1
|
Csukovich G, Kramer N, Pratscher B, Gotic I, Freund P, Hahn R, Himmler G, Brandt S, Burgener IA. Neutralising Effects of Different Antibodies on Clostridioides difficile Toxins TcdA and TcdB in a Translational Approach. Int J Mol Sci 2023; 24:ijms24043867. [PMID: 36835278 PMCID: PMC9962434 DOI: 10.3390/ijms24043867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Given the high prevalence of intestinal disease in humans and animals, there is a strong need for clinically relevant models recapitulating gastrointestinal systems, ideally replacing in vivo models in accordance with the principles of the 3R. We established a canine organoid system and analysed the neutralising effects of recombinant versus natural antibodies on Clostridioides difficile toxins A and B in this in vitro system. Sulforhodamine B cytotoxicity assays in 2D and FITC-dextran barrier integrity assays on basal-out and apical-out organoids revealed that recombinant, but not natural antibodies, effectively neutralised C. difficile toxins. Our findings emphasise that canine intestinal organoids can be used to test different components and suggest that they can be further refined to also mirror complex interactions between the intestinal epithelium and other cells.
Collapse
Affiliation(s)
- Georg Csukovich
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Nina Kramer
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Barbara Pratscher
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | | | - Patricia Freund
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Rainer Hahn
- Department for Biotechnology, University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria
| | | | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
| | - Iwan Anton Burgener
- Small Animal Internal Medicine, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria
- Correspondence:
| |
Collapse
|
2
|
Valk-Weeber RL, Deelman-Driessen C, Dijkhuizen L, Eshuis-de Ruiter T, van Leeuwen SS. In Depth Analysis of the Contribution of Specific Glycoproteins to the Overall Bovine Whey N-Linked Glycoprofile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6544-6553. [PMID: 32438810 PMCID: PMC7304067 DOI: 10.1021/acs.jafc.0c00959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The N-linked glycoprofile of bovine whey is the combined result of individual protein glycoprofiles. In this work, we provide in-depth structural information on the glycan structures of known whey glycoproteins, namely, lactoferrin, lactoperoxidase, α-lactalbumin, immunoglobulin-G (IgG), and glycosylation-dependent cellular adhesion molecule 1 (GlyCAM-1, PP3). The majority (∼95%) of N-glycans present in the overall whey glycoprofile were attributed to three proteins: lactoferrin, IgG, and GlyCAM-1. We identified specific signature glycans for these main proteins; lactoferrin contributes oligomannose-type glycans, while IgG carries fucosylated di-antennary glycans with Gal-β(1,4)-GlcNAc (LacNAc) motifs. GlyCAM-1 is the sole whey glycoprotein carrying tri- and tetra-antennary structures, with a high degree of fucosylation and sialylation. Signature glycans can be used to recognize individual proteins in the overall whey glycoprofile as well as for protein concentration estimations. Application of the whey glycoprofile analysis to colostrum samples revealed dynamic protein concentration changes for IgG, lactoferrin, and GlyCAM-1 over time.
Collapse
Affiliation(s)
- Rivca L. Valk-Weeber
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
- E-mail:
| | - Cecile Deelman-Driessen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Lubbert Dijkhuizen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | | | - Sander S. van Leeuwen
- Microbial
Physiology, Groningen Biomolecular Sciences and Biotechnology Institute
(GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
- E-mail:
| |
Collapse
|
3
|
