1
|
Torralba Sáez M, Hofreiter M, Straube N. Shark genome size evolution and its relationship with cellular, life-history, ecological, and diversity traits. Sci Rep 2024; 14:8909. [PMID: 38632352 PMCID: PMC11024215 DOI: 10.1038/s41598-024-59202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Among vertebrates, sharks exhibit both large and heterogeneous genome sizes ranging from 2.86 to 17.05 pg. Aiming for a better understanding of the patterns and causalities of shark genome size evolution, we applied phylogenetic comparative methods to published genome-size estimates for 71 species representing the main phylogenetic lineages, life-histories and ecological traits. The sixfold range of genome size variation was strongly traceable throughout the phylogeny, with a major expansion preceding shark diversification during the late Paleozoic and an ancestral state (6.33 pg) close to the present-day average (6.72 pg). Subsequent deviations from this average occurred at higher rates in squalomorph than in galeomorph sharks and were unconnected to evolutionary changes in the karyotype architecture, which were dominated by descending disploidy events. Genome size was positively correlated with cell and nucleus sizes and negatively with metabolic rate. The metabolic constraints on increasing genome size also manifested at higher phenotypic scales, with large genomes associated with slow lifestyles and purely marine waters. Moreover, large genome sizes were also linked to non-placental reproductive modes, which may entail metabolically less demanding embryological developments. Contrary to ray-finned fishes, large genome size was associated neither with the taxonomic diversity of affected clades nor with low genetic diversity.
Collapse
Affiliation(s)
- Mario Torralba Sáez
- Ichthyology Section, Bavarian State Collection of Zoology (SNSB-ZSM), 81247, Munich, Germany
- Systematic Zoology, Department Biology II, Faculty of Biology, Ludwig Maximilian University of Munich (LMU), 82152, Munich, Germany
| | - Michael Hofreiter
- Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Nicolas Straube
- Department of Natural History, University Museum Bergen, University of Bergen (UiB), 5007, Bergen, Norway.
| |
Collapse
|
2
|
Villarreal F, Burguener GF, Sosa EJ, Stocchi N, Somoza GM, Turjanski AG, Blanco A, Viñas J, Mechaly AS. Genome sequencing and analysis of black flounder (Paralichthys orbignyanus) reveals new insights into Pleuronectiformes genomic size and structure. BMC Genomics 2024; 25:297. [PMID: 38509481 PMCID: PMC10956332 DOI: 10.1186/s12864-024-10081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/02/2024] [Indexed: 03/22/2024] Open
Abstract
Black flounder (Paralichthys orbignyanus, Pleuronectiformes) is a commercially significant marine fish with promising aquaculture potential in Argentina. Despite extensive studies on Black flounder aquaculture, its limited genetic information available hampers the crucial role genetics plays in the development of this activity. In this study, we first employed Illumina sequencing technology to sequence the entire genome of Black flounder. Utilizing two independent libraries-one from a female and another from a male-with 150 bp paired-end reads, a mean insert length of 350 bp, and over 35 X-fold coverage, we achieved assemblies resulting in a genome size of ~ 538 Mbp. Analysis of the assemblies revealed that more than 98% of the core genes were present, with more than 78% of them having more than 50% coverage. This indicates a somehow complete and accurate genome at the coding sequence level. This genome contains 25,231 protein-coding genes, 445 tRNAs, 3 rRNAs, and more than 1,500 non-coding RNAs of other types. Black flounder, along with pufferfishes, seahorses, pipefishes, and anabantid fish, displays a smaller genome compared to most other teleost groups. In vertebrates, the number of transposable elements (TEs) is often correlated with genome size. However, it remains unclear whether the sizes of introns and exons also play a role in determining genome size. Hence, to elucidate the potential factors contributing to this reduced genome size, we conducted a comparative genomic analysis between Black flounder and other teleost orders to determine if the small genomic size could be explained by repetitive elements or gene features, including the whole genome genes and introns sizes. We show that the smaller genome size of flounders can be attributed to several factors, including changes in the number of repetitive elements, and decreased gene size, particularly due to lower amount of very large and small introns. Thus, these components appear to be involved in the genome reduction in Black flounder. Despite these insights, the full implications and potential benefits of genome reduction in Black flounder for reproduction and aquaculture remain incompletely understood, necessitating further research.
Collapse
Affiliation(s)
- Fernando Villarreal
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Germán F Burguener
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Nicolas Stocchi
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Adrián G Turjanski
- Plataforma de Bioinformática Argentina, Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, UBA, Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrés Blanco
- Facultade de Veterinaria, Universidade de Santiago de Compostela, Santiago de Compostela, Lugo, Spain
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Jordi Viñas
- Laboratori d'Ictiologia Genètica, Departament de Biologia, Universitat de Girona, Maria Aurèlia Campmany, 40, Girona, Spain
| | - Alejandro S Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina.
- Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina.
| |
Collapse
|
3
|
Long X, Charlesworth D, Qi J, Wu R, Chen M, Wang Z, Xu L, Fu H, Zhang X, Chen X, He L, Zheng L, Huang Z, Zhou Q. Independent Evolution of Sex Chromosomes and Male Pregnancy-Related Genes in Two Seahorse Species. Mol Biol Evol 2022; 40:6964685. [PMID: 36578180 PMCID: PMC9851323 DOI: 10.1093/molbev/msac279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Unlike birds and mammals, many teleosts have homomorphic sex chromosomes, and changes in the chromosome carrying the sex-determining locus, termed "turnovers", are common. Recent turnovers allow studies of several interesting questions. One question is whether the new sex-determining regions evolve to become completely non-recombining, and if so, how and why. Another is whether (as predicted) evolutionary changes that benefit one sex accumulate in the newly sex-linked region. To study these questions, we analyzed the genome sequences of two seahorse species of the Syngnathidae, a fish group in which many species evolved a unique structure, the male brood pouch. We find that both seahorse species have XY sex chromosome systems, but their sex chromosome pairs are not homologs, implying that at least one turnover event has occurred. The Y-linked regions occupy 63.9% and 95.1% of the entire sex chromosome of the two species and do not exhibit extensive sequence divergence with their X-linked homologs. We find evidence for occasional recombination between the extant sex chromosomes that may account for their homomorphism. We argue that these Y-linked regions did not evolve by recombination suppression after the turnover, but by the ancestral nature of the low crossover rates in these chromosome regions. With such an ancestral crossover landscape, a turnover can instantly create an extensive Y-linked region. Finally, we test for adaptive evolution of male pouch-related genes after they became Y-linked in the seahorse.
Collapse
Affiliation(s)
- Xin Long
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China,Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou 311100, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3LF, UK
| | - Jianfei Qi
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ruiqiong Wu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Zongji Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinxin Chen
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Libin He
- Department of Aquaculture, Fisheries Research Institute of Fujian, Xiamen 361013, China
| | | | | | - Qi Zhou
- Corresponding authors: E-mails: ; ;
| |
Collapse
|
4
|
Small CM, Healey HM, Currey MC, Beck EA, Catchen J, Lin ASP, Cresko WA, Bassham S. Leafy and weedy seadragon genomes connect genic and repetitive DNA features to the extravagant biology of syngnathid fishes. Proc Natl Acad Sci U S A 2022; 119:e2119602119. [PMID: 35733255 PMCID: PMC9245644 DOI: 10.1073/pnas.2119602119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.
Collapse
Affiliation(s)
- Clayton M. Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Hope M. Healey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Mark C. Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| | - Emily A. Beck
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Julian Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Angela S. P. Lin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403
| | - William A. Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR 97403
| | - Susan Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403
| |
Collapse
|
5
|
Lehmann R, Kovařík A, Ocalewicz K, Kirtiklis L, Zuccolo A, Tegner JN, Wanzenböck J, Bernatchez L, Lamatsch DK, Symonová R. DNA Transposon Expansion is Associated with Genome Size Increase in Mudminnows. Genome Biol Evol 2021; 13:6380143. [PMID: 34599322 PMCID: PMC8557787 DOI: 10.1093/gbe/evab228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Genome sizes of eukaryotic organisms vary substantially, with whole-genome duplications (WGD) and transposable element expansion acting as main drivers for rapid genome size increase. The two North American mudminnows, Umbra limi and Umbra pygmaea, feature genomes about twice the size of their sister lineage Esocidae (e.g., pikes and pickerels). However, it is unknown whether all Umbra species share this genome expansion and which causal mechanisms drive this expansion. Using flow cytometry, we find that the genome of the European mudminnow is expanded similarly to both North American species, ranging between 4.5 and 5.4 pg per diploid nucleus. Observed blocks of interstitially located telomeric repeats in U. limi suggest frequent Robertsonian rearrangements in its history. Comparative analyses of transcriptome and genome assemblies show that the genome expansion in Umbra is driven by the expansion of DNA transposon and unclassified repeat sequences without WGD. Furthermore, we find a substantial ongoing expansion of repeat sequences in the Alaska blackfish Dallia pectoralis, the closest relative to the family Umbridae, which might mark the beginning of a similar genome expansion. Our study suggests that the genome expansion in mudminnows, driven mainly by transposon expansion, but not WGD, occurred before the separation into the American and European lineage.
