1
|
Volkova EI, Andreyenkova NG, Andreyenkov OV, Sidorenko DS, Zhimulev IF, Demakov SA. Structural and Functional Dissection of the 5' Region of the Notch Gene in Drosophila melanogaster. Genes (Basel) 2019; 10:E1037. [PMID: 31842424 PMCID: PMC6947440 DOI: 10.3390/genes10121037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Notch is a key factor of a signaling cascade which regulates cell differentiation in all multicellular organisms. Numerous investigations have been directed mainly at studying the mechanism of Notch protein action; however, very little is known about the regulation of activity of the gene itself. Here, we provide the results of targeted 5'-end editing of the Drosophila Notch gene in its native environment and genetic and cytological effects of these changes. Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein 9 (CRISPR/Cas9) system in combination with homologous recombination, we obtained a founder fly stock in which a 4-kb fragment, including the 5' nontranscribed region, the first exon, and a part of the first intron of Notch, was replaced by an attachment Phage (attP) site. Then, fly lines carrying a set of six deletions within the 5'untranscribed region of the gene were obtained by ΦC31-mediated integration of transgenic constructs. Part of these deletions does not affect gene activity, but their combinations with transgenic construct in the first intron of the gene cause defects in the Notch target tissues. At the polytene chromosome level we defined a DNA segment (~250 bp) in the Notch5'-nontranscribed region which when deleted leads to disappearance of the 3C6/C7 interband and elimination of CTC-Factor (CTCF) and Chromator (CHRIZ) insulator proteins in this region.
Collapse
Affiliation(s)
- Elena I. Volkova
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
| | - Natalya G. Andreyenkova
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
| | - Oleg V. Andreyenkov
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
| | - Darya S. Sidorenko
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
| | - Igor F. Zhimulev
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
- Structural, Functional and Comparative Genomics Laboratory, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey A. Demakov
- Department of the Structure and Function of Chromosomes, Laboratory of Chromosome Engineering, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia; (E.I.V.); (N.G.A.); (O.V.A.); (D.S.S.); (I.F.Z.)
| |
Collapse
|
2
|
Kolesnikova TD, Goncharov FP, Zhimulev IF. Similarity in replication timing between polytene and diploid cells is associated with the organization of the Drosophila genome. PLoS One 2018; 13:e0195207. [PMID: 29659604 PMCID: PMC5902040 DOI: 10.1371/journal.pone.0195207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila.
Collapse
Affiliation(s)
- Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Fedor P. Goncharov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
3
|
Zielke T, Glotov A, Saumweber H. High-resolution in situ hybridization analysis on the chromosomal interval 61C7-61C8 of Drosophila melanogaster reveals interbands as open chromatin domains. Chromosoma 2015; 125:423-35. [PMID: 26520107 DOI: 10.1007/s00412-015-0554-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Eukaryotic chromatin is organized in contiguous domains that differ in protein binding, histone modifications, transcriptional activity, and in their degree of compaction. Genome-wide comparisons suggest that, overall, the chromatin organization is similar in different cells within an organism. Here, we compare the structure and activity of the 61C7-61C8 interval in polytene and diploid cells of Drosophila. By in situ hybridization on polytene chromosomes combined with high-resolution microscopy, we mapped the boundaries of the 61C7-8 interband and of the 61C7 and C8 band regions, respectively. Our results demonstrate that the 61C7-8 interband is significantly larger than estimated previously. This interband extends over 20 kbp and is in the range of the flanking band domains. It contains several active genes and therefore can be considered as an open chromatin domain. Comparing the 61C7-8 structure of Drosophila S2 cells and polytene salivary gland cells by ChIP for chromatin protein binding and histone modifications, we observe a highly consistent domain structure for the proximal 13 kbp of the domain in both cell types. However, the distal 7 kbp of the open domain differs in protein binding and histone modification between both tissues. The domain contains four protein-coding genes in the proximal part and two noncoding transcripts in the distal part. The differential transcriptional activity of one of the noncoding transcripts correlates with the observed differences in the chromatin structure between both tissues. The significance of our findings for the organization and structure of open chromatin domains will be discussed.