Read T, Fortun-Lamothe L, Pascal G, Le Boulch M, Cauquil L, Gabinaud B, Bannelier C, Balmisse E, Destombes N, Bouchez O, Gidenne T, Combes S. Diversity and Co-occurrence Pattern Analysis of Cecal Microbiota Establishment at the Onset of Solid Feeding in Young Rabbits. Front Microbiol 2019; 10:973. [PMID: 31134019 PMCID: PMC6524096 DOI: 10.3389/fmicb.2019.00973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to evaluate how the feeding strategy of rabbit kits at the onset of solid feed intake could affect ecological diversity and co-occurrence patterns of the cecal bacterial community. From birth to 18 days of age kits were exclusively milk-fed, and between 18 and 35 days the young rabbits also had access to solid feed. After weaning at (35 days), young rabbits were exclusively fed solid feed. Three experimental feeds were used: a high concentrate diet [H: 10.16 MJ digestible energy (DE)/kg and 15.3% crude protein (CP)], a low concentrate diet (L: 9.33 MJ DE/kg and 14.7% CP) and a reproductive female diet (R: 10.57 MJ DE/kg and 17.3% CP). The rabbit kits (n = 357) were divided into three groups, differing by the diet received during two periods: from 18 to 28 and from 28 to 49 days of age. In the groups LL and HH, rabbit kits were fed L or H diets, respectively, during both periods. Kits in the group RL received feeds R and L from 18 to 28 and 28 to 49 days of age, respectively. Cecal bacterial communities of 10 rabbits per group were carried out at 18, 28, 35, 43 and 49 days of age by MiSeq Illumina sequencing 16S rRNA encoding genes. Between 18 and 28 days of age, solid feed intake was higher in the group RL compared to the other two groups (+24%; P < 0.01). Overall, 13.4% of the OTUs detected were present in the cecal ecosystem from 18 to 49 days old, whereas 17.4% were acquired with the onset of solid feeding and kept from 28 days on. Exclusive milk consumption constrains the bacterial community toward a similar structure but high phylogenetic beta-diversity. Introduction of solid feed induced a sharp change of microbial community structure and decreased phylogenetic diversity. A strong relationship in bacterial community network occurred only from 43 days on. Our feeding strategy at the onset of solid feed ingestion exhibited only a moderate effect on the microbial community structure (P = 0.072), although the LL group seemed to reach faster maturity compared to the two other groups.
Collapse
Affiliation(s)
- Tehya Read
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France.,Terrena, Ancenis, France
| | | | - Géraldine Pascal
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Malo Le Boulch
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Beatrice Gabinaud
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Carole Bannelier
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | | | | | | | - Thierry Gidenne
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRA, ENVT, Toulouse INP, Castanet Tolosan, France
| |
Collapse
|
4
|
Matlschweiger A, Himmler G, Linhart C, Harasek M, Hahn R. A nonchromatographic process for purification of secretory immunoglobulins from caprine whey. Biotechnol Prog 2017; 33:642-653. [PMID: 28380693 DOI: 10.1002/btpr.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/08/2017] [Indexed: 12/30/2022]
Abstract
Secretory immunoglobulins are an important antibody class being primarily responsible for immunoprotection of mucosal surfaces. A simple, non-chromatographic purification process for secretory immunoglobulins from caprine whey was developed. In the first process step whey was concentrated 30-40-fold on a 500 kDa membrane, thereby increasing the purity from 3% to 15%. The second step consisted of a fractionated PEG precipitation, in which high molecular weight impurities were removed first and in the second stage the secretory immunoglobulins were precipitated, leaving a majority of the low molecular weight proteins in solution. The re-dissolved secretory immunoglobulin fraction had a purity of 43% which could then be increased to 72% by diafiltration at a volume exchange factor of 10. Further increase of purity was only possible at the expense of very high buffer consumption. If diafiltration was performed directly after ultrafiltration, followed by precipitation, the yield was higher but purity was only 54%. Overall, filtration performance was characterized by high concentration polarization, therefore process conditions were set to low trans-membrane pressure and moderate protein concentration. As such purity and to a lesser extent throughput were the major objectives rather than yield, since whey, as a by-product of the dairy industry, is a cheap raw material of almost unlimited supply. Ultra-/diafiltration performance was described well by correlations using dimensionless numbers. Compared with a theoretical model (Graetz/Leveque solution) the flux was slightly overestimated. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:642-653, 2017.