Collapse
Affiliation(s)
- Robert Lehmann
- Division of Biological and Environmental Sciences & Engineering, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Aleš Kovařík
- Laboratory of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Science, Brno, Czech Republic
| | - Konrad Ocalewicz
- Department of Marine Biology and Ecology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdansk, Gdansk, Poland
| | - Lech Kirtiklis
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Jesper N Tegner
- Division of Biological and Environmental Sciences & Engineering, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Josef Wanzenböck
- Research Department for Limnology Mondsee, University of Innsbruck, Mondsee, Austria
| | - Louis Bernatchez
- Department of Biology, IBIS (Institut de Biologie Intégrative et des Systèmes), Université Laval, Québec, QC, Canada
| | - Dunja K Lamatsch
- Research Department for Limnology Mondsee, University of Innsbruck, Mondsee, Austria
| | - Radka Symonová
- Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technische Universität München, Freising, Germany.,Department of Biology, Faculty of Biology, University of Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Yoshida K, Kitano J. Tempo and mode in karyotype evolution revealed by a probabilistic model incorporating both chromosome number and morphology. PLoS Genet 2021; 17:e1009502. [PMID: 33861748 PMCID: PMC8081341 DOI: 10.1371/journal.pgen.1009502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/28/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Karyotype, including the chromosome and arm numbers, is a fundamental genetic characteristic of all organisms and has long been used as a species-diagnostic character. Additionally, karyotype evolution plays an important role in divergent adaptation and speciation. Centric fusion and fission change chromosome numbers, whereas the intra-chromosomal movement of the centromere, such as pericentric inversion, changes arm numbers. A probabilistic model simultaneously incorporating both chromosome and arm numbers has not been established. Here, we built a probabilistic model of karyotype evolution based on the "karyograph", which treats karyotype evolution as a walk on the two-dimensional space representing the chromosome and arm numbers. This model enables analysis of the stationary distribution with a stable karyotype for any given parameter. After evaluating their performance using simulated data, we applied our model to two large taxonomic groups of fish, Eurypterygii and series Otophysi, to perform maximum likelihood estimation of the transition rates and reconstruct the evolutionary history of karyotypes. The two taxa significantly differed in the evolution of arm number. The inclusion of speciation and extinction rates demonstrated possibly high extinction rates in species with karyotypes other than the most typical karyotype in both groups. Finally, we made a model including polyploidization rates and applied it to a small plant group. Thus, the use of this probabilistic model can contribute to a better understanding of tempo and mode in karyotype evolution and its possible role in speciation and extinction.
Collapse
Affiliation(s)
- Kohta Yoshida
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
- * E-mail:
| |
Collapse
|
7
|
Cheng P, Huang Y, Lv Y, Du H, Ruan Z, Li C, Ye H, Zhang H, Wu J, Wang C, Ruan R, Li Y, Bian C, You X, Shi C, Han K, Xu J, Shi Q, Wei Q. The American Paddlefish Genome Provides Novel Insights into Chromosomal Evolution and Bone Mineralization in Early Vertebrates. Mol Biol Evol 2021; 38:1595-1607. [PMID: 33331879 PMCID: PMC8042750 DOI: 10.1093/molbev/msaa326] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sturgeons and paddlefishes (Acipenseriformes) occupy the basal position of ray-finned fishes, although they have cartilaginous skeletons as in Chondrichthyes. This evolutionary status and their morphological specializations make them a research focus, but their complex genomes (polyploidy and the presence of microchromosomes) bring obstacles and challenges to molecular studies. Here, we generated the first high-quality genome assembly of the American paddlefish (Polyodon spathula) at a chromosome level. Comparative genomic analyses revealed a recent species-specific whole-genome duplication event, and extensive chromosomal changes, including head-to-head fusions of pairs of intact, large ancestral chromosomes within the paddlefish. We also provide an overview of the paddlefish SCPP (secretory calcium-binding phosphoprotein) repertoire that is responsible for tissue mineralization, demonstrating that the earliest flourishing of SCPP members occurred at least before the split between Acipenseriformes and teleosts. In summary, this genome assembly provides a genetic resource for understanding chromosomal evolution in polyploid nonteleost fishes and bone mineralization in early vertebrates.
Collapse
Affiliation(s)
- Peilin Cheng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Hui Zhang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jinming Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chengyou Wang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Rui Ruan
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yanping Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | | | - Kai Han
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Junming Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- Laboratory of Marine Genomics, School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of P.R. China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
8
|
Borůvková V, Howell WM, Matoulek D, Symonová R. Quantitative Approach to Fish Cytogenetics in the Context of Vertebrate Genome Evolution. Genes (Basel) 2021; 12:genes12020312. [PMID: 33671814 PMCID: PMC7926999 DOI: 10.3390/genes12020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 01/14/2023] Open
Abstract
Our novel Python-based tool EVANGELIST allows the visualization of GC and repeats percentages along chromosomes in sequenced genomes and has enabled us to perform quantitative large-scale analyses on the chromosome level in fish and other vertebrates. This is a different approach from the prevailing analyses, i.e., analyses of GC% in the coding sequences that make up not more than 2% in human. We identified GC content (GC%) elevations in microchromosomes in ancient fish lineages similar to avian microchromosomes and a large variability in the relationship between the chromosome size and their GC% across fish lineages. This raises the question as to what extent does the chromosome size drive GC% as posited by the currently accepted explanation based on the recombination rate. We ascribe the differences found across fishes to varying GC% of repetitive sequences. Generally, our results suggest that the GC% of repeats and proportion of repeats are independent of the chromosome size. This leaves an open space for another mechanism driving the GC evolution in vertebrates.
Collapse
Affiliation(s)
- Veronika Borůvková
- Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic; (V.B.); (D.M.)
| | - W. Mike Howell
- Department of Biological and Environmental Sciences, Samford University, Birmingham, AL 35226, USA;
| | - Dominik Matoulek
- Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic; (V.B.); (D.M.)
| | - Radka Symonová
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
9
|
Lebeda I, Ráb P, Majtánová Z, Flajšhans M. Artificial whole genome duplication in paleopolyploid sturgeons yields highest documented chromosome number in vertebrates. Sci Rep 2020; 10:19705. [PMID: 33184410 PMCID: PMC7665173 DOI: 10.1038/s41598-020-76680-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Critically endangered sturgeons, having undergone three whole genome duplication events, represent an exceptional example of ploidy plasticity in vertebrates. Three extant ploidy groups, combined with autopolyploidization, interspecific hybridization and the fertility of hybrids are important issues in sturgeon conservation and aquaculture. Here we demonstrate that the sturgeon genome can undergo numerous alterations of ploidy without severe physiological consequences, producing progeny with a range of ploidy levels and extremely high chromosome numbers. Artificial suppression of the first mitotic division alone, or in combination with suppression of the second meiotic division of functionally tetraploid zygotes (4n, C-value = 4.15) of Siberian sturgeon Acipenser baerii and Russian sturgeon A. gueldenstaedtii resulted in progeny of various ploidy levels—diploid/hexaploid (2n/6n) mosaics, hexaploid, octoploid juveniles (8n), and dodecaploid (12n) larvae. Counts between 477 to 520 chromosomes in octoploid juveniles of both sturgeons confirmed the modal chromosome numbers of parental species had been doubled. This exceeds the highest previously documented chromosome count among vertebrates 2n ~ 446 in the cyprinid fish Ptychobarbus dipogon.
Collapse
Affiliation(s)
- Ievgen Lebeda
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Martin Flajšhans
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
10
|
Comparative analysis of the morphology, karyotypes and biochemical composition of muscle in Siniperca chuatsi, Siniperca scherzeri and the F1 hybrid (S. chuatsi ♀ × S. scherzeri ♂). AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Majtánová Z, Unmack PJ, Prasongmaneerut T, Shams F, Srikulnath K, Ráb P, Ezaz T. Evidence of Interspecific Chromosomal Diversification in Rainbowfishes (Melanotaeniidae, Teleostei). Genes (Basel) 2020; 11:E818. [PMID: 32708365 PMCID: PMC7397213 DOI: 10.3390/genes11070818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022] Open
Abstract
Rainbowfishes (Melanotaeniidae) are the largest monophyletic group of freshwater fishes occurring in Australia and New Guinea, with 112 species currently recognised. Despite their high taxonomic diversity, rainbowfishes remain poorly studied from a cytogenetic perspective. Using conventional (Giemsa staining, C banding, chromomycin A3 staining) and molecular (fluorescence in situ hybridisation with ribosomal DNA (rDNA) and telomeric probes) cytogenetic protocols, karyotypes and associated chromosomal characteristics of five species were examined. We covered all major lineages of this group, namely, Running River rainbowfish Melanotaenia sp., red rainbowfish Glossolepisincisus, threadfin rainbowfish Iriatherina werneri, ornate rainbowfish Rhadinocentrus ornatus, and Cairns rainbowfish Cairnsichthys rhombosomoides. All species had conserved diploid chromosome numbers 2n = 48, but karyotypes differed among species; while Melanotaenia sp., G. incisus, and I. werneri possessed karyotypes composed of exclusively subtelo/acrocentric chromosomes, the karyotype of R. ornatus displayed six pairs of submetacentric and 18 pairs of subtelo/acrocentric chromosomes, while C. rhombosomoides possessed a karyotype composed of four pairs of submetacentric and 20 pairs of subtelo/acrocentric chromosomes. No heteromorphic sex chromosomes were detected using conventional cytogenetic techniques. Our data indicate a conserved 2n in Melanotaeniidae, but morphologically variable karyotypes, rDNA sites, and heterochromatin distributions. Differences were observed especially in taxonomically divergent species, suggesting interspecies chromosome rearrangements.
Collapse
Affiliation(s)
- Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
| | - Peter J. Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia;
| | - Tulyawat Prasongmaneerut
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.S.)
| | - Foyez Shams
- Centre for Conservation Ecology and Genetics, Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia; (F.S.); (T.E.)
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (T.P.); (K.S.)