Collapse
Affiliation(s)
- Thomas Zielke
- Institute of Biology, Cytogenetics Group, Humboldt University Berlin, Chausseestr. 117, 10115, Berlin, Germany
| | - Alexander Glotov
- Institute of Biology, Cytogenetics Group, Humboldt University Berlin, Chausseestr. 117, 10115, Berlin, Germany
| | - Harald Saumweber
- Institute of Biology, Cytogenetics Group, Humboldt University Berlin, Chausseestr. 117, 10115, Berlin, Germany. .,Institut für Biologie-Zytogenetik, Humboldt Universität zu Berlin, Chausseestr. 117, 10115, Berlin, Germany.
| |
Collapse
|
4
|
The Chriz-Z4 complex recruits JIL-1 to polytene chromosomes, a requirement for interband-specific phosphorylation of H3S10. J Biosci 2011; 36:425-38. [PMID: 21799255 DOI: 10.1007/s12038-011-9089-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The conserved band-interband pattern is thought to reflect the looped-domain organization of insect polytene chromosomes. Previously, we have shown that the chromodomain protein Chriz and the zinc-finger protein Z4 are essentially required for the maintenance of polytene chromosome structure. Here we show that both proteins form a complex that recruits the JIL-1 kinase to polytene chromosomes, enabling local H3S10 phosphorylation of interband nucleosomal histones. Interband targeting domains were identified at the N-terminal regions of Chriz and Z4, and our data suggest partial cooperation of the complex with the BEAF boundary element protein in polytene and diploid cells. Reducing the core component Chriz by RNAi results in destabilization of the complex and a strong reduction of interband-specific histone H3S10 phosphorylation.
Collapse
|
5
|
Demakov SA, Vatolina TY, Babenko VN, Semeshin VF, Belyaeva ES, Zhimulev IF. Protein composition of interband regions in polytene and cell line chromosomes of Drosophila melanogaster. BMC Genomics 2011; 12:566. [PMID: 22093916 PMCID: PMC3240664 DOI: 10.1186/1471-2164-12-566] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022] Open
Abstract
Background Despite many efforts, little is known about distribution and interactions of chromatin proteins which contribute to the specificity of chromomeric organization of interphase chromosomes. To address this issue, we used publicly available datasets from several recent Drosophila genome-wide mapping and annotation projects, in particular, those from modENCODE project, and compared molecular organization of 13 interband regions which were accurately mapped previously. Results Here we demonstrate that in interphase chromosomes of Drosophila cell lines, the interband regions are enriched for a specific set of proteins generally characteristic of the "open" chromatin (RNA polymerase II, CHRIZ (CHRO), BEAF-32, BRE1, dMI-2, GAF, NURF301, WDS and TRX). These regions also display reduced nucleosome density, histone H1 depletion and pronounced enrichment for ORC2, a pre-replication complex component. Within the 13 interband regions analyzed, most were around 3-4 kb long, particularly those where many of said protein features were present. We estimate there are about 3500 regions with similar properties in chromosomes of D. melanogaster cell lines, which fits quite well the number of cytologically observed interbands in salivary gland polytene chromosomes. Conclusions Our observations suggest strikingly similar organization of interband chromatin in polytene chromosomes and in chromosomes from cell lines thereby reflecting the existence of a universal principle of interphase chromosome organization.
Collapse
Affiliation(s)
- Sergey A Demakov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | | | |
Collapse
|
6
|
Berkaeva M, Demakov S, Schwartz YB, Zhimulev I. Functional analysis of Drosophila polytene chromosomes decompacted unit: the interband. Chromosome Res 2009; 17:745-54. [PMID: 19697145 DOI: 10.1007/s10577-009-9065-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/07/2009] [Accepted: 07/07/2009] [Indexed: 12/19/2022]
Abstract
Differential compaction of the interphase chromosomes is important for proper functioning of the eukaryotic genome. Such non-uniform compaction is most easily observed in Drosophila salivary gland polytene chromosomes as a reproducible banding pattern. Functional mechanisms underlying the establishment and maintenance of the banding pattern remain unclear but have been hypothesized to involve transcription and chromatin insulators. We tested functional properties of DNA fragments from several transcriptionally inert interband regions that behave as autonomous decompacted units of polytene chromosomes. Our results suggest that, in the absence of transcription, the decondensed state of interband regions does not depend on the presence of insulator elements but instead correlates with the presence of transcriptional enhancers.
