits alone. The goal of this work was to use cytogenetic and molecular methods to determine the species delimitations and understand the karyoevolution ofS. marmoratususing samples collected from distinct Brazilian localities. Among the analyzed specimens, a large degree of cytogenetic variation related to diploid numbers and karyotype structure was observed, with karyotypes showing 2n=42, 44 and 46 chromosomes. In addition, using sequences of three mitochondrial genes, the phylogenetic relationships between every sample with a known karyotype were determined, which revealed significant nucleotide divergence among the karyomorphs. Also, the analyses indicate that chromosomal rearrangements occurred independently within the distinct lineages of S. marmoratuscomplex, which resulted in the appearance of distinct karyotypic variants in a non-linear fashion related to diploid numbers and in the appearance of similar non-homologous chromosomes. Finally, the integration of both molecular cytogenetic and phylogenetic approaches allowed the determination of specific chromosomes possibly involved in rearrangements and a better understanding about the evolutionary processes involved in the differentiation ofSynbranchusgenus.
Collapse
|
32
|
Piscor D, Alves AL, Parise-Maltempi PP. Chromosomal microstructure diversity in three Astyanax (Characiformes, Characidae) species: comparative analysis of the chromosomal locations of the 18S and 5S rDNAs. Zebrafish 2014; 12:81-90. [PMID: 25549064 DOI: 10.1089/zeb.2014.1036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The species of genus Astyanax is widely distributed in freshwater neotropical zones. Astyanax is considered to be taxonomically confused, similar to other genera placed incertae sedis in Characidae. The cytogenetics of this genus is well characterized; species vary widely in diploid number, from 2n=36 chromosomes in Astyanax schubarti to 2n=50 for most species studied. The size, number, and position of different cytological markers vary among species and populations of Astyanax. We analyzed the karyotypes of individuals from three Astyanax species (Astyanax abramis, Astyanax altiparanae, and Astyanax eigenmanniorum) from populations not previously analyzed. We describe variations in several cytogenetic markers and the karyotypic relationships between them, specifically focusing on the characteristics of the conserved and divergent locations of the ribosomal genes. Our data are useful for establishing relationships between species and for investigating the karyotype evolution within the genus.
Collapse
Affiliation(s)
- Diovani Piscor
- 1 Laboratório de Citogenética, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) , Rio Claro, Sao Paulo, Brazil
| | | | | |
Collapse
|
33
|
Costa GW, Cioffi MB, Bertollo LA, Molina WF. Unusual Dispersion of Histone Repeats on the Whole Chromosomal Complement and Their Colocalization with Ribosomal Genes in Rachycentron canadum (Rachycentridae, Perciformes). Cytogenet Genome Res 2014; 144:62-7. [DOI: 10.1159/000366301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2014] [Indexed: 11/19/2022] Open
|
34
|
Kuznetsova IS, Thevasagayam NM, Sridatta PSR, Komissarov AS, Saju JM, Ngoh SY, Jiang J, Shen X, Orbán L. Primary analysis of repeat elements of the Asian seabass (Lates calcarifer) transcriptome and genome. Front Genet 2014; 5:223. [PMID: 25120555 PMCID: PMC4110674 DOI: 10.3389/fgene.2014.00223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/27/2014] [Indexed: 02/05/2023] Open
Abstract
As part of our Asian seabass genome project, we are generating an inventory of repeat elements in the genome and transcriptome. The karyotype showed a diploid number of 2n = 24 chromosomes with a variable number of B-chromosomes. The transcriptome and genome of Asian seabass were searched for repetitive elements with experimental and bioinformatics tools. Six different types of repeats constituting 8–14% of the genome were characterized. Repetitive elements were clustered in the pericentromeric heterochromatin of all chromosomes, but some of them were preferentially accumulated in pretelomeric and pericentromeric regions of several chromosomes pairs and have chromosomes specific arrangement. From the dispersed class of fish-specific non-LTR retrotransposon elements Rex1 and MAUI-like repeats were analyzed. They were wide-spread both in the genome and transcriptome, accumulated on the pericentromeric and peritelomeric areas of all chromosomes. Every analyzed repeat was represented in the Asian seabass transcriptome, some showed differential expression between the gonads. The other group of repeats analyzed belongs to the rRNA multigene family. FISH signal for 5S rDNA was located on a single pair of chromosomes, whereas that for 18S rDNA was found on two pairs. A BAC-derived contig containing rDNA was sequenced and assembled into a scaffold containing incomplete fragments of 18S rDNA. Their assembly and chromosomal position revealed that this part of Asian seabass genome is extremely rich in repeats containing evolutionarily conserved and novel sequences. In summary, transcriptome assemblies and cDNA data are suitable for the identification of repetitive DNA from unknown genomes and for comparative investigation of conserved elements between teleosts and other vertebrates.