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic;
| | - Tariq Ezaz
- Centre for Conservation Ecology and Genetics, Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia; (F.S.); (T.E.)
| |
Collapse
|
12
|
Sex Chromosomes and Internal Telomeric Sequences in Dormitator latifrons (Richardson 1844) (Eleotridae: Eleotrinae): An Insight into their Origin in the Genus. Genes (Basel) 2020; 11:genes11060659. [PMID: 32560434 PMCID: PMC7349016 DOI: 10.3390/genes11060659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The freshwater fish species Dormitator latifrons, commonly named the Pacific fat sleeper, is an important food resource in CentralSouth America, yet almost no genetic information on it is available. A cytogenetic analysis of this species was undertaken by standard and molecular techniques (chromosomal mapping of 18S rDNA, 5S rDNA, and telomeric repeats), aiming to describe the karyotype features, verify the presence of sex chromosomes described in congeneric species, and make inferences on chromosome evolution in the genus. The karyotype (2n = 46) is mainly composed of metacentric and submetacentic chromosomes, with nucleolar organizer regions (NORs) localized on the short arms of submetacentric pair 10. The presence of XX/XY sex chromosomes was observed, with the X chromosome carrying the 5S rDNA sequences. These heterochromosomes likely appeared before 1 million years ago, since they are shared with another derived Dormitator species (Dormitator maculatus) distributed in the Western Atlantic. Telomeric repeats hybridize to the terminal portions of almost all chromosomes; additional interstitial sites are present in the centromeric region, suggesting pericentromeric inversions as the main rearrangement mechanisms that has driven karyotypic evolution in the genus. The data provided here contribute to improving the cytogenetics knowledge of D. latifrons, offering basic information that could be useful in aquaculture farming of this neotropical fish.
Collapse
|
13
|
Marta A, Dedukh D, Bartoš O, Majtánová Z, Janko K. Cytogenetic Characterization of Seven Novel satDNA Markers in Two Species of Spined Loaches ( Cobitis) and Their Clonal Hybrids. Genes (Basel) 2020; 11:genes11060617. [PMID: 32512717 PMCID: PMC7348982 DOI: 10.3390/genes11060617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 01/11/2023] Open
Abstract
Interspecific hybridization is a powerful evolutionary force. However, the investigation of hybrids requires the application of methodologies that provide efficient and indubitable identification of both parental subgenomes in hybrid individuals. Repetitive DNA, and especially the satellite DNA sequences (satDNA), can rapidly diverge even between closely related species, hence providing a useful tool for cytogenetic investigations of hybrids. Recent progress in whole-genome sequencing (WGS) offers unprecedented possibilities for the development of new tools for species determination, including identification of species-specific satDNA markers. In this study, we focused on spined loaches (Cobitis, Teleostei), a group of fishes with frequent interspecific hybridization. Using the WGS of one species, C. elongatoides, we identified seven satDNA markers, which were mapped by fluorescence in situ hybridization on mitotic and lampbrush chromosomes of C. elongatoides, C. taenia and their triploid hybrids (C. elongatoides × 2C. taenia). Two of these markers were chromosome-specific in both species, one had centromeric localization in multiple chromosomes and four had variable patterns between tested species. Our study provided a novel set of cytogenetic markers for Cobitis species and demonstrated that NGS-based development of satDNA cytogenetic markers may provide a very efficient and easy tool for the investigation of hybrid genomes, cell ploidy, and karyotype evolution.
Collapse
Affiliation(s)
- Anatolie Marta
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
- Institute of Zoology, Academy of Science of Moldova, MD-2028, Academiei 1, 2001 Chisinau, Moldova
- Correspondence:
| | - Dmitry Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
| | - Oldřich Bartoš
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
14
|
Sember A, de Oliveira EA, Ráb P, Bertollo LAC, de Freitas NL, Viana PF, Yano CF, Hatanaka T, Marinho MMF, de Moraes RLR, Feldberg E, Cioffi MDB. Centric Fusions behind the Karyotype Evolution of Neotropical Nannostomus Pencilfishes (Characiforme, Lebiasinidae): First Insights from a Molecular Cytogenetic Perspective. Genes (Basel) 2020; 11:genes11010091. [PMID: 31941136 PMCID: PMC7017317 DOI: 10.3390/genes11010091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Lebiasinidae is a Neotropical freshwater family widely distributed throughout South and Central America. Due to their often very small body size, Lebiasinidae species are cytogenetically challenging and hence largely underexplored. However, the available but limited karyotype data already suggested a high interspecific variability in the diploid chromosome number (2n), which is pronounced in the speciose genus Nannostomus, a popular taxon in ornamental fish trade due to its remarkable body coloration. Aiming to more deeply examine the karyotype diversification in Nannostomus, we combined conventional cytogenetics (Giemsa-staining and C-banding) with the chromosomal mapping of tandemly repeated 5S and 18S rDNA clusters and with interspecific comparative genomic hybridization (CGH) to investigate genomes of four representative Nannostomus species: N. beckfordi, N. eques, N. marginatus, and N. unifasciatus. Our data showed a remarkable variability in 2n, ranging from 2n = 22 in N. unifasciatus (karyotype composed exclusively of metacentrics/submetacentrics) to 2n = 44 in N. beckfordi (karyotype composed entirely of acrocentrics). On the other hand, patterns of 18S and 5S rDNA distribution in the analyzed karyotypes remained rather conservative, with only two 18S and two to four 5S rDNA sites. In view of the mostly unchanged number of chromosome arms (FN = 44) in all but one species (N. eques; FN = 36), and with respect to the current phylogenetic hypothesis, we propose Robertsonian translocations to be a significant contributor to the karyotype differentiation in (at least herein studied) Nannostomus species. Interspecific comparative genome hybridization (CGH) using whole genomic DNAs mapped against the chromosome background of N. beckfordi found a moderate divergence in the repetitive DNA content among the species’ genomes. Collectively, our data suggest that the karyotype differentiation in Nannostomus has been largely driven by major structural rearrangements, accompanied by only low to moderate dynamics of repetitive DNA at the sub-chromosomal level. Possible mechanisms and factors behind the elevated tolerance to such a rate of karyotype change in Nannostomus are discussed.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic; (A.S.); (P.R.)
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
- Secretaria de Estado de Educação de Mato Grosso–SEDUC-MT, Cuiabá 78049-909, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic; (A.S.); (P.R.)
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Natália Lourenço de Freitas
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Patrik Ferreira Viana
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araújo 2936, Petrópolis, Manaus 69067-375, Brazil; (P.F.V.); (E.F.)
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Manoela Maria Ferreira Marinho
- Universidade Federal da Paraíba (UFPB), Departamento de Sistemática e Ecologia (DSE), Laboratório de Sistemática e Morfologia de Peixes, João Pessoa 58051-090, Brazil;
| | - Renata Luiza Rosa de Moraes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Av. André Araújo 2936, Petrópolis, Manaus 69067-375, Brazil; (P.F.V.); (E.F.)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil; (E.A.d.O.); (L.A.C.B.); (N.L.d.F.); (C.F.Y.); (T.H.); (R.L.R.d.M.)
- Correspondence: ; Tel.: +55-16-3351-8431; Fax: +55-16-3351-8377
| |
Collapse
|
15
|
Xu D, Sember A, Zhu Q, Oliveira EAD, Liehr T, Al-Rikabi ABH, Xiao Z, Song H, Cioffi MDB. Deciphering the Origin and Evolution of the X 1X 2Y System in Two Closely-Related Oplegnathus Species (Oplegnathidae and Centrarchiformes). Int J Mol Sci 2019; 20:E3571. [PMID: 31336568 PMCID: PMC6678977 DOI: 10.3390/ijms20143571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 01/18/2023] Open
Abstract
Oplegnathus fasciatus and O. punctatus (Teleostei: Centrarchiformes: Oplegnathidae), are commercially important rocky reef fishes, endemic to East Asia. Both species present an X1X2Y sex chromosome system. Here, we investigated the evolutionary forces behind the origin and differentiation of these sex chromosomes, with the aim to elucidate whether they had a single or convergent origin. To achieve this, conventional and molecular cytogenetic protocols, involving the mapping of repetitive DNA markers, comparative genomic hybridization (CGH), and whole chromosome painting (WCP) were applied. Both species presented similar 2n, karyotype structure and hybridization patterns of repetitive DNA classes. 5S rDNA loci, besides being placed on the autosomal pair 22, resided in the terminal region of the long arms of both X1 chromosomes in females, and on the X1 and Y chromosomes in males. Furthermore, WCP experiments with a probe derived from the Y chromosome of O. fasciatus (OFAS-Y) entirely painted the X1 and X2 chromosomes in females and the X1, X2, and Y chromosomes in males of both species. CGH failed to reveal any sign of sequence differentiation on the Y chromosome in both species, thereby suggesting the shared early stage of neo-Y chromosome differentiation. Altogether, the present findings confirmed the origin of the X1X2Y sex chromosomes via Y-autosome centric fusion and strongly suggested their common origin.
Collapse
Affiliation(s)
- Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316100, China
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316100, China
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Qihui Zhu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316100, China
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos SP 13565-905, Brazil
- Secretaria de Estado de Educação de Mato Grosso-SEDUC-MT, Cuiabá MT 78049-909, Brazil
| | - Thomas Liehr
- University Clinic Jena, Institute of Human Genetics, 07747 Jena, Germany
| | | | - Zhizhong Xiao
- Laboratory for Marine Biology and Biotechnology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Hongbin Song
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316100, China
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316100, China
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos SP 13565-905, Brazil.
