1
|
Kitowski A, Bernardes GJL. A Sweet Galactose Transfer: Metabolic Oligosaccharide Engineering as a Tool To Study Glycans in Plasmodium Infection. Chembiochem 2020; 21:2696-2700. [PMID: 32289201 PMCID: PMC7540713 DOI: 10.1002/cbic.202000226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 12/13/2022]
Abstract
The introduction of chemical reporter groups into glycan structures through metabolic oligosaccharide engineering (MOE) followed by bio-orthogonal ligation is an important tool to study glycosylation. We show the incorporation of synthetic galactose derivatives that bear terminal alkene groups in hepatic cells, with and without infection by Plasmodium berghei parasites, the causative agent of malaria. Additionally, we demonstrated the contribution of GLUT1 to the transport of these galactose derivatives, and observed a consistent increase in the uptake of these compounds going from naïve to P. berghei-infected cells. Finally, we used MOE to study the interplay between Plasmodium parasites and their mosquito hosts, to reveal a possible transfer of galactose building blocks from the latter to the former. This strategy has the potential to provide new insights into Plasmodium glycobiology as well as for the identification and characterization of key glycan structures for further vaccine development.
Collapse
Affiliation(s)
- Annabel Kitowski
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| | - Gonçalo J. L. Bernardes
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
2
|
Identifying potentially O-GlcNAcylated proteins using metabolic labeling, bioorthogonal enrichment, and Western blotting. Methods Enzymol 2019; 622:293-307. [PMID: 31155058 DOI: 10.1016/bs.mie.2019.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
O-GlcNAcylation is a widespread posttranslational modification of intracellular proteins. Phenotypic and genetic experiments have established key roles for O-GlcNAc in development, mammalian cell survival, and several human diseases. However, the underlying mechanisms by which this modification alters biological pathways are still being discovered. An important part of this discovery process is the discovery of O-GlcNAcylated proteins, where chemical approaches have been particularly powerful. Here we describe how to combine one of these approaches, metabolic chemical reporters (MCRs), with bioorthogonal chemistry and Western blotting to identify potentially O-GlcNAcylated proteins.
Collapse
|
3
|
Darabedian N, Gao J, Chuh KN, Woo CM, Pratt MR. The Metabolic Chemical Reporter 6-Azido-6-deoxy-glucose Further Reveals the Substrate Promiscuity of O-GlcNAc Transferase and Catalyzes the Discovery of Intracellular Protein Modification by O-Glucose. J Am Chem Soc 2018; 140:7092-7100. [PMID: 29771506 PMCID: PMC6540071 DOI: 10.1021/jacs.7b13488] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metabolic chemical reporters of glycosylation in combination with bioorthogonal reactions have been known for two decades and have been used by many different research laboratories for the identification and visualization of glycoconjugates. More recently, however, they have begun to see utility for the investigation of cellular metabolism and the tolerance of biosynthetic enzymes and glycosyltransferases to different sugars. Here, we take this concept one step further by using the metabolic chemical reporter 6-azido-6-deoxy-glucose (6AzGlc). We show that treatment of mammalian cells with the per- O-acetylated version of 6AzGlc results in robust labeling of a variety of proteins. Notably, the pattern of this labeling was consistent with O-GlcNAc modifications, suggesting that the enzyme O-GlcNAc transferase is quite promiscuous for its donor sugar substrates. To confirm this possibility, we show that 6AzGlc-treatment results in the labeling of known O-GlcNAcylated proteins, that the UDP-6AzGlc donor sugar is indeed produced in living cells, and that recombinant OGT will accept UDP-6AzGlc as a substrate in vitro. Finally, we use proteomics to first identify several bona fide 6AzGlc-modifications in mammalian cells and then an endogenous O-glucose modification on host cell factor. These results support the conclusion that OGT can endogenously modify proteins with both N-acetyl-glucosamine and glucose, raising the possibility that intracellular O-glucose modification may be a widespread modification under certain conditions or in particular tissues.