Collapse
Affiliation(s)
- Alexander Matlschweiger
- Dept. of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, Vienna, 1190, Austria
| | - Gottfried Himmler
- Angothera GmbH, Donau-Oder Kanal IV SW 80, Gross-Enzersdorf, 2301, Austria
| | - Clemens Linhart
- Dept. of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, Vienna, 1190, Austria
| | - Michael Harasek
- Inst. of Chemical Engineering, Research Div.: Thermal Process Engineering and Simulation, Technical University of Vienna, Getreidemarkt 9, Vienna, 1060, Austria
| | - Rainer Hahn
- Dept. of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, Vienna, 1190, Austria
| |
Collapse
|
5
|
Lis-Kuberka J, Kątnik-Prastowska I, Berghausen-Mazur M, Orczyk-Pawiłowicz M. Lectin-based analysis of fucosylated glycoproteins of human skim milk during 47 days of lactation. Glycoconj J 2015; 32:665-74. [PMID: 26318738 PMCID: PMC4651984 DOI: 10.1007/s10719-015-9615-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023]
Abstract
Glycoproteins of human milk are multifunctional molecules, and their fucosylated variants are potentially active molecules in immunological events ensuring breastfed infants optimal development and protection against infection diseases. The expression of fucosylated glycotopes may correspond to milk maturation stages. The relative amounts of fucosylated glycotopes of human skim milk glycoproteins over the course of lactation from the 2nd day to the 47th day were analyzed in colostrums, transitional and mature milk samples of 43 healthy mothers by lectin-blotting using α1-2-, α1-6-, and α1-3-fucose specific biotinylated Ulex europaeus (UEA), Lens culinaris (LCA), and Lotus tetragonolobus (LTA) lectins, respectively. The reactivities of UEA and LCA with the milk glycoproteins showed the highest expression of α1-2- and α1-6-fucosylated glycotopes on colostrum glycoproteins. The level of UEA-reactive glycoproteins from the beginning of lactation to the 14th day was high and relatively stable in contrast to LCA-reactive glycoproteins, the level of which significantly decreased from 2–3 to 7–8 days then remained almost unchanged until the 12th–14th days. Next, during the progression of lactation the reactivities with both lectins declined significantly. Eighty percent of α1-2- and/or α1-6-fucosylated glycoproteins showed a high negative correlation with milk maturation. In contrast, most of the analyzed milk glycoproteins were not recognized or weakly recognized by LTA and remained at a low unchanged level over lactation. Only a 30-kDa milk glycoprotein was evidently LTA-reactive, showing a negative correlation with milk maturation. The gradual decline of high expression of α1-2- and α1-6-, but not α1-3-, fucoses on human milk glycoproteins of healthy mothers over lactation was associated with milk maturation.
Collapse
Affiliation(s)
- Jolanta Lis-Kuberka
- Department of Chemistry and Immunochemistry, Wrocław Medical University, Bujwida 44a, 50-345, Wrocław, Poland
| | - Iwona Kątnik-Prastowska
- Department of Chemistry and Immunochemistry, Wrocław Medical University, Bujwida 44a, 50-345, Wrocław, Poland
| | - Marta Berghausen-Mazur
- 1st Department and Clinic of Gynaecology and Obstetrics, Wrocław Medical University, T. Chałubińskiego 3, 50-368, Wrocław, Poland
| | - Magdalena Orczyk-Pawiłowicz
- Department of Chemistry and Immunochemistry, Wrocław Medical University, Bujwida 44a, 50-345, Wrocław, Poland.
| |
Collapse
|
6
|
Wickramasinghe S, Pacheco AR, Lemay DG, Mills DA. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol 2015; 15:172. [PMID: 26303932 PMCID: PMC4548914 DOI: 10.1186/s12866-015-0508-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/13/2015] [Indexed: 12/15/2022] Open
Abstract
Background Breastfed human infants are predominantly colonized by bifidobacteria that thrive on human milk oligosaccharides (HMO). Two predominant species of bifidobacteria in infant feces are Bifidobacterium breve (B. breve) and Bifidobacterium longum subsp. infantis (B. infantis), both of which include avid HMO-consumer strains. Our laboratory has previously shown that B. infantis, when grown on HMO, increases adhesion to intestinal cells and increases the expression of the anti-inflammatory cytokine interleukin-10. The purpose of the current study was to investigate the effects of carbon source—glucose, lactose, or HMO—on the ability of B. breve and B. infantis to adhere to and affect the transcription of intestinal epithelial cells on a genome-wide basis. Results HMO-grown B. infantis had higher percent binding to Caco-2 cell monolayers compared to B. infantis grown on glucose or lactose. B. breve had low adhesive ability regardless of carbon source. Despite differential binding ability, both HMO-grown strains significantly differentially affected the Caco-2 transcriptome compared to their glucose or lactose grown controls. HMO-grown B. breve and B. infantis both downregulated genes in Caco-2 cells associated with chemokine activity. Conclusion The choice of carbon source affects the interaction of bifidobacteria with intestinal epithelial cells. HMO-grown bifidobacteria reduce markers of inflammation, compared to glucose or lactose-grown bifidobacteria. In the future, the design of preventative or therapeutic probiotic supplements may need to include appropriately chosen prebiotics. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0508-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saumya Wickramasinghe
- Department of Basic Veterinary Sciences, University of Peradeniya, Peradeniya, 20400, Sri Lanka. .,Foods for Health Institute University of California, Davis, Davis, CA, 95616, USA. .,Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA.