Collapse
Affiliation(s)
- Inna S Kuznetsova
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore ; Institute of Cytology of the Russian Academy of Sciences St-Petersburg, Russia
| | - Natascha M Thevasagayam
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore
| | - Prakki S R Sridatta
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore
| | - Aleksey S Komissarov
- Institute of Cytology of the Russian Academy of Sciences St-Petersburg, Russia ; Theodosius Dobzhansky Center for Genome Bioinformatics, St Petersburg State University St Petersburg, Russia
| | - Jolly M Saju
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore
| | - Si Y Ngoh
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore ; School of Biological Sciences, Nanyang Technological University Singapore, Republic of Singapore
| | - Junhui Jiang
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore ; Agri-Food and Veterinary Authority of Singapore Singapore, Republic of Singapore
| | - Xueyan Shen
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore
| | - László Orbán
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, The National University of Singapore Singapore, Republic of Singapore ; Department of Animal Sciences and Animal Husbandry, Georgikon Faculty, University of Pannonia Keszthely, Hungary ; Department of Biological Sciences, National University of Singapore Singapore, Republic of Singapore
| |
Collapse
|
35
|
Castro JP, Moura MO, Moreira-Filho O, Shibatta OA, Santos MH, Nogaroto V, Vicari MR, Almeida MCD, Artoni RF. Evidence of incipient speciation in Astyanax scabripinnis species complex (Teleostei: Characidae). NEOTROPICAL ICHTHYOLOGY 2014. [DOI: 10.1590/1982-0224-20130222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two populations of the Astyanax scabripinniscomplex, isolated by a waterfall with over 100 meters depth and inhabiting different altitudes of the same river (1850 m a.s.l. and 662 m a.s.l.) were compared in reproductive data, geometric morphometry, tooth morphology, anal-fin rays counts, and karyotype, in order to test the hypothesis of speciation between the two populations. The results in the geometric morphometry analysis showed differences between the populations. Discriminant function analysis (DFA) and canonical variance analysis revealed sexual dimorphism. Secondary sexual characters, such as hooks in the anal fin rays of the males are absent in the lower altitude population. Both populations had the same macro karyotype structure, except for the absence of B chromosomes in the lower altitude population. The fluorescence in situ hybridization showed differences for both markers (18S rDNA and 5S rDNA), and reproductive data suggests pre-zygotic reproductive isolation among the two populations. The data showed the absence of gene flow, indicating that an incipient speciation process has occurred, which leads the two populations to follow independent evolutionary pathways.
Collapse
|
36
|
Dos Santos LP, Castro JP, Francisco CM, Vicari MR, de Almeida MC, Goll LG, Morelli S, Artoni RF. Cytogenetic analysis in the neotropical fish Astyanax goyacensis Eigenmann, 1908 (Characidae, incertae sedis): karyotype description and occurrence of B microchromosomes. Mol Cytogenet 2013; 6:48. [PMID: 24192310 PMCID: PMC4176194 DOI: 10.1186/1755-8166-6-48] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/08/2013] [Indexed: 11/10/2022] Open
Abstract
Background B chromosomes, also known as supernumerary or accessory chromosomes, are additional chromosomes over the standard complement found in various groups of plants and animals. We investigated the presence of, and characterized, supernumerary microchromosomes in Astyanax goyacensis using classical and molecular cytogenetic methods. Findings Three specimens possessed 2n = 50 chromosomes (8m + 26sm + 8st + 8a), and two specimens contained 1 to 9 additional B microchromosomes varying intra- and inter-individually. Chromosome painting with a B chromosome-specific probe yielded signals for several B microchromosomes, with one exhibiting no markings. Acrocentric chromosomes of the standard complement were also painted. Fluorescence in situ hybridization (FISH) using ribosomal probes located two chromosome pairs carrying 18S rDNA marked on the short arm, and one pair carrying 5S rDNA with pericentromeric markings. One chromosome was observed in synteny with 18S cistrons. Conclusion These data contribute to knowledge of the karyotype evolution, the origin of B chromosomes, and to an understanding of the functionality of rDNA.