Collapse
Affiliation(s)
- Narek Darabedian
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jinxu Gao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kelly N. Chuh
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Ovryn B, Li J, Hong S, Wu P. Visualizing glycans on single cells and tissues-Visualizing glycans on single cells and tissues. Curr Opin Chem Biol 2017; 39:39-45. [PMID: 28578260 PMCID: PMC5791903 DOI: 10.1016/j.cbpa.2017.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/16/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
Metabolic oligosaccharide engineering and chemoenzymatic glycan labeling have provided powerful tools to study glycans in living systems and tissue samples. In this review article, we summarize recent advances in this field with a focus on innovative approaches for glycan imaging. The presented applications demonstrate that several of the leading imaging methods, which have revolutionized quantitative cell biology, can be adapted to imaging glycans on single cells and tissues.
Collapse
Affiliation(s)
- Ben Ovryn
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States.
| | - Jie Li
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States.
| |
Collapse
|
5
|
Batt AR, Zaro BW, Navarro MX, Pratt MR. Metabolic Chemical Reporters of Glycans Exhibit Cell-Type-Selective Metabolism and Glycoprotein Labeling. Chembiochem 2017; 18:1177-1182. [PMID: 28231413 PMCID: PMC5580397 DOI: 10.1002/cbic.201700020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Indexed: 12/21/2022]
Abstract
Since the pioneering work by Reutter and co-workers that demonstrated structural flexibility in the carbohydrate biosynthesis and glycosylation pathways, many different labs have used unnatural monosaccharide analogues to perform glycan engineering on the surface of living cells. A subset of these unnatural monosaccharides contain bioorthogonal groups that enable the selective installation of visualization or enrichment tags. These metabolic chemical reporters (MCRs) have proven to be powerful for the unbiased identification of glycoproteins; however, they do have certain limitations. For example, they are incorporated substoichiometrically into glycans, and most MCRs are not selective for one class (e.g., O-GlcNAcylation) of glycoprotein. Here, we explore the relationship between the biosynthesis of MCR donor sugars in cells and the labeling levels of four different N-acetylglucosamine- and N-acetylgalactosamine-based MCRs. We found that the buildup of the different donor sugars correlated well with the overall labeling levels but less so with intracellular labeling of proteins by O-GlcNAcylation.
Collapse
Affiliation(s)
- Anna R. Batt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
| | - Balyn W. Zaro
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
| | - Marisol X. Navarro
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
6
|
Chuh KN, Batt AR, Pratt MR. Chemical Methods for Encoding and Decoding of Posttranslational Modifications. Cell Chem Biol 2016; 23:86-107. [PMID: 26933738 DOI: 10.1016/j.chembiol.2015.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
Abstract
A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full complement of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come.
Collapse
Affiliation(s)
- Kelly N Chuh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna R Batt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
7
|
Sminia TJ, Zuilhof H, Wennekes T. Getting a grip on glycans: A current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr Res 2016; 435:121-141. [PMID: 27750120 DOI: 10.1016/j.carres.2016.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022]
Abstract
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
8
|
Gilormini PA, Lion C, Vicogne D, Levade T, Potelle S, Mariller C, Guérardel Y, Biot C, Foulquier F. A sequential bioorthogonal dual strategy: ManNAl and SiaNAl as distinct tools to unravel sialic acid metabolic pathways. Chem Commun (Camb) 2016; 52:2318-21. [DOI: 10.1039/c5cc08838k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new sequential orthogonal dual strategy to unravel the intracellular trafficking and cellular uptake mechanism of sialic acid.
Collapse
Affiliation(s)
- P. A. Gilormini
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - C. Lion
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - D. Vicogne
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - T. Levade
- Laboratoire de Biochimie Métabolique
- IFB
- CHU Purpan
- INSERM UMR 1037
- CRCT
| | - S. Potelle
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - C. Mariller
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - Y. Guérardel
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - C. Biot
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - F. Foulquier
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| |
Collapse
|
9
|
Cohen M. Notable Aspects of Glycan-Protein Interactions. Biomolecules 2015; 5:2056-72. [PMID: 26340640 PMCID: PMC4598788 DOI: 10.3390/biom5032056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses).
Collapse
Affiliation(s)
- Miriam Cohen
- Depatment of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, BRF2 MC 0687, La Jolla, CA 92093-0687, USA.
| |
Collapse
|