| | - Alline R Pacheco
- Foods for Health Institute University of California, Davis, Davis, CA, 95616, USA. .,Department of Food Science and Technology, University of California, Davis, Davis, CA, 95616, USA. .,Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA.
| | - Danielle G Lemay
- Foods for Health Institute University of California, Davis, Davis, CA, 95616, USA. .,Genome Center, University of California, Davis, Davis, CA, 95616, USA.
| | - David A Mills
- Foods for Health Institute University of California, Davis, Davis, CA, 95616, USA. .,Department of Food Science and Technology, University of California, Davis, Davis, CA, 95616, USA. .,Department of Viticulture and Enology, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Profiling temporal changes in bovine milk lactoferrin glycosylation using lectin microarrays. Food Chem 2014; 165:388-96. [PMID: 25038691 DOI: 10.1016/j.foodchem.2014.05.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/18/2014] [Accepted: 05/15/2014] [Indexed: 12/27/2022]
Abstract
The bovine milk glycoprotein bovine lactoferrin (bLF) has a variety of biological activities related to its constituent glycans. However, little is known about bLF's oligosaccharide structural changes over the course of lactation. BLF was isolated at 13 time points during the first three months of lactation from three individual cows and glycosylation changes were profiled by lectin microarrays. Substantial profile differences between early and late lactation were observed and accompanying monosaccharide analysis revealed that the occurrence of the non-human sialic acid, N-glycolylneuraminic acid, was greater during early stage milk production. Overall, the data suggested that more diverse complex-type oligosaccharide structures were present on bLF during early lactation with an abundance of oligomannose type glycans in later lactation. The differences in the glycoprofiles of bLF from colostrum to mature milk suggest that these may have different functionality in vivo.
Collapse
|
8
|
Dallas DC, Martin WF, Strum JS, Zivkovic AM, Smilowitz JT, Underwood MA, Affolter M, Lebrilla CB, German JB. N-linked glycan profiling of mature human milk by high-performance microfluidic chip liquid chromatography time-of-flight tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4255-63. [PMID: 21384928 PMCID: PMC4422756 DOI: 10.1021/jf104681p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
N-Linked glycans of skim human milk proteins were determined for three mothers. N-Linked glycans are linked to immune defense, cell growth, and cell-cell adhesion, but their functions in human milk are undetermined. Protein-bound N-linked glycans were released with peptidyl N-glycosidase F (PNGase F), enriched by graphitized carbon chromatography, and analyzed with Chip-TOF MS. To be defined as N-glycans, compounds were required, in all three procedural replicates, to match, within 6 ppm, against a theoretical human N-glycan library and be at least 2-fold higher in abundance in PNGase F-treated than in control samples. Fifty-two N-linked glycan compositions were identified, and 24 were confirmed via tandem mass spectra analysis. Twenty-seven compositions have been found previously in human milk, and 25 are novel compositions. By abundance, 84% of N-glycans were fucosylated and 47% were sialylated. The majority (70%) of total N-glycan abundance was composed of N-glycans found in all three milk samples.
Collapse
Affiliation(s)
- David C. Dallas
- Department of Food Science, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
- Foods for Health Institute, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - William F. Martin
- Department of Food Science, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - John S. Strum
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Angela M. Zivkovic
- Department of Food Science, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
- Foods for Health Institute, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jennifer T. Smilowitz
- Department of Food Science, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
- Foods for Health Institute, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Mark A. Underwood
- Foods for Health Institute, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
- Department of Pediatrics, University of California Davis, 2315 Stockton Blvd., Sacramento, CA, 95817, USA
| | - Michael Affolter
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - J. Bruce German
- Department of Food Science, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
- Foods for Health Institute, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| |
Collapse
|
9
|
Wickramasinghe S, Hua S, Rincon G, Islas-Trejo A, German JB, Lebrilla CB, Medrano JF. Transcriptome profiling of bovine milk oligosaccharide metabolism genes using RNA-sequencing. PLoS One 2011; 6:e18895. [PMID: 21541029 PMCID: PMC3081824 DOI: 10.1371/journal.pone.0018895] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/24/2011] [Indexed: 12/21/2022] Open
Abstract
This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (n = 32) were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (n = 12) and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate genes will guide the design of a targeted breeding strategy to optimize the content of beneficial oligosaccharides in bovine milk.