- University Clinic Jena, Institute of Human Genetics, 07747 Jena, Germany.
| |
Collapse
|
16
|
Barby FF, Bertollo LAC, de Oliveira EA, Yano CF, Hatanaka T, Ráb P, Sember A, Ezaz T, Artoni RF, Liehr T, Al-Rikabi ABH, Trifonov V, de Oliveira EHC, Molina WF, Jegede OI, Tanomtong A, de Bello Cioffi M. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH). Sci Rep 2019; 9:1112. [PMID: 30718776 PMCID: PMC6361938 DOI: 10.1038/s41598-019-38617-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/03/2019] [Indexed: 11/09/2022] Open
Abstract
Notopteridae (Teleostei, Osteoglossiformes) represents an old fish lineage with ten currently recognized species distributed in African and Southeastern Asian rivers. Their karyotype structures and diploid numbers remained conserved over long evolutionary periods, since African and Asian lineages diverged approximately 120 Mya. However, a significant genetic diversity was already identified for these species using molecular data. Thus, why the evolutionary relationships within Notopteridae are so diverse at the genomic level but so conserved in terms of their karyotypes? In an attempt to develop a more comprehensive picture of the karyotype and genome evolution in Notopteridae, we performed comparative genomic hybridization (CGH) and cross-species (Zoo-FISH) whole chromosome painting experiments to explore chromosome-scale intergenomic divergence among seven notopterid species, collected in different African and Southeast Asian river basins. CGH demonstrated an advanced stage of sequence divergence among the species and Zoo-FISH experiments showed diffuse and limited homology on inter-generic level, showing a temporal reduction of evolutionarily conserved syntenic regions. The sharing of a conserved chromosomal region revealed by Zoo-FISH in these species provides perspectives that several other homologous syntenic regions have remained conserved among their genomes despite long temporal isolation. In summary, Notopteridae is an interesting model for tracking the chromosome evolution as it is (i) ancestral vertebrate group with Gondwanan distribution and (ii) an example of animal group exhibiting karyotype stasis. The present study brings new insights into degree of genome divergence vs. conservation at chromosomal and sub-chromosomal level in representative sampling of this group.
Collapse
Affiliation(s)
- Felipe Faix Barby
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - Luiz Antônio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
| | - Roberto Ferreira Artoni
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | - Thomas Liehr
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | | | - Vladimir Trifonov
- Molecular and Cellular Biology, Russian Academy of Sciences, Novosibirsk, Russia
| | - Edivaldo H C de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Belém, Brazil
| | - Wagner Franco Molina
- Department of Cellular Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Oladele Ilesanmi Jegede
- Department of Fisheries and Aquaculture, Adamawa State University, P.M.B. 25, Mubi, Adamawa State, Nigeria
| | - Alongklod Tanomtong
- Toxic Substances in Livestock and Aquatic Animals Research Group, KhonKaen University, Muang, KhonKaen, 40002, Thailand
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
17
|
Symonová R, Howell WM. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics. Genes (Basel) 2018; 9:genes9020096. [PMID: 29443947 PMCID: PMC5852592 DOI: 10.3390/genes9020096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022] Open
Abstract
To understand the cytogenomic evolution of vertebrates, we must first unravel the complex genomes of fishes, which were the first vertebrates to evolve and were ancestors to all other vertebrates. We must not forget the immense time span during which the fish genomes had to evolve. Fish cytogenomics is endowed with unique features which offer irreplaceable insights into the evolution of the vertebrate genome. Due to the general DNA base compositional homogeneity of fish genomes, fish cytogenomics is largely based on mapping DNA repeats that still represent serious obstacles in genome sequencing and assembling, even in model species. Localization of repeats on chromosomes of hundreds of fish species and populations originating from diversified environments have revealed the biological importance of this genomic fraction. Ribosomal genes (rDNA) belong to the most informative repeats and in fish, they are subject to a more relaxed regulation than in higher vertebrates. This can result in formation of a literal 'rDNAome' consisting of more than 20,000 copies with their high proportion employed in extra-coding functions. Because rDNA has high rates of transcription and recombination, it contributes to genome diversification and can form reproductive barrier. Our overall knowledge of fish cytogenomics grows rapidly by a continuously increasing number of fish genomes sequenced and by use of novel sequencing methods improving genome assembly. The recently revealed exceptional compositional heterogeneity in an ancient fish lineage (gars) sheds new light on the compositional genome evolution in vertebrates generally. We highlight the power of synergy of cytogenetics and genomics in fish cytogenomics, its potential to understand the complexity of genome evolution in vertebrates, which is also linked to clinical applications and the chromosomal backgrounds of speciation. We also summarize the current knowledge on fish cytogenomics and outline its main future avenues.
Collapse
Affiliation(s)
- Radka Symonová
- Faculty of Science, Department of Biology, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic.
| | - W Mike Howell
- Department of Biological and Environmental Sciences, Samford University, Birmingham, AL 35229, USA.
| |
Collapse
|
18
|
Krysanov E, Demidova T. Extensive karyotype variability of African fish genus Nothobranchius (Cyprinodontiformes). COMPARATIVE CYTOGENETICS 2018; 12:387-402. [PMID: 30338046 PMCID: PMC6182469 DOI: 10.3897/compcytogen.v12i3.25092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/18/2018] [Indexed: 05/09/2023]
Abstract
Karyotypes of 65 species of the genus Nothobranchius Peters, 1868 were reviewed and of those 35 examined first time. The results of present study have shown that fishes of the genus Nothobranchius possessed highly diverse karyotypes. The diploid chromosome number (2n) ranged from 16 to 50. The most frequent 2n was 2n = 36 (in 35 species) while the second one 2n = 38 (in 13 species). Proportion of biarmed chromosomes varied from 0 to 95% between species. Diploid chromosome number variability apparently exists as a result of chromosomal fusions or fissions and extensive karyotypic formula alterations promoting by inversions. Multiple sex chromosomes of system X1X1X2X2/X1X2Y type were found only in karyotypes of 5 species. The extensive karyotype variability, unusual for teleosts, of genus Nothobranchius can be likely associated with the characteristics of its life cycle and inhabiting under unstable environment of East African savannah temporal pools.
Collapse
Affiliation(s)
- Eugene Krysanov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071 RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Tatiana Demidova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071 RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
19
|
Karyotype description of the African weakly electric fish Campylomormyrus compressirostris in the context of chromosome evolution in Osteoglossiformes. ACTA ACUST UNITED AC 2017; 110:273-280. [PMID: 28108417 DOI: 10.1016/j.jphysparis.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/21/2016] [Accepted: 01/14/2017] [Indexed: 11/22/2022]
Abstract
Karyotyping is a basic method to investigate chromosomal evolution and genomic rearrangements. Sixteen genera within the basal teleost order Osteoglossiformes are currently described cytogenetically. Our study adds information to this chromosomal dataset by determining the karyotype of Campylomormyrus compressirostris, a genus of African weakly electric fish that has not been previously examined. Our results indicate a diploid chromosome number of 2n=48 (4sm+26m+18a) with a fundamental number of FN=72. This chromosome number is identical to the number documented for the sister taxon of the genus Campylomormyrus, i.e., Gnathonemus petersii (2n=48). These results support the close relationship of Campylomormyrus and Gnathonemus. However, the karyotype formula of C. compressirostris is different from Gnathonemus petersii, thereby confirming the high variability of karyotype formulae within the Mormyridae. We infer that the differences in chromosome number and formula of Campylomormyrus relative to other mormyrids may be caused by Robertsonian fusion and pericentric inversion. In addition to the karyotype description and classification of Campylomormyrus, a ChromEvol analysis was used to determine the ancestral haploid chromosome number of osteoglossiform taxa. Our results indicate a relatively conservative haploid chromosome number of n=24 for the most recent common ancestor of Osteoglossiformes and for most of the internal nodes of osteoglossiform phylogeny. Hence, we presume that the high chromosome variability evolved recently on multiple independent occasions. Furthermore, we suggest that the most likely ancestral chromosome number of Mormyridae is either n=24 or n=25. To the best of our knowledge this is the first attempt to determine and classify the karyotype of the weakly electric fish genus Campylomormyrus and to analyze chromosomal evolution within the Osteoglossiformes based on Maximum Likelihood and Bayesian Inference analyses.
Collapse
|
20
|
Majtánová Z, Symonová R, Arias-Rodriguez L, Sallan L, Ráb P. "Holostei versus Halecostomi" Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia calva. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:620-628. [PMID: 28074622 DOI: 10.1002/jez.b.22720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/12/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
Abstract
Bowfin belongs to an ancient lineage of nonteleost ray-finned fishes (actinopterygians) and is the only extant survivor of a once diverged group, the Halecomorphi or Amiiformes. Owing to the scarcity of extant nonteleost ray-finned lineages, also referred as "living fossils," their phylogenetic interrelationships have been the target of multiple hypotheses concerning their sister group relationships. Molecular and morphological data sets have produced controversial results; bowfin is considered as either the sister group to genome-duplicated teleosts (together forming the group of Halecostomi) or to gars (Lepisosteiformes; together forming the group of Holostei). However, any detailed cytogenetic analysis of bowfin chromosomes has never been performed to address this issue. Here we examined bowfin chromosomes by conventional (Giemsa-staining, C-banding, base-specific fluorescence and silver staining) and molecular (FISH with rDNA probes) cytogenetic protocols. We identified diploid chromosome number 2n = 46 with a middle-sized submetacentric chromosome pair as the major ribosomal DNA-bearing (45S rDNA), GC-positive and silver-positive element. The minor rDNA (5S rDNA) sites were localized in the pericentromeric region of one middle-sized acrocentric chromosome pair. Comparison with available cytogenetic data of other nonteleost actinopterygians (bichirs, sturgeons, gars) and teleost species including representative of basally branching lineages showed bowfin chromosomal characteristics more similar to the teleost type than to any other nonteleosts. Particularly striking differences were identified between bowfin and gars, the latter of which were found to mimic mammalian AT/GC genomic organisation. Such conclusion however contradicts the most recent phylogenomic results and raises the question what states are ancestral and what are derived.