Collapse
Affiliation(s)
- Luana Pereira Dos Santos
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Av, Pará, 1720, 38400-902 Uberlândia, MG, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: A review of research. Cytogenet Genome Res 2013; 141:90-102. [PMID: 24080951 DOI: 10.1159/000354832] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Molecular cytogenetic data on the number and position of 45S ribosomal RNA genes (rDNA; located in nucleolus organizing regions, NORs) detected by FISH in 330 species of 77 families and 22 orders of bony fishes (Teleostei) and, additionally, 11 species of basal ray-finned fishes are compiled and analyzed. The portion of species with single rDNA sites in the sample amounts to 72%. The percentage of species with multiple NORs decreases with increasing numbers of rDNA loci per genome, i.e. scarcely 3% of species carry 4 or more rDNA-bearing chromosome pairs. 43% of all rDNA sites analyzed occur terminally on the short arms of chromosomes or constitute them. In general, terminal rDNA sites account for 87% of all examined cases. Interspecific variation in the location of single rDNA sites among related taxa, polymorphisms of multiple NORs in some groups of teleosts and analytical outcomes on the subject are reviewed.
Collapse
Affiliation(s)
- E Gornung
- 'Charles Darwin' Department of Biology and Biotechnologies, University of Rome 'La Sapienza', Rome, Italy
| |
Collapse
|
38
|
Chromosomal organization of repetitive DNA sequences in Astyanax bockmanni (Teleostei, Characiformes): dispersive location, association and co-localization in the genome. Genetica 2013; 141:329-36. [DOI: 10.1007/s10709-013-9732-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
39
|
Tenório RCCDO, Vitorino CDA, Souza IL, Oliveira C, Venere PC. Comparative cytogenetics in Astyanax (Characiformes: Characidae) with focus on the cytotaxonomy of the group. NEOTROPICAL ICHTHYOLOGY 2013. [DOI: 10.1590/s1679-62252013000300008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Astyanax is a diverse group of Neotropical fishes, whose different forms occupy different environments. This great diversity is also reflected on cytogenetic aspects and molecular markers, which have repeatedly been demonstrated by cytogenetic studies. In order to characterize the karyotype of species of this genus, six species were studied: Astyanax altiparanae, A.argyrimarginatus, A. elachylepis, A. xavante, and two new species provisionally called Astyanax sp. and A. aff. bimaculatus. A detailed cytogenetic study based on conventional staining with Giemsa, AgNORs, C-banding, base-specific fluorochromes, and FISH using ribosomal genes 18S and 5S was conducted, aiming to understand some of the chromosomal mechanisms associated with the high diversification that characterizes this group and culminated with the establishment of these species. The results showed 2n = 50 chromosomes for five species and a karyotype with 52 chromosomes in Astyanax sp. Small variations in the macrostructure of the karyotypes were identified, which were quite relevant when analyzed by classical banding, fluorochromes, and FISH methods. These differences among Astyanax spp. (2n = 50) are largely due to changes in the amount and types of heterochromatic blocks. Astyanax sp (2n = 52), in addition to variations due to heterochromatic blocks, has its origin possibly by events of centric fission in a pair of chromosomes followed by minor rearrangements.These results show an interesting karyotypic diversity in Astyanax and indicate the need of a review of the group referred as A. aff. bimaculatus and the description of Astyanax sp., including the possibility of inclusion of this unit in another genus.