Collapse
Affiliation(s)
- Saumya Wickramasinghe
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Serenus Hua
- Department of Chemistry, University of California Davis, Davis, California, United States of America
| | - Gonzalo Rincon
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Alma Islas-Trejo
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - J. Bruce German
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, United States of America
| | - Juan F. Medrano
- Department of Animal Science, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Zinger-Yosovich KD, Sudakevitz D, Iluz D, Gilboa-Garber N. Analyses of diverse mammals’ milk and lactoferrin glycans using five pathogenic bacterial lectins. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.07.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Zhang Y, Campbell C, Li Q, Gildersleeve JC. Multidimensional glycan arrays for enhanced antibody profiling. MOLECULAR BIOSYSTEMS 2010; 6:1583-91. [PMID: 20711537 PMCID: PMC3462433 DOI: 10.1039/c002259d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Carbohydrate-binding antibodies play a critical role in basic and clinical research. Monoclonal antibodies that bind glycans are used to measure carbohydrate expression, and serum antibodies to glycans can be important elements of the immune response to pathogens and vaccines. Carbohydrate antigen arrays, or glycan arrays, have emerged as powerful tools for the high-throughput analysis of carbohydrate-protein interactions. Our group has focused on the development and application of neoglycoprotein arrays, a unique array format wherein carbohydrates are covalently attached to a carrier protein prior to immobilization on the surface. The neoglycoprotein format permits variations of glycan structure, glycan density, and neoglycoprotein density on a single array. The focus of this study was on the effects of neoglycoprotein density on antibody binding. First, we evaluated binding of five monoclonal antibodies (81FR2.2, HE-195, HE-193, B480, and Z2A) to the blood group A antigen and found that neoglycoprotein density had a substantial effect on recognition. Next, we profiled serum antibodies in 15 healthy individuals and showed that inclusion of multiple neoglycoprotein densities helps distinguish different subpopulations of antibodies. Finally, we evaluated immune responses induced by a prostate cancer vaccine and showed that variations in neoglycoprotein density enable one to detect antibody responses that could not be detected otherwise. Neoglycoprotein density is a useful element of diversity for evaluating antibody recognition and, when combined with variations in glycan structure and glycan density, provides multidimensional glycan arrays with enhanced performance for monoclonal antibody development, biomarker discovery, and vaccine optimization.
Collapse
Affiliation(s)
- Yalong Zhang
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles Street, Building 376, Frederick, Maryland, 21702
| | - Christopher Campbell
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles Street, Building 376, Frederick, Maryland, 21702
| | - Qian Li
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles Street, Building 376, Frederick, Maryland, 21702
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles Street, Building 376, Frederick, Maryland, 21702
| |
Collapse
|
12
|
Zinger-Yosovich K, Iluz D, Sudakevitz D, Gilboa-Garber N. Blocking of Pseudomonas aeruginosa and Chromobacterium violaceum lectins by diverse mammalian milks. J Dairy Sci 2010; 93:473-82. [DOI: 10.3168/jds.2009-2381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 09/10/2009] [Indexed: 11/19/2022]
|
13
|
Miyazaki T, Sato T, Furukawa K, Ajisaka K. Enzymatic synthesis of lacto-N-difucohexaose I which binds to Helicobacter pylori. Methods Enzymol 2010; 480:511-24. [PMID: 20816225 DOI: 10.1016/s0076-6879(10)80023-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is known to bind with sugar chains possessing Lewis b structure. We are trying to combine oligosaccharides containing Lewis b sugar chain to water insoluble polysaccharide through some linker. Lacto-N-difucohexaose I (LNDFH I; Fucalpha1-->2Galbeta1-->3[Fucalpha1-->4]GlcNAcbeta1-->3Galbeta1-->4Glc) fits for that purpose, since it consists of Lewis b tetrasaccharide and lactose whose d-glucose residue can be utilized as a linker. We thus developed a method to synthesize this hexaose enzymatically. First, beta-1,3-N-acetylglucosaminyltransferase (beta-1,3-GnT) was partially purified from bovine blood by an established method. Using this enzyme preparation, d-GlcNAc was attached to the d-galactose residue of lactose with a beta-1,3-linkage to produce lacto-N-triose II at 44% yield. The low yield was thought to be due to contaminating N-acetylglucosaminidase that would have hydrolyzed the product, lacto-N-triose II. Next, d-galactose was attached by transglycosylation using ortho-nitrophenyl beta-d-galactopyranoside as a donor with the aid of recombinant beta-1,3-galactosidase from Bacillus circulans to generate lacto-N-tetraose (LNT) at 22% yield. l-Fucose was then linked to the d-galactose residue of LNT via an alpha-1,2-linkage using recombinant human fucosyltransferase I (FUT1) expressed in a baculovirus system (71% yield). The obtained pentasaccharide was subsequently incubated with GDP-beta-l-fucose and commercial fucosyltransferase III (FUT3) to attach l-fucose to the d-GlcNAc residue of LNT with an alpha-1,4-linkage. After purification with an activated carbon column chromatography, 1.7 mg of LNDFH I was obtained (85% yield). We thus produced LNDFH I over four enzymatic steps with a yield of 6%.