Collapse
Affiliation(s)
- Maria Berkaeva
- Department of Molecular and Cell Biology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentyev ave, 8, 630090 Novosibirsk, Russia.
| | | | | | | |
Collapse
|
7
|
Kokoza EB, Kolesnikova TD, Zykov IA, Belyaeva ES, Zhimulev IF. Reversible decondensation of heterochromatin regions of Drosophila melanogaster polytene chromosomes during ectopic expression of the SuUR gene. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2009; 426:244-6. [PMID: 19650328 DOI: 10.1134/s0012496609030156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- E B Kokoza
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, ul. Akademika Lavrent'eva 10, Novosibirsk, 630090 Russia
| | | | | | | | | |
Collapse
|
8
|
Ciurciu A, Tombácz I, Popescu C, Boros I. GAL4 induces transcriptionally active puff in the absence of dSAGA- and ATAC-specific chromatin acetylation in the Drosophila melanogaster polytene chromosome. Chromosoma 2009; 118:513-26. [PMID: 19412618 DOI: 10.1007/s00412-009-0215-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 04/10/2009] [Accepted: 04/20/2009] [Indexed: 01/23/2023]
Abstract
Puffs in the polytene chromosome of Drosophila melanogaster are characteristic of sites of high-level active transcription which can be observed directly under the microscope. We studied the dependence of puff formation on chromatin modifications at a site where a GAL4-inducible transgene is located in the 61C7 cytological region. Immunostaining of salivary gland polytene chromosomes indicated no increase of either dSAGA-specific histone H3 lysine 14, or ATAC-specific histone H4 lysine 5 and 12 acetylation in the puffed region. Nor did we observe increased levels of H4K8ac, H3K18ac, or H4K16ac in the puff. In accordance with the above, puff formation as well as localization of Pol II and GAL4 was detectable at the 61C region in dAda2b and dAda2a null homozygotes, which are dSAGA- and ATAC-specific mutants, respectively. Moreover, the reduced level of JIL-1-specific H3 serine 10 phosphorylation did not abolish puff formation in ATAC mutants. Surprisingly, in wild-type animals dADA3 and GCN5 shared constituents of dSAGA and ATAC, as well as JIL-1 localized specifically to the puff, where the JIL-1-phosphorylated H3S10ph level was also high. Altogether these data strongly suggest that the GAL4 activator can induce transcription and chromatin reorganization seen as a puff without dSAGA- and ATAC-specific histone acetylation and JIL-1-specific histone H3 phosphorylation.
Collapse
Affiliation(s)
- Anita Ciurciu
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, 6726, Szeged, Hungary
| | | | | | | |
Collapse
|
9
|
Mohan M, Bartkuhn M, Herold M, Philippen A, Heinl N, Bardenhagen I, Leers J, White RAH, Renkawitz-Pohl R, Saumweber H, Renkawitz R. The Drosophila insulator proteins CTCF and CP190 link enhancer blocking to body patterning. EMBO J 2007; 26:4203-14. [PMID: 17805343 PMCID: PMC2230845 DOI: 10.1038/sj.emboj.7601851] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 08/15/2007] [Indexed: 01/08/2023] Open
Abstract
Insulator sequences guide the function of distantly located enhancer elements to the appropriate target genes by blocking inappropriate interactions. In Drosophila, five different insulator binding proteins have been identified, Zw5, BEAF-32, GAGA factor, Su(Hw) and dCTCF. Only dCTCF has a known conserved counterpart in vertebrates. Here we find that the structurally related factors dCTCF and Su(Hw) have distinct binding targets. In contrast, the Su(Hw) interacting factor CP190 largely overlapped with dCTCF binding sites and interacts with dCTCF. Binding of dCTCF to targets requires CP190 in many cases, whereas others are independent of CP190. Analysis of the bithorax complex revealed that six of the borders between the parasegment specific regulatory domains are bound by dCTCF and by CP190 in vivo. dCTCF null mutations affect expression of Abdominal-B, cause pharate lethality and a homeotic phenotype. A short pulse of dCTCF expression during larval development rescues the dCTCF loss of function phenotype. Overall, we demonstrate the importance of dCTCF in fly development and in the regulation of abdominal segmentation.