Collapse
|
40
|
Costa GWWF, Cioffi MB, Bertollo LAC, Molina WF. Transposable elements in fish chromosomes: a study in the marine cobia species. Cytogenet Genome Res 2013; 141:126-32. [PMID: 23969732 DOI: 10.1159/000354309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rachycentron canadum, a unique representative of the Rachycentridae family, has been the subject of considerable biotechnological interest due to its potential use in marine fish farming. This species has undergone extensive research concerning the location of genes and multigene families on its chromosomes. Although most of the genome of some organisms is composed of repeated DNA sequences, aspects of the origin and dispersion of these elements are still largely unknown. The physical mapping of repetitive sequences on the chromosomes of R. canadum proved to be relevant for evolutionary and applied purposes. Therefore, here, we present the mapping by fluorescence in situ hybridization of the transposable element (TE) Tol2, the non-LTR retrotransposons Rex1 and Rex3, together with the 18S and 5S rRNA genes in the chromosome of this species. The Tol2 TE, belonging to the family of hAT transposons, is homogeneously distributed in the euchromatic regions of the chromosomes but with huge colocalization with the 18S rDNA sites. The hybridization signals for Rex1 and Rex3 revealed a semi-arbitrary distribution pattern, presenting differentiated dispersion in euchromatic and heterochromatic regions. Rex1 elements are associated preferentially in heterochromatic regions, while Rex3 shows a scarce distribution in the euchromatic regions of the chromosomes. The colocalization of TEs with 18S and 5S rDNA revealed complex chromosomal regions of repetitive sequences. In addition, the nonpreferential distribution of Rex1 and Rex3 in all heterochromatic regions, as well as the preferential distribution of the Tol2 transposon associated with 18S rDNA sequences, reveals a distinct pattern of organization of TEs in the genome of this species. A heterogeneous chromosomal colonization of TEs may confer different evolutionary rates to the heterochromatic regions of this species.
Collapse
Affiliation(s)
- G W W F Costa
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | | |
Collapse
|
41
|
Balen RE, Noleto RB, Vicari MR, Artoni RF, Cestari MM. Comparative cytogenetics among populations of Hollandichthys multifasciatus (Teleostei: Characidae). Zoolog Sci 2013; 30:105-9. [PMID: 23387844 DOI: 10.2108/zsj.30.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two populations of Hollandichthys multifasciatus from headwaters of adjacent river coastal basins in Paraná state, southern Brazil, were cytogenetically studied in order to evaluate intraspecific divergences. Both populations presented 2n = 50 chromosomes, divided into 14m + 18sm + 18st in the sample from Antonina and 14m + 20sm + 16st for the population from Guaraqueçaba. Analyses of active nucleolar organizer regions (Ag-NORs) and fluorescent in situ hybridization (FISH) with 18S rDNA probes revealed a single metacentric pair bearing marks at proximal positions on the short arms. The location of the 5S rDNA and GC-rich sites showed chromosomal divergence between both populations. Therefore, several population markers were detected, reflecting a population differentiation, possibly driven by the formation of Paranaguá Bay and Serra do Mar mountain range. Since the existence of a species complex in H. multifasciatus has been previously characterized by morphological, molecular, and karyotype population differentiation, this species needs to be taxonomically studied in detail.
Collapse
Affiliation(s)
- Rafael Ernesto Balen
- Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Curitiba, Paraná 81531-990, Brazil
| | | | | | | | | |
Collapse
|
42
|
Piscor D, Ribacinko-Piscor DB, Fernandes CA, Parise-Maltempi PP. Cytogenetic analysis in three Bryconamericus species (Characiformes, Characidae): first description of the 5S rDNA-bearing chromosome pairs in the genus. Mol Cytogenet 2013; 6:13. [PMID: 23547656 PMCID: PMC3626943 DOI: 10.1186/1755-8166-6-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/19/2013] [Indexed: 11/23/2022] Open
Abstract
Background Nowadays, the genus Bryconamericus is placed in subfamily Stevardiinae within of Characidae, but not shows consistent evidence of monophyletism. The purpose of this work was to study the chromosomes of three species of Bryconamericus, aiming to add cytogenetic knowledge and contribute to the understanding of the chromosomal evolution of this genus. Results The chromosomes of three species of Bryconamericus were analyzed using cytogenetic techniques. The karyotype of Bryconamericus stramineus contained 6 metacentric (m) + 10 submetacentric (sm) + 16 subtelocentric (st) + 20 acrocentric (a), the fundamental number (FN) of 84, one silver impregnated (Ag-NOR) pair, one pair bearing the 18S ribosomal DNA sites, another pair bearing the 5S rDNA sites, and a few positive C-bands. Bryconamericus turiuba had a karyotype containing 8 m + 10sm + 14st + 20a (FN = 84), one chromosome pair Ag-NOR, two pairs bearing the 18S rDNA sites, two pairs bearing the 5S rDNA sites, and a few C-band regions. Bryconamericus cf. iheringii had a karyotype containing 10 m + 14sm + 18st + 10a (FN = 94), including one pair with a secondary constriction Ag-NOR positive. In this karyotype the fluorescent in situ hybridization (FISH) showed the 18S and 5S rDNA probe in adjacent position. Conclusions The results obtained in this work showed different characteristics in the organization of two multigene families, indicating that distinct evolutionary forces acting on the diversity of rDNA sequences in the genome of three Bryconamericus species.