Collapse
Affiliation(s)
- Tatsuo Miyazaki
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Akiha-ku, Niigata, Japan
| | | | | | | |
Collapse
|
14
|
Casado B, Affolter M, Kussmann M. OMICS-rooted studies of milk proteins, oligosaccharides and lipids. J Proteomics 2009; 73:196-208. [PMID: 19793547 DOI: 10.1016/j.jprot.2009.09.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/10/2009] [Accepted: 09/21/2009] [Indexed: 12/22/2022]
Abstract
Milk has co-evolved with mammals and mankind to nourish their offspring and is a biological fluid of unique complexity and richness. It contains all necessary nutrients for the growth and development of the newborn. Structure and function of biomolecules in milk such as the macronutrients (glyco-) proteins, lipids, and oligosaccharides are central topics in nutritional research. Omics disciplines such as proteomics, glycomics, glycoproteomics, and lipidomics enable comprehensive analysis of these biomolecule components in food science and industry. Mass spectrometry has largely expanded our knowledge on these milk bioactives as it enables identification, quantification and characterization of milk proteins, carbohydrates, and lipids. In this article, we describe the biological importance of milk macronutrients and review the application of proteomics, glycomics, glycoproteomics, and lipidomics to the analysis of milk. Proteomics is a central platform among the Omics tools that have more recently been adapted and applied to nutrition and health research in order to deliver biomarkers for health and comfort as well as to discover beneficial food bioactives.
Collapse
Affiliation(s)
- Begoña Casado
- Department of Bioanalytical Science, Nestlé Research Centre, Lausanne, Switzerland.
| | | | | |
Collapse
|
15
|
Gemeiner P, Mislovičová D, Tkáč J, Švitel J, Pätoprstý V, Hrabárová E, Kogan G, Kožár T. Lectinomics. Biotechnol Adv 2009; 27:1-15. [DOI: 10.1016/j.biotechadv.2008.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 06/22/2008] [Accepted: 07/10/2008] [Indexed: 12/23/2022]
|
16
|
Picariello G, Ferranti P, Mamone G, Roepstorff P, Addeo F. Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry. Proteomics 2008; 8:3833-47. [PMID: 18780401 DOI: 10.1002/pmic.200701057] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Breastfeeding is now generally recognized as a critical factor in protecting newborns against infections. An important mechanism responsible for the antibacterial and antiviral effects of breast milk is the prevention of pathogen adhesion to host cell membranes mediated by a number of glycoconjugates, also including glycoproteins. A number of approaches to describe the complexity of human milk proteome have provided only a partial characterization of restricted classes of N-linked glycoproteins. To achieve this objective, profiling N-linked glycoproteins of human milk was performed by Hydrophilic Interaction LC (HILIC) and MS analysis. Glycopeptides were selectively enriched from the protein tryptic digest of human milk samples. Oligosaccharide-free peptides obtained by peptide N-glycosidase F (PNGase F) treatment were characterized by a shotgun MS-based approach, allowing the identification of N-glycosylated sites localized on proteins. Using this strategy, 32 different glycoproteins were identified and 63 N-glycosylated sites encrypted in them were located. The glycoproteins include immunocompetent factors, membrane fat globule-associated proteins, enzymes involved in lipid degradation and cell differentiation, specific receptors, and other gene products with still unknown functions.