Collapse
Affiliation(s)
- Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.,Department of Zoology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Radka Symonová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.,Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, Tabasco, México
| | - Lauren Sallan
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| |
Collapse
|
21
|
The genome of the Gulf pipefish enables understanding of evolutionary innovations. Genome Biol 2016; 17:258. [PMID: 27993155 PMCID: PMC5168715 DOI: 10.1186/s13059-016-1126-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Evolutionary origins of derived morphologies ultimately stem from changes in protein structure, gene regulation, and gene content. A well-assembled, annotated reference genome is a central resource for pursuing these molecular phenomena underlying phenotypic evolution. We explored the genome of the Gulf pipefish (Syngnathus scovelli), which belongs to family Syngnathidae (pipefishes, seahorses, and seadragons). These fishes have dramatically derived bodies and a remarkable novelty among vertebrates, the male brood pouch. Results We produce a reference genome, condensed into chromosomes, for the Gulf pipefish. Gene losses and other changes have occurred in pipefish hox and dlx clusters and in the tbx and pitx gene families, candidate mechanisms for the evolution of syngnathid traits, including an elongated axis and the loss of ribs, pelvic fins, and teeth. We measure gene expression changes in pregnant versus non-pregnant brood pouch tissue and characterize the genomic organization of duplicated metalloprotease genes (patristacins) recruited into the function of this novel structure. Phylogenetic inference using ultraconserved sequences provides an alternative hypothesis for the relationship between orders Syngnathiformes and Scombriformes. Comparisons of chromosome structure among percomorphs show that chromosome number in a pipefish ancestor became reduced via chromosomal fusions. Conclusions The collected findings from this first syngnathid reference genome open a window into the genomic underpinnings of highly derived morphologies, demonstrating that de novo production of high quality and useful reference genomes is within reach of even small research groups. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1126-6) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
The Atlantic salmon genome provides insights into rediploidization. Nature 2016; 533:200-5. [PMID: 27088604 PMCID: PMC8127823 DOI: 10.1038/nature17164] [Citation(s) in RCA: 673] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/26/2016] [Indexed: 01/24/2023]
Abstract
The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes. The genome sequence is presented for the Atlantic salmon (Salmo salar), providing information about a rediploidization following a salmonid-specific whole-genome duplication event that resulted in an autotetraploidization. William Davidson and colleagues report sequencing and assembly of the Atlantic salmon genome, which they demonstrate as a useful reference to also improve the genome assembly of other salmanoids. Their analyses provide insights into duplicate retention patterns across two rounds of whole-genome duplication that have occurred in this lineage.
Collapse
|
23
|
Liu S, Luo J, Chai J, Ren L, Zhou Y, Huang F, Liu X, Chen Y, Zhang C, Tao M, Lu B, Zhou W, Lin G, Mai C, Yuan S, Wang J, Li T, Qin Q, Feng H, Luo K, Xiao J, Zhong H, Zhao R, Duan W, Song Z, Wang Y, Wang J, Zhong L, Wang L, Ding Z, Du Z, Lu X, Gao Y, Murphy RW, Liu Y, Meyer A, Zhang YP. Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross. Proc Natl Acad Sci U S A 2016; 113:1327-32. [PMID: 26768847 PMCID: PMC4747765 DOI: 10.1073/pnas.1512955113] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polyploidy is much rarer in animals than in plants but it is not known why. The outcome of combining two genomes in vertebrates remains unpredictable, especially because polyploidization seldom shows positive effects and more often results in lethal consequences because viable gametes fail to form during meiosis. Fortunately, the goldfish (maternal) × common carp (paternal) hybrids have reproduced successfully up to generation 22, and this hybrid lineage permits an investigation into the genomics of hybridization and tetraploidization. The first two generations of these hybrids are diploids, and subsequent generations are tetraploids. Liver transcriptomes from four generations and their progenitors reveal chimeric genes (>9%) and mutations of orthologous genes. Characterizations of 18 randomly chosen genes from genomic DNA and cDNA confirm the chimera. Some of the chimeric and differentially expressed genes relate to mutagenesis, repair, and cancer-related pathways in 2nF1. Erroneous DNA excision between homologous parental genes may drive the high percentage of chimeric genes, or even more potential mechanisms may result in this phenomenon. Meanwhile, diploid offspring show paternal-biased expression, yet tetraploids show maternal-biased expression. These discoveries reveal that fast and unstable changes are mainly deleterious at the level of transcriptomes although some offspring still survive their genomic abnormalities. In addition, the synthetic effect of genome shock might have resulted in greatly reduced viability of 2nF2 hybrid offspring. The goldfish × common carp hybrids constitute an ideal system for unveiling the consequences of intergenomic interactions in hybrid vertebrate genomes and their fertility.
Collapse
Affiliation(s)
- Shaojun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China;
| | - Jing Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jing Chai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Li Ren
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yi Zhou
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Feng Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Xiaochuan Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Yubao Chen
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Chun Zhang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Min Tao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Bin Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Wei Zhou
- School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Guoliang Lin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Chao Mai
- School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shuo Yuan
- School of Software, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jun Wang
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Tao Li
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Qinbo Qin
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Hao Feng
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Kaikun Luo
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jun Xiao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Huan Zhong
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Rurong Zhao
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Wei Duan
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Zhenyan Song
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yanqin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Jing Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Li Zhong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China
| | - Zhaoli Ding
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhenglin Du
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Xuemei Lu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Gao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China; Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada M5S 2C6
| | - Yun Liu
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ya-Ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, China; Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China;
| |
Collapse
|
24
|
Majtánová Z, Choleva L, Symonová R, Ráb P, Kotusz J, Pekárik L, Janko K. Asexual Reproduction Does Not Apparently Increase the Rate of Chromosomal Evolution: Karyotype Stability in Diploid and Triploid Clonal Hybrid Fish (Cobitis, Cypriniformes, Teleostei). PLoS One 2016; 11:e0146872. [PMID: 26808475 PMCID: PMC4726494 DOI: 10.1371/journal.pone.0146872] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/25/2015] [Indexed: 12/23/2022] Open
Abstract
Interspecific hybridization, polyploidization and transitions from sexuality to asexuality considerably affect organismal genomes. Especially the last mentioned process has been assumed to play a significant role in the initiation of chromosomal rearrangements, causing increased rates of karyotype evolution. We used cytogenetic analysis and molecular dating of cladogenetic events to compare the rate of changes of chromosome morphology and karyotype in asexually and sexually reproducing counterparts in European spined loach fish (Cobitis). We studied metaphases of three sexually reproducing species and their diploid and polyploid hybrid clones of different age of origin. The material includes artificial F1 hybrid strains, representatives of lineage originated in Holocene epoch, and also individuals of an oldest known age to date (roughly 0.37 MYA). Thereafter we applied GISH technique as a marker to differentiate parental chromosomal sets in hybrids. Although the sexual species accumulated remarkable chromosomal rearrangements after their speciation, we observed no differences in chromosome numbers and/or morphology among karyotypes of asexual hybrids. These hybrids possess chromosome sets originating from respective parental species with no cytogenetically detectable recombinations, suggesting their integrity even in a long term. The switch to asexual reproduction thus did not provoke any significant acceleration of the rate of chromosomal evolution in Cobitis. Asexual animals described in other case studies reproduce ameiotically, while Cobitis hybrids described here produce eggs likely through modified meiosis. Therefore, our findings indicate that the effect of asexuality on the rate of chromosomal change may be context-dependent rather than universal and related to particular type of asexual reproduction.
Collapse
Affiliation(s)
- Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, CAS, v.v.i, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Lukáš Choleva
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, CAS, v.v.i, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radka Symonová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, CAS, v.v.i, Liběchov, Czech Republic
- Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, CAS, v.v.i, Liběchov, Czech Republic
| | - Jan Kotusz
- Museum of Natural History, University of Wrocław, Wrocław, Poland
| | - Ladislav Pekárik
- Institute of Botany, SAS, Bratislava, Slovakia
- Department of Biology, Faculty of Education, Trnava University, Trnava, Slovakia
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, CAS, v.v.i, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
25
|
Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol 2015; 15:251. [PMID: 26573692 PMCID: PMC4647339 DOI: 10.1186/s12862-015-0532-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/04/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Loaches of the family Nemacheilidae are one of the most speciose elements of Palearctic freshwater ichthyofauna and have undergone rapid ecological adaptations and colonizations. Their cytotaxonomy is largely unexplored; with the impact of cytogenetical changes on this evolutionary diversification still unknown. An extensive cytogenetical survey was performed in 19 nemacheilid species using both conventional (Giemsa staining, C- banding, Ag- and Chromomycin A3/DAPI stainings) and molecular (fluorescence in situ hybridization with 5S rDNA, 45S rDNA, and telomeric (TTAGGG)n probes) methods. A phylogenetic tree of the analysed specimens was constructed based on one mitochondrial (cytochrome b) and two nuclear (RAG1, IRBP) genes. RESULTS Seventeen species showed karyotypes composed of 2n = 50 chromosomes but differentiated by fundamental chromosome number (NF = 68-90). Nemachilichthys ruppelli (2n = 38) and Schistura notostigma (2n = 44-48) displayed reduced 2n with an elevated number of large metacentric chromosomes. Only Schistura fasciolata showed morphologically differentiated sex chromosomes with a multiple system of the XY1Y2 type. Chromomycin A3 (CMA3)- fluorescence revealed interspecific heterogeneity in the distribution of GC-rich heterochromatin including its otherwise very rare association with 5S rDNA sites. The 45S rDNA sites were mostly located on a single chromosome pair contrasting markedly with a pattern of two (Barbatula barbatula, Nemacheilus binotatus, N. ruppelli) to 20 sites (Physoschistura sp.) of 5S rDNA. The cytogenetic changes did not follow the phylogenetic relationships between the samples. A high number of 5S rDNA sites was present in species with small effective population sizes. CONCLUSION Despite a prevailing conservatism of 2n, Nemacheilidae exhibited a remarkable cytogenetic variability on microstructural level. We suggest an important role for pericentric inversions, tandem and centric fusions in nemacheilid karyotype differentiation. Short repetitive sequences, genetic drift, founder effect, as well as the involvement of transposable elements in the dispersion of ribosomal DNA sites, might also have played a role in evolutionary processes such as reproductive isolation. These remarkable dynamics of their genomes qualify river loaches as a model for the study of the cytogenetic background of major evolutionary processes such as radiation, endemism and colonization of a wide range of habitats.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.
| | - Jörg Bohlen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| | - Vendula Šlechtová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague 2, Czech Republic.
| | - Radka Symonová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
- Research Institute for Limnology, University of Innsbruck, Mondseestraße 9, A-5310, Mondsee, Austria.