Collapse
Affiliation(s)
- Diovani Piscor
- Instituto de Biociências, Departamento de Biologia, Laboratório de Citogenética, Universidade Estadual Paulista "Júlio Mesquita Filho" (UNESP), Av, 24A, 1515, Rio Claro, SP, ZIP: 13506-900, Brazil.
| | | | | | | |
Collapse
|
43
|
The 5S rDNA High Dynamism in Diplodus sargus is a Transposon-Mediated Mechanism. Comparison with Other Multigene Families and Sparidae Species. J Mol Evol 2013; 76:83-97. [DOI: 10.1007/s00239-013-9541-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/10/2013] [Indexed: 01/27/2023]
|
44
|
Pansonato-Alves J, Hilsdorf A, Utsunomia R, Silva D, Oliveira C, Foresti F. Chromosomal Mapping of Repetitive DNA and Cytochrome C Oxidase I Sequence Analysis Reveal Differentiation among Sympatric Samples ofAstyanaxfasciatus(Characiformes, Characidae). Cytogenet Genome Res 2013; 141:133-42. [DOI: 10.1159/000354885] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
Rossi AR, Milana V, Hett AK, Tancioni L. Molecular cytogenetic analysis of the Appenine endemic cyprinid fish Squalius lucumonis and three other Italian leuciscines using chromosome banding and FISH with rDNA probes. Genetica 2012; 140:469-76. [PMID: 23238894 DOI: 10.1007/s10709-012-9695-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
Karyotype and other chromosomal characteristics of the Appenine endemic cyprinid fish, Toscana stream chub Squalius lucumonis, were analysed using conventional banding and FISH with 45S and 5S rDNA probes. The diploid chromosome number (2n = 50) and karyotype characteristics including pericentromeric heterochromatic blocks and GC-rich CMA(3)-positive sites corresponding to both positive Ag-NORs and 45S rDNA loci on the short arms of a single medium-sized submetacentric chromosome pair were consistent with those found in most European leuciscine cyprinids. On other hand, 5S rDNA FISH in the Toscana stream chub and three other Italian leuciscines, S. squalus, Rutilus rubilio and Telestes muticellus, revealed a species-specific hybridization pattern, i.e. signals on four (S. lucumonis), three (S. squalus and R. rubilio) and two (T. muticellus) chromosome pairs. Whereas all the species shared the 5S rDNA loci on the largest subtelocentric chromosome pair, a "leuciscine" cytotaxonomic marker, S. lucumonis showed both classes of rDNA loci tandem aligned on the short arms of chromosome pair No. 12. The present findings suggest that the observed high variability of 5S rDNA loci provides a powerful tool for investigation of karyotype differentiation in karyologically conservative leuciscine fishes.
Collapse
Affiliation(s)
- Anna Rita Rossi
- Department of Biology and Biotechnology C. Darwin, University of Rome La Sapienza, Rome, Italy.