Collapse
|
17
|
Wilson NL, Robinson LJ, Donnet A, Bovetto L, Packer NH, Karlsson NG. Glycoproteomics of Milk: Differences in Sugar Epitopes on Human and Bovine Milk Fat Globule Membranes. J Proteome Res 2008; 7:3687-96. [DOI: 10.1021/pr700793k] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicole L. Wilson
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | - Leanne J. Robinson
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | - Anne Donnet
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | - Lionel Bovetto
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | - Nicolle H. Packer
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | - Niclas G. Karlsson
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| |
Collapse
|
18
|
Holgersson J, Löfling J. Glycosyltransferases involved in type 1 chain and Lewis antigen biosynthesis exhibit glycan and core chain specificity. Glycobiology 2006; 16:584-93. [PMID: 16484342 DOI: 10.1093/glycob/cwj090] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sialyl Lewis A (SLe(a)), Lewis A (Le(a)), and Lewis B (Le(b)) have been studied in many different biological contexts, for example in microbial adhesion and cancer. Their biosynthesis is complex and involves beta1,3-galactosyltransferases (beta3Gal-Ts) and a combined action of alpha2- and/or alpha4-fucosyltransferases (Fuc-Ts). Further, O-glycans with different core structures have been identified, and the ability of beta3Gal-Ts and Fuc-Ts to use these as substrates has not been resolved. Therefore, to examine the in vivo specificity of enzymes involved in SLe(a), Le(a), and Le(b) synthesis, we have transiently transfected CHO-K1 cells with relevant human glycosyltransferases and, on secreted reporter proteins, detected the resulting Lewis antigens on N- and O-linked glycans using western blotting and Le-specific antibodies. beta3Gal-T1, -T2, and -T5 could synthesize type 1 chains on N-linked glycans, but only beta3Gal-T5 worked on O-linked glycans. The latter enzyme could use both core 2 and core 3 precursor structures. Furthermore, the specificity of FUT5 and FUT3 in Le(a) and Le(b) synthesis was different, with FUT5 fucosylating H type 1 only on core 2, but FUT3 fucosylating H type 1 much more efficient on core 3 than on core 2. Finally, FUT1 and FUT2 were both found to direct alpha2-fucosylation on type 1 chains on both N- and O-linked structures. This knowledge enables us to engineer recombinant glycoproteins with glycan- and core chain-specific Lewis antigen substitution. Such tools will be important for investigations on the fine carbohydrate specificity of Le(b)-binding lectins, such as Helicobacter pylori adhesins and DC-SIGN, and may also prove useful as therapeutics.
Collapse
Affiliation(s)
- Jan Holgersson
- Division of Clinical Immunology, Karolinska Institutet, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | | |
Collapse
|
19
|
Gustafsson A, Hultberg A, Sjöström R, Kacskovics I, Breimer ME, Borén T, Hammarström L, Holgersson J. Carbohydrate-dependent inhibition of Helicobacter pylori colonization using porcine milk. Glycobiology 2005; 16:1-10. [PMID: 16118287 DOI: 10.1093/glycob/cwj031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Breast milk has a well-known anti-microbial effect, which is in part due to the many different carbohydrate structures expressed. This renders it a position as a potential therapeutic for treatment of infection by different pathogens, thus avoiding the drawbacks of many antibiotics. In a previous study, we showed that pigs express the Helicobacter pylori receptors, sialyl Lewis x (Le x) and Le b, on various milk proteins. Here, we investigate the pig breed- and individual-specific expression of these epitopes, as well as the inhibitory capacity of porcine milk on H. pylori binding and colonization. Milk proteins from three different pig breeds were analysed by western blotting using antibodies with known carbohydrate specificity. An adhesion assay was used to investigate the capacity of pig milk to inhibit H. pylori binding to neoglycoproteins carrying Le b and sialyl-di-Le x. alpha1,3/4-fucosyltransferase transgenic FVB/N mice, known to express Le b and sialyl Le x in their gastric epithelium, were colonized by H. pylori and were subsequently treated with Le b- and sialyl Le x-expressing or nonexpressing porcine milk, or water (control) only. The degree of H. pylori colonization in the different treatment groups was quantified. The expression of the Le b and sialyl Le x carbohydrate epitopes on pig milk proteins was breed- and individual specific and correlated to the ability of porcine milk to inhibit H. pylori adhesion in vitro and H. pylori colonization in vivo. Milk from certain pig breeds may have a therapeutic and/or prophylactic effect on H. pylori infection.
Collapse
Affiliation(s)
- Anki Gustafsson
- Department of Surgery, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|