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, 277 21, Czech Republic.
| |
Collapse
|
26
|
Inferring Diversity and Evolution in Fish by Means of Integrative Molecular Cytogenetics. ScientificWorldJournal 2015; 2015:365787. [PMID: 26345638 PMCID: PMC4546756 DOI: 10.1155/2015/365787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 11/23/2022] Open
Abstract
Fish constitute a paraphyletic and profusely diversified group that has historically puzzled ichthyologists. Hard efforts are necessary to better understand this group, due to its extensive diversity. New species are often identified and it leads to questions about their phylogenetic aspects. Cytogenetics is becoming an important biodiversity-detection tool also used to measure biodiversity evolutionary aspects. Molecular cytogenetics by fluorescence in situ hybridization (FISH) allowed integrating quantitative and qualitative data from DNA sequences and their physical location in chromosomes and genomes. Although there is no intention on presenting a broader review, the current study presents some evidences on the need of integrating molecular cytogenetic data to other evolutionary biology tools to more precisely infer cryptic species detection, population structuring in marine environments, intra- and interspecific karyoevolutionary aspects of freshwater groups, evolutionary dynamics of marine fish chromosomes, and the origin and differentiation of sexual and B chromosomes. The new cytogenetic field, called cytogenomics, is spreading due to its capacity to give resolute answers to countless questions that cannot be answered by traditional methodologies. Indeed, the association between chromosomal markers and DNA sequencing as well as between biological diversity analysis methodologies and phylogenetics triggers the will to search for answers about fish evolutionary, taxonomic, and structural features.
Collapse
|
27
|
Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, von Schalburg KR, Lemon C, Bird NH, Koop BF. The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS One 2014; 9:e102089. [PMID: 25069045 PMCID: PMC4113312 DOI: 10.1371/journal.pone.0102089] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/14/2014] [Indexed: 11/19/2022] Open
Abstract
The northern pike is the most frequently studied member of the Esociformes, the closest order to the diverse and economically important Salmoniformes. The ancestor of all salmonids purportedly experienced a whole-genome duplication (WGD) event, making salmonid species ideal for studying the early impacts of genome duplication while complicating their use in wider analyses of teleost evolution. Studies suggest that the Esociformes diverged from the salmonid lineage prior to the WGD, supporting the use of northern pike as a pre-duplication outgroup. Here we present the first genome assembly, reference transcriptome and linkage map for northern pike, and evaluate the suitability of this species to provide a representative pre-duplication genome for future studies of salmonid and teleost evolution. The northern pike genome sequence is composed of 94,267 contigs (N50 = 16,909 bp) contained in 5,688 scaffolds (N50 = 700,535 bp); the total scaffolded genome size is 878 million bases. Multiple lines of evidence suggest that over 96% of the protein-coding genome is present in the genome assembly. The reference transcriptome was constructed from 13 tissues and contains 38,696 transcripts, which are accompanied by normalized expression data in all tissues. Gene-prediction analysis produced a total of 19,601 northern pike-specific gene models. The first-generation linkage map identifies 25 linkage groups, in agreement with northern pike's diploid karyotype of 2N = 50, and facilitates the placement of 46% of assembled bases onto linkage groups. Analyses reveal a high degree of conserved synteny between northern pike and other model teleost genomes. While conservation of gene order is limited to smaller syntenic blocks, the wider conservation of genome organization implies the northern pike exhibits a suitable approximation of a non-duplicated Protacanthopterygiian genome. This dataset will facilitate future studies of esocid biology and empower ongoing examinations of the Atlantic salmon and rainbow trout genomes by facilitating their comparison with other major teleost groups.
Collapse
Affiliation(s)
- Eric B. Rondeau
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - David R. Minkley
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Jong S. Leong
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Amber M. Messmer
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Johanna R. Jantzen
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Kristian R. von Schalburg
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Craig Lemon
- The Charles O. Hayford Hackettstown State Fish Hatchery, Hackettstown, New Jersey, United States of America
| | - Nathan H. Bird
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Ben F. Koop
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
28
|
Evidence for meiotic drive as an explanation for karyotype changes in fishes. Mar Genomics 2014; 15:29-34. [PMID: 24844732 DOI: 10.1016/j.margen.2014.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 11/21/2022]
Abstract
The process of preferential chromosome segregation during meiosis has been suggested to be responsible for the predominance of certain chromosome types in the karyotypes of mammals, birds and insects. We developed an extensive analysis of the fixation of mono- or bibrachial chromosomes in the karyotypes of the large Actinopterygii fish group, a key link in the evolution of terrestrial vertebrates, in order to investigate the generality of meiotic drive in determining karyotypic macrotrends. Unlike mammals, fishes have markedly undergone several types of preferential chromosomal rearrangements throughout evolution. Data from the analyzed orders indicate a prevalence of karyotypes with few (<33%) or many (>66%) acrocentric chromosomes and a low number of karyotypes with balanced numbers of mono- and bi-brachial elements. Parallel trends towards a higher number of karyotypes with prevalence of monobrachial chromosomes occurred in phylogenetically close orders (e.g. Perciformes and Tetraodontiformes, and in the order Mugiliformes) and in clades with prevalence of bibrachial elements (e.g. Characiformes, Gymnotiformes, Siluriformes, and Cypriniformes). Some orders where fewer species were available for study, such as Atheriniformes and Anguilliformes, showed karyotype assemblages where both trends were present. Our results strongly suggest a primary role of meiotic drive in karyotypic evolution as indicated by the accumulation of monobrachial chromosomes in Perciformes and Cypriniformes, or bibrachial chromosomes in Siluriformes and Characiformes. Further examinations of the interaction between life history traits, environmental characteristics, and the fixation of chromosomal rearrangements would be exceedingly valuable.
Collapse
|
29
|
Zhan SH, Glick L, Tsigenopoulos CS, Otto SP, Mayrose I. Comparative analysis reveals that polyploidy does not decelerate diversification in fish. J Evol Biol 2014; 27:391-403. [DOI: 10.1111/jeb.12308] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/18/2013] [Accepted: 11/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- S. H. Zhan
- University of British Columbia; Vancouver BC Canada
| | - L. Glick
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv Israel
| | - C. S. Tsigenopoulos
- Institute of Marine Biology and Genetics; Hellenic Centre for Marine Research; Crete Greece
| | - S. P. Otto
- Department of Zoology; University of British Columbia; Vancouver BC Canada
| | - I. Mayrose
- Department of Molecular Biology and Ecology of Plants; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
30
|
Assignment of Chinook salmon (Oncorhynchus tshawytscha) linkage groups to specific chromosomes reveals a karyotype with multiple rearrangements of the chromosome arms of rainbow trout (Oncorhynchus mykiss). G3-GENES GENOMES GENETICS 2013; 3:2289-95. [PMID: 24170739 PMCID: PMC3852390 DOI: 10.1534/g3.113.008078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Chinook salmon genetic linkage groups have been assigned to specific chromosomes using fluorescence in situ hybridization with bacterial artificial chromosome probes containing genetic markers mapped to each linkage group in Chinook salmon and rainbow trout. Comparison of the Chinook salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout as expected. In almost every case, the markers were found at approximately the same location on the chromosome arm in each species, suggesting conservation of marker order on the chromosome arms of the two species in most cases. Although theoretically a few centric fissions could convert the karyotype of rainbow trout (2N = 58–64) into that of Chinook salmon (2N = 68) or vice versa, our data suggest that chromosome arms underwent multiple centric fissions and subsequent new centric fusions to form the current karyotypes. The morphology of only approximately one-third of the chromosome pairs have been conserved between the two species.
Collapse
|
31
|
Smith JDL, Bickham JW, Gregory TR. Patterns of genome size diversity in bats (order Chiroptera). Genome 2013; 56:457-72. [PMID: 24168629 DOI: 10.1139/gen-2013-0046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite being a group of particular interest in considering relationships between genome size and metabolic parameters, bats have not been well studied from this perspective. This study presents new estimates for 121 "microbat" species from 12 families and complements a previous study on members of the family Pteropodidae ("megabats"). The results confirm that diversity in genome size in bats is very limited even compared with other mammals, varying approximately 2-fold from 1.63 pg in Lophostoma carrikeri to 3.17 pg in Rhinopoma hardwickii and averaging only 2.35 pg ± 0.02 SE (versus 3.5 pg overall for mammals). However, contrary to some other vertebrate groups, and perhaps owing to the narrow range observed, genome size correlations were not apparent with any chromosomal, physiological, flight-related, developmental, or ecological characteristics within the order Chiroptera. Genome size is positively correlated with measures of body size in bats, though the strength of the relationships differs between pteropodids ("megabats") and nonpteropodids ("microbats").