| | | | | | | |
Collapse
|
46
|
Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol Biol 2012; 12:198. [PMID: 23035959 PMCID: PMC3503869 DOI: 10.1186/1471-2148-12-198] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022] Open
Abstract
Background Among multigene families, ribosomal RNA (rRNA) genes are the most frequently studied and have been explored as cytogenetic markers to study the evolutionary history of karyotypes among animals and plants. In this report, we applied cytogenetic and genomic methods to investigate the organization of rRNA genes among cichlid fishes. Cichlids are a group of fishes that are of increasing scientific interest due to their rapid and convergent adaptive radiation, which has led to extensive ecological diversity. Results The present paper reports the cytogenetic mapping of the 5S rRNA genes from 18 South American, 22 African and one Asian species and the 18S rRNA genes from 3 African species. The data obtained were comparatively analyzed with previously published information related to the mapping of rRNA genes in cichlids. The number of 5S rRNA clusters per diploid genome ranged from 2 to 15, with the most common pattern being the presence of 2 chromosomes bearing a 5S rDNA cluster. Regarding 18S rDNA mapping, the number of sites ranged from 2 to 6, with the most common pattern being the presence of 2 sites per diploid genome. Furthermore, searching the Oreochromis niloticus genome database led to the identification of a total of 59 copies of 5S rRNA and 38 copies of 18S rRNA genes that were distributed in several genomic scaffolds. The rRNA genes were frequently flanked by transposable elements (TEs) and spread throughout the genome, complementing the FISH analysis that detect only clustered copies of rRNA genes. Conclusions The organization of rRNA gene clusters seems to reflect their intense and particular evolutionary pathway and not the evolutionary history of the associated taxa. The possible role of TEs as one source of rRNA gene movement, that could generates the spreading of ribosomal clusters/copies, is discussed. The present paper reinforces the notion that the integration of cytogenetic data and genomic analysis provides a more complete picture for understanding the organization of repeated sequences in the genome.
Collapse
|
47
|
Pazian MF, Pereira LHG, Shimabukuru-Dias CK, Oliveira C, Foresti F. Cytogenetic and molecular markers reveal the complexity of the genus Piabina Reinhardt, 1867 (Characiformes: Characidae). NEOTROPICAL ICHTHYOLOGY 2012. [DOI: 10.1590/s1679-62252012005000015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytogenetic and molecular analyses were carried out in fish representative of the genus Piabina. This study specifically involved the species P. argentea and P. anhembi collected from areas of the Paranapanema and Tietê River basins, Brazil. Our findings suggest that fish classified as Piabina argentea in the Paranapanema and Tietê Rivers may represent more than one species. The samples analyzed differed by cytogenetic particularities and molecular analyses using partial sequences of the genes COI and CytB as genetic markers revealed three distinct groups of P. argentea with genetic distances sufficient to support the conclusion that the three samples analyzed are three distinct taxonomic units.
Collapse
Affiliation(s)
| | | | | | | | - Fausto Foresti
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| |
Collapse
|
48
|
Merlo MA, Pacchiarini T, Portela-Bens S, Cross I, Manchado M, Rebordinos L. Genetic characterization of Plectorhinchus mediterraneus yields important clues about genome organization and evolution of multigene families. BMC Genet 2012; 13:33. [PMID: 22545758 PMCID: PMC3464664 DOI: 10.1186/1471-2156-13-33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/30/2012] [Indexed: 12/17/2022] Open
Abstract
Background Molecular and cytogenetic markers are of great use for to fish characterization, identification, phylogenetics and evolution. Multigene families have proven to be good markers for a better understanding of the variability, organization and evolution of fish species. Three different tandemly-repeated gene families (45S rDNA, 5S rDNA and U2 snDNA) have been studied in Plectorhinchus mediterraneus (Teleostei: Haemulidae), at both molecular and cytogenetic level, to elucidate the taxonomy and evolution of these multigene families, as well as for comparative purposes with other species of the family. Results Four different types of 5S rDNA were obtained; two of them showed a high homology with that of Raja asterias, and the putative implication of a horizontal transfer event and its consequences for the organization and evolution of the 5S rDNA have been discussed. The other two types do not resemble any other species, but in one of them a putative tRNA-derived SINE was observed for the first time, which could have implications in the evolution of the 5S rDNA. The ITS-1 sequence was more related to a species of another different genus than to that of the same genus, therefore a revision of the Hamulidae family systematic has been proposed. In the analysis of the U2 snDNA, we were able to corroborate that U2 snDNA and U5 snDNA were linked in the same tandem array, and this has interest for tracing evolutionary lines. The karyotype of the species was composed of 2n = 48 acrocentric chromosomes, and each of the three multigene families were located in different chromosome pairs, thus providing three different chromosomal markers. Conclusions Novel data can be extracted from the results: a putative event of horizontal transfer, a possible tRNA-derived SINE linked to one of the four 5S rDNA types characterized, and a linkage between U2 and U5 snDNA. In addition, a revision of the taxonomy of the Haemulidae family has been suggested, and three cytogenetic markers have been obtained. Some of these results have not been described before in any other fish species. New clues about the genome organization and evolution of the multigene families are offered in this study.