Collapse
Affiliation(s)
- Man Mohan
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Martin Herold
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Angela Philippen
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Nina Heinl
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Imke Bardenhagen
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Joerg Leers
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
| | - Robert A H White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Renate Renkawitz-Pohl
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Marburg, Germany
| | - Harald Saumweber
- Cytogenetics Division, Institute of Biology, Humboldt University, Berlin, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring, Giessen, Germany
- Institute for Genetics, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58-62, Giessen 35392, Germany. Tel.: +49 641 99 35460; Fax: +49 641 99 35469; E-mail:
| |
Collapse
|
10
|
Semeshin VF, Demakov SA, Shloma VV, Vatolina TY, Gorchakov AA, Zhimulev IF. Interbands behave as decompacted autonomous units in Drosophila melanogaster polytene chromosomes. Genetica 2007; 132:267-79. [PMID: 17657571 DOI: 10.1007/s10709-007-9170-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
We studied whether interbands can be ectopically formed in Drosophila melanogaster polytene chromosomes. For comparative purposes, two types of P-element constructs were used. The first type was represented by P-element based insertions into compact bands. Sequences of these insertions or adjacent genomic sequences could be activated ectopically either by GAL4 or by dosage compensation machinery. In the second type, the DNA from transcriptionally silent interbands was positioned between the FRT sites, and was flanked by DNA sequences of genes that were also inactive in salivary glands. Electron microscopy analysis of salivary gland polytene chromosomes demonstrated that both types of constructs formed distinct, yet morphologically similar interbands. Notably, the second class of transposon insertions appeared in polytene chromosomes as two bands separated by one interband. Excision of interband material from such insertions resulted in fusion of newly appeared bands into a single band. We were able to confirm by molecular means that the DNA sequences in integrated constructs were intact, that chromatin organization of this DNA mimicked that of native interbands, and that it was accurately excised from the constructs by FLP. Thus, we demonstrate that transfer of interband DNA into a silent genetic environment does not compromise interband formation. Our results do not support the idea of the existence of distinct cytogenetic "band + interband" units, furthermore, they suggest the autonomy of the decompacted state of interbands.
Collapse
Affiliation(s)
- Valery F Semeshin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | | | |
Collapse
|
11
|
Zhimulev IF, Belyaeva ES, Semeshin VF, Koryakov DE, Demakov SA, Demakova OV, Pokholkova GV, Andreyeva EN. Polytene Chromosomes: 70 Years of Genetic Research. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:203-75. [PMID: 15548421 DOI: 10.1016/s0074-7696(04)41004-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polytene chromosomes were described in 1881 and since 1934 they have served as an outstanding model for a variety of genetic experiments. Using the polytene chromosomes, numerous biological phenomena were discovered. First the polytene chromosomes served as a model of the interphase chromosomes in general. In polytene chromosomes, condensed (bands), decondensed (interbands), genetically active (puffs), and silent (pericentric and intercalary heterochromatin as well as regions subject to position effect variegation) regions were found and their features were described in detail. Analysis of the general organization of replication and transcription at the cytological level has become possible using polytene chromosomes. In studies of sequential puff formation it was found for the first time that the steroid hormone (ecdysone) exerts its action through gene activation, and that the process of gene activation upon ecdysone proceeds as a cascade. Namely on the polytene chromosomes a new phenomenon of cellular stress response (heat shock) was discovered. Subsequently chromatin boundaries (insulators) were discovered to flank the heat shock puffs. Major progress in solving the problems of dosage compensation and position effect variegation phenomena was mainly related to studies on polytene chromosomes. This review summarizes the current status of studies of polytene chromosomes and of various phenomena described using this successful model.
Collapse
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | |
Collapse
|