Collapse
Affiliation(s)
- Jillian D L Smith
- a Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| | | | | |
Collapse
|
32
|
Molina W, Jacobina U. Protocolos Citogenéticos e Perspectivas Biotecnológicas Voltadas à Piscicultura Marinha e Conservação. BIOTA AMAZÔNIA 2013. [DOI: 10.18561/2179-5746/biotaamazonia.v3n2p155-168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
33
|
Kakioka R, Kokita T, Kumada H, Watanabe K, Okuda N. A RAD-based linkage map and comparative genomics in the gudgeons (genus Gnathopogon, Cyprinidae). BMC Genomics 2013; 14:32. [PMID: 23324215 PMCID: PMC3583795 DOI: 10.1186/1471-2164-14-32] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/14/2013] [Indexed: 11/10/2022] Open
Abstract
Background The construction of linkage maps is a first step in exploring the genetic basis for adaptive phenotypic divergence in closely related species by quantitative trait locus (QTL) analysis. Linkage maps are also useful for comparative genomics in non-model organisms. Advances in genomics technologies make it more feasible than ever to study the genetics of adaptation in natural populations. Restriction-site associated DNA (RAD) sequencing in next-generation sequencers facilitates the development of many genetic markers and genotyping. We aimed to construct a linkage map of the gudgeons of the genus Gnathopogon (Cyprinidae) for comparative genomics with the zebrafish Danio rerio (a member of the same family as gudgeons) and for the future QTL analysis of the genetic architecture underlying adaptive phenotypic evolution of Gnathopogon. Results We constructed the first genetic linkage map of Gnathopogon using a 198 F2 interspecific cross between two closely related species in Japan: river-dwelling Gnathopogon elongatus and lake-dwelling Gnathopogon caerulescens. Based on 1,622 RAD-tag markers, a linkage map spanning 1,390.9 cM with 25 linkage groups and an average marker interval of 0.87 cM was constructed. We also identified a region involving female-specific transmission ratio distortion (TRD). Synteny and collinearity were extensively conserved between Gnathopogon and zebrafish. Conclusions The dense SNP-based linkage map presented here provides a basis for future QTL analysis. It will also be useful for transferring genomic information from a “traditional” model fish species, zebrafish, to screen candidate genes underlying ecologically important traits of the gudgeons.
Collapse
Affiliation(s)
- Ryo Kakioka
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, 606-8502, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
34
|
Collares-Pereira M, Matos I, Morgado-Santos M, Coelho M. Natural Pathways towards Polyploidy in Animals: TheSqualius alburnoidesFish Complex as a Model System to Study Genome Size and Genome Reorganization in Polyploids. Cytogenet Genome Res 2013; 140:97-116. [DOI: 10.1159/000351729] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Lai YY, Lubieniecki KP, Koop BF, Davidson WS. Characterization of the Atlantic salmon (Salmo salar) brain-type fatty acid binding protein (fabp7) genes reveals the fates of teleost fabp7 genes following whole genome duplications. Gene 2012; 504:253-61. [DOI: 10.1016/j.gene.2012.04.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 12/21/2022]
|
36
|
Guyomard R, Boussaha M, Krieg F, Hervet C, Quillet E. A synthetic rainbow trout linkage map provides new insights into the salmonid whole genome duplication and the conservation of synteny among teleosts. BMC Genet 2012; 13:15. [PMID: 22424132 PMCID: PMC3368724 DOI: 10.1186/1471-2156-13-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 03/16/2012] [Indexed: 11/19/2022] Open
Abstract
Background Rainbow trout is an economically important fish and a suitable experimental organism in many fields of biology including genome evolution, owing to the occurrence of a salmonid specific whole-genome duplication (4th WGD). Rainbow trout is among some of the most studied teleosts and has benefited from substantial efforts to develop genomic resources (e.g., linkage maps. Here, we first generated a synthetic map by merging segregation data files derived from three independent linkage maps. Then, we used it to evaluate genome conservation between rainbow trout and three teleost models, medaka, stickleback and zebrafish and to further investigate the extent of the 4th WGD in trout genome. Results The INRA linkage map was updated by adding 211 new markers. After standardization of marker names, consistency of marker assignment to linkage groups and marker orders was checked across the three different data sets and only loci showing consistent location over all or almost all of the data sets were kept. This resulted in a synthetic map consisting of 2226 markers and 29 linkage groups spanning over 3600 cM. Blastn searches against medaka, stickleback, and zebrafish genomic databases resulted in 778, 824 and 730 significant hits respectively while blastx searches yielded 505, 513 and 510 significant hits. Homology search results revealed that, for most rainbow trout chromosomes, large syntenic regions encompassing nearly whole chromosome arms have been conserved between rainbow trout and its closest models, medaka and stickleback. Large conserved syntenies were also found between the genomes of rainbow trout and the reconstructed teleost ancestor. These syntenies consolidated the known homeologous affinities between rainbow trout chromosomes due to the 4th WGD and suggested new ones. Conclusions The synthetic map constructed herein further highlights the stability of the teleost genome over long evolutionary time scales. This map can be easily extended by incorporating new data sets and should help future rainbow trout whole genome sequence assembly. Finally, the persistence of large conserved syntenies across teleosts should facilitate the identification of candidate genes through comparative mapping, even if the occurrence of intra-chromosomal micro-rearrangement may hinder the accurate prediction their genomic location.
Collapse
Affiliation(s)
- René Guyomard
- INRA, UMR1313, Animal Genetics and Integrative Biology, Domaine de Vilvert, 78350 Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|
37
|
Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR, Davidson WS, Omholt SW, Kent MP. A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns. BMC Genomics 2011; 12:615. [PMID: 22182215 PMCID: PMC3261913 DOI: 10.1186/1471-2164-12-615] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 12/19/2011] [Indexed: 11/10/2022] Open
Abstract
Background The Atlantic salmon genome is in the process of returning to a diploid state after undergoing a whole genome duplication (WGD) event between 25 and100 million years ago. Existing data on the proportion of paralogous sequence variants (PSVs), multisite variants (MSVs) and other types of complex sequence variation suggest that the rediplodization phase is far from over. The aims of this study were to construct a high density linkage map for Atlantic salmon, to characterize the extent of rediploidization and to improve our understanding of genetic differences between sexes in this species. Results A linkage map for Atlantic salmon comprising 29 chromosomes and 5650 single nucleotide polymorphisms (SNPs) was constructed using genotyping data from 3297 fish belonging to 143 families. Of these, 2696 SNPs were generated from ESTs or other gene associated sequences. Homeologous chromosomal regions were identified through the mapping of duplicated SNPs and through the investigation of syntenic relationships between Atlantic salmon and the reference genome sequence of the threespine stickleback (Gasterosteus aculeatus). The sex-specific linkage maps spanned a total of 2402.3 cM in females and 1746.2 cM in males, highlighting a difference in sex specific recombination rate (1.38:1) which is much lower than previously reported in Atlantic salmon. The sexes, however, displayed striking differences in the distribution of recombination sites within linkage groups, with males showing recombination strongly localized to telomeres. Conclusion The map presented here represents a valuable resource for addressing important questions of interest to evolution (the process of re-diploidization), aquaculture and salmonid life history biology and not least as a resource to aid the assembly of the forthcoming Atlantic salmon reference genome sequence.
Collapse
Affiliation(s)
- Sigbjørn Lien
- Centre for Integrative Genetics and Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, N-1432, Ås, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mable BK, Alexandrou MA, Taylor MI. Genome duplication in amphibians and fish: an extended synthesis. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00829.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Li J, Phillips RB, Harwood AS, Koop BF, Davidson WS. Identification of the sex chromosomes of brown trout (Salmo trutta) and their comparison with the corresponding chromosomes in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Cytogenet Genome Res 2011; 133:25-33. [PMID: 21252487 DOI: 10.1159/000323410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2010] [Indexed: 12/26/2022] Open
Abstract
Males are the heterogametic sex in salmonid fishes. In brown trout (Salmo trutta) the sex-determining locus, SEX, has been mapped to the end of linkage group BT-28, which corresponds to linkage group AS-8 and chromosome SSA15 in Atlantic salmon (Salmo salar). We set out to identify the sex chromosomes in brown trout. We isolated Atlantic salmon BAC clones containing microsatellite markers that are on BT-28 and also on AS-8, and used these BACs as probes for fluorescent in situ hybridization (FISH) analysis. SEX is located on the short arm of a small subtelocentric/acrocentric chromosome in brown trout, which is consistent with linkage analysis. The acrocentric chromosome SSA15 in Atlantic salmon appears to have arisen by a centric fusion of 2 small acrocentric chromosomes in the common ancestor of Salmo sp. We speculate that the fusion process that produced Atlantic salmon chromosome SSA15 disrupted the ancestral sex-determining locus in the Atlantic salmon lineage, providing the impetus either for the relocation of SEX or selection pressure for a novel sex-determining gene to arise in this species. Thus, the sex-determining genes may differ in Atlantic salmon and brown trout.