Collapse
Affiliation(s)
- Manuel A Merlo
- Laboratorio de Genética, Universidad de Cádiz, Polígono Río San Pedro 11510, Puerto Real, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Vicari MR, de Mello Pistune HF, Castro JP, de Almeida MC, Bertollo LAC, Moreira-Filho O, Camacho JPM, Artoni RF. New insights on the origin of B chromosomes in Astyanax scabripinnis obtained by chromosome painting and FISH. Genetica 2011; 139:1073-81. [PMID: 21948070 DOI: 10.1007/s10709-011-9611-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/19/2011] [Indexed: 11/25/2022]
Abstract
Chromosome painting (CP) with a probe of B chromosome obtained by microdissection and fluorescence in situ hybridization (FISH) with probes of As51 satellite DNA, C( o )t-1 DNA, and 18S and 5S rDNA confirmed sharing of some repetitive DNA but not rDNA between A and B chromosomes in the fish Astyanax scabripinnis. Meiotic analysis revealed a pachytene B chromosome bivalent nearly half the size of its mitotic configuration, suggesting a self-pairing of B chromosome arms. Such an isochromosome nature of somatic B chromosome was further evidenced by CP and FISH. All the findings obtained suggest (i) intraspecific origin of B chromosome, and (ii) evolutionary enrichment of repetitive DNA classes, especially those contained in the C( o )t-1 and the As51 probes, in B chromosome. However, the precise origin of B chromosome in the present species remains to be elucidated by further molecular cytogenetic analysis because of painting of some A chromosome regions with the B chromosome-derived probe.
Collapse
Affiliation(s)
- Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, PR 84030-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lan T, Albert VA. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady's slipper orchid. BMC PLANT BIOLOGY 2011; 11:126. [PMID: 21910890 PMCID: PMC3184063 DOI: 10.1186/1471-2229-11-126] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/12/2011] [Indexed: 05/07/2023]
Abstract
Background Paphiopedilum is a horticulturally and ecologically important genus of ca. 80 species of lady's slipper orchids native to Southeast Asia. These plants have long been of interest regarding their chromosomal evolution, which involves a progressive aneuploid series based on either fission or fusion of centromeres. Chromosome number is positively correlated with genome size, so rearrangement processes must include either insertion or deletion of DNA segments. We have conducted Fluorescence In Situ Hybridization (FISH) studies using 5S and 25S ribosomal DNA (rDNA) probes to survey for rearrangements, duplications, and phylogenetically-correlated variation within Paphiopedilum. We further studied sequence variation of the non-transcribed spacers of 5S rDNA (5S-NTS) to examine their complex duplication history, including the possibility that concerted evolutionary forces may homogenize diversity. Results 5S and 25S rDNA loci among Paphiopedilum species, representing all key phylogenetic lineages, exhibit a considerable diversity that correlates well with recognized evolutionary groups. 25S rDNA signals range from 2 (representing 1 locus) to 9, the latter representing hemizygosity. 5S loci display extensive structural variation, and show from 2 specific signals to many, both major and minor and highly dispersed. The dispersed signals mainly occur at centromeric and subtelomeric positions, which are hotspots for chromosomal breakpoints. Phylogenetic analysis of cloned 5S rDNA non-transcribed spacer (5S-NTS) sequences showed evidence for both ancient and recent post-speciation duplication events, as well as interlocus and intralocus diversity. Conclusions Paphiopedilum species display many chromosomal rearrangements - for example, duplications, translocations, and inversions - but only weak concerted evolutionary forces among highly duplicated 5S arrays, which suggests that double-strand break repair processes are dynamic and ongoing. These results make the genus a model system for the study of complex chromosomal evolution in plants.
Collapse
Affiliation(s)
- Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|