Collapse
Affiliation(s)
- J Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C., Canada
| | | | | | | | | |
Collapse
|
40
|
Sarropoulou E, Fernandes JMO. Comparative genomics in teleost species: Knowledge transfer by linking the genomes of model and non-model fish species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 6:92-102. [PMID: 20961822 DOI: 10.1016/j.cbd.2010.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 12/14/2022]
Abstract
Comparative genomics is a powerful tool to transfer knowledge coming from model fish species to non-model fish species of economic or/and evolutionary interest. Such transfer is of importance as functional studies either are difficult to perform with most non-model species. The first comparative map constructed using the human and the chimpanzee genome allowed the identification of putative orthologues. Although comparative mapping in teleosts is still in its infancy, five model teleost genomes from different orders have been fully sequenced to date and the sequencing of several commercially important species are also underway or near completion. The accessibility of these whole genome sequences and rapid developments in genomics of fish species are paving the way towards new and valuable research in comparative genetics and genomics. With the accumulation of information in model species, the genetic and genomic characterization of non-model, but economically, physiologically or evolutionary important species is now feasible. Furthermore, comparison of low coverage gene maps of non-model fish species against fully sequenced fish species will enhance the efficiency of candidate gene identification projected for quantitative trait loci (QTL) scans for traits of special interest.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology and Genetics, Hellenic Centre for Marine Research, Crete, Greece.
| | | |
Collapse
|
41
|
Charlesworth D, Mank JE. The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 2010; 186:9-31. [PMID: 20855574 PMCID: PMC2940314 DOI: 10.1534/genetics.110.117697] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ability to identify genetic markers in nonmodel systems has allowed geneticists to construct linkage maps for a diversity of species, and the sex-determining locus is often among the first to be mapped. Sex determination is an important area of study in developmental and evolutionary biology, as well as ecology. Its importance for organisms might suggest that sex determination is highly conserved. However, genetic studies have shown that sex determination mechanisms, and the genes involved, are surprisingly labile. We review studies using genetic mapping and phylogenetic inferences, which can help reveal evolutionary pattern within this lability and potentially identify the changes that have occurred among different sex determination systems. We define some of the terminology, particularly where confusion arises in writing about such a diverse range of organisms, and highlight some major differences between plants and animals, and some important similarities. We stress the importance of studying taxa suitable for testing hypotheses, and the need for phylogenetic studies directed to taxa where the patterns of changes can be most reliably inferred, if the ultimate goal of testing hypotheses regarding the selective forces that have led to changes in such an essential trait is to become feasible.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | |
Collapse
|
42
|
Leong JS, Jantzen SG, von Schalburg KR, Cooper GA, Messmer AM, Liao NY, Munro S, Moore R, Holt RA, Jones SJM, Davidson WS, Koop BF. Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome. BMC Genomics 2010; 11:279. [PMID: 20433749 PMCID: PMC2886063 DOI: 10.1186/1471-2164-11-279] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/30/2010] [Indexed: 12/22/2022] Open
Abstract
Background Salmonids are one of the most intensely studied fish, in part due to their economic and environmental importance, and in part due to a recent whole genome duplication in the common ancestor of salmonids. This duplication greatly impacts species diversification, functional specialization, and adaptation. Extensive new genomic resources have recently become available for Atlantic salmon (Salmo salar), but documentation of allelic versus duplicate reference genes remains a major uncertainty in the complete characterization of its genome and its evolution. Results From existing expressed sequence tag (EST) resources and three new full-length cDNA libraries, 9,057 reference quality full-length gene insert clones were identified for Atlantic salmon. A further 1,365 reference full-length clones were annotated from 29,221 northern pike (Esox lucius) ESTs. Pairwise dN/dS comparisons within each of 408 sets of duplicated salmon genes using northern pike as a diploid out-group show asymmetric relaxation of selection on salmon duplicates. Conclusions 9,057 full-length reference genes were characterized in S. salar and can be used to identify alleles and gene family members. Comparisons of duplicated genes show that while purifying selection is the predominant force acting on both duplicates, consistent with retention of functionality in both copies, some relaxation of pressure on gene duplicates can be identified. In addition, there is evidence that evolution has acted asymmetrically on paralogs, allowing one of the pair to diverge at a faster rate.
Collapse
Affiliation(s)
- Jong S Leong
- Biology, Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5 Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Genomic organization of Atlantic salmon (Salmo salar) fatty acid binding protein (fabp2) genes reveals independent loss of duplicate loci in teleosts. Mar Genomics 2009; 2:193-200. [PMID: 21798188 DOI: 10.1016/j.margen.2009.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 12/15/2022]
Abstract
Gene and genome duplications are considered to be driving forces of evolution. The relatively recent genome duplication in the common ancestor of salmonids makes this group of fish an excellent system for studying the re-diploidization process and the fates of duplicate genes. We characterized the structure and genome organization of the intestinal fatty acid binding protein (fabp2) genes in Atlantic salmon as a means of understanding the evolutionary fates of members of this protein family in teleosts. A survey of EST databases identified three unique salmonid fabp2 transcripts (fabp2aI, fabp2aII and fabp2b) compared to one transcript in zebrafish. We screened the CHORI-214 Atlantic salmon BAC library and identified BACs containing each of the three fabp2 genes. Physical mapping, genetic mapping and fluorescence in situ hybridization of Atlantic salmon chromosomes revealed that Atlantic salmon fabp2aI, fabp2aII and fabp2b correspond to separate genetic loci that reside on different chromosomes. Comparative genomic analyses indicated that these genes are related to one another by two genome duplications and a gene loss. The first genome duplication occurred in the common ancestor of all teleosts, giving rise to fabp2a and fabp2b, and the second in the common ancestor of salmonids, producing fabp2aI, fabp2aII, fabp2bI and fabp2bII. A subsequent loss of fabp2bI or fabp2bII gave the complement of fabp2 genes seen in Atlantic salmon today. There is also evidence for independent losses of fabp2b genes in zebrafish and tetraodon. Although there is no evidence for partitioning of tissue expression of fabp2 genes (i.e., sub-functionalization) in Atlantic salmon, the pattern of amino acid substitutions in Atlantic salmon and rainbow trout fabp2aI and fabp2aII suggests that neo-functionalization is occurring.
Collapse
|
44
|
Phillips RB, Keatley KA, Morasch MR, Ventura AB, Lubieniecki KP, Koop BF, Danzmann RG, Davidson WS. Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss). BMC Genet 2009; 10:46. [PMID: 19689812 PMCID: PMC2734554 DOI: 10.1186/1471-2156-10-46] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 08/18/2009] [Indexed: 12/04/2022] Open
Abstract
Background Most teleost species, especially freshwater groups such as the Esocidae which are the closest relatives of salmonids, have a karyotype comprising 25 pairs of acrocentric chromosomes and 48–52 chromosome arms. After the common ancestor of salmonids underwent a whole genome duplication, its karyotype would have 100 chromosome arms, and this is reflected in the modal range of 96–104 seen in extant salmonids (e.g., rainbow trout). The Atlantic salmon is an exception among the salmonids as it has 72–74 chromosome arms and its karyotype includes 12 pairs of large acrocentric chromosomes, which appear to be the result of tandem fusions. The purpose of this study was to integrate the Atlantic salmon's linkage map and karyotype and to compare the chromosome map with that of rainbow trout. Results The Atlantic salmon genetic linkage groups were assigned to specific chromosomes in the European subspecies using fluorescence in situ hybridization with BAC probes containing genetic markers mapped to each linkage group. The genetic linkage groups were larger for metacentric chromosomes compared to acrocentric chromosomes of similar size. Comparison of the Atlantic salmon chromosome map with that of rainbow trout provides strong evidence for conservation of large syntenic blocks in these species, corresponding to entire chromosome arms in the rainbow trout. Conclusion It had been suggested that some of the large acrocentric chromosomes in Atlantic salmon are the result of tandem fusions, and that the small blocks of repetitive DNA in the middle of the arms represent the sites of chromosome fusions. The finding that the chromosomal regions on either side of the blocks of repetitive DNA within the larger acrocentric chromosomes correspond to different rainbow trout chromosome arms provides support for this hypothesis.
Collapse
Affiliation(s)
- Ruth B Phillips
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Distribution of ancestral proto-Actinopterygian chromosome arms within the genomes of 4R-derivative salmonid fishes (Rainbow trout and Atlantic salmon). BMC Genomics 2008; 9:557. [PMID: 19032764 PMCID: PMC2632648 DOI: 10.1186/1471-2164-9-557] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 11/25/2008] [Indexed: 11/23/2022] Open
Abstract
Background Comparative genomic studies suggest that the modern day assemblage of ray-finned fishes have descended from an ancestral grouping of fishes that possessed 12–13 linkage groups. All jawed vertebrates are postulated to have experienced two whole genome duplications (WGD) in their ancestry (2R duplication). Salmonids have experienced one additional WGD (4R duplication event) compared to most extant teleosts which underwent a further 3R WGD compared to other vertebrates. We describe the organization of the 4R chromosomal segments of the proto-ray-finned fish karyotype in Atlantic salmon and rainbow trout based upon their comparative syntenies with two model species of 3R ray-finned fishes. Results Evidence is presented for the retention of large whole-arm affinities between the ancestral linkage groups of the ray-finned fishes, and the 50 homeologous chromosomal segments in Atlantic salmon and rainbow trout. In the comparisons between the two salmonid species, there is also evidence for the retention of large whole-arm homeologous affinities that are associated with the retention of duplicated markers. Five of the 7 pairs of chromosomal arm regions expressing the highest level of duplicate gene expression in rainbow trout share homologous synteny to the 5 pairs of homeologs with the greatest duplicate gene expression in Atlantic salmon. These regions are derived from proto-Actinopterygian linkage groups B, C, E, J and K. Conclusion Two chromosome arms in Danio rerio and Oryzias latipes (descendants of the 3R duplication) can, in most instances be related to at least 4 whole or partial chromosomal arms in the salmonid species. Multiple arm assignments in the two salmonid species do not clearly support a 13 proto-linkage group model, and suggest that a 12 proto-linkage group arrangement (i.e., a separate single chromosome duplication and ancestral fusion/fissions/recombination within the putative G/H/I groupings) may have occurred in the more basal soft-rayed fishes. We also found evidence supporting the model that ancestral linkage group M underwent a single chromosome duplication following the 3R duplication. In the salmonids, the M ancestral linkage groups are localized to 5 whole arm, and 3 partial arm regions (i.e., 6 whole arm regions expected). Thus, 3 distinct ancestral linkage groups are postulated to have existed in the G/H and M lineage chromosomes in the ancestor of the salmonids.
Collapse
|