1
|
Jagadeesh N, Belur S, Ballal S, Roy S, Inamdar SR. Cephalosporium curvulum lectin causes mycotic keratitis by initiating infection through MyD88 dependent cellular proliferation and apoptosis in human corneal epithelial cells. Glycoconj J 2021; 38:509-516. [PMID: 34146213 DOI: 10.1007/s10719-021-10004-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/08/2020] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
Physiological role of a core fucose specific lectin from Cephalosporium curvulum isolated from mycotic keratitis patient in mediating pathogenesis was reported earlier. CSL has opposite effects on HCECs, at the initiation of infection when lectin concentration is low, CSL induces proinflammatory response and at higher concentration it inhibits growth as the infection progresses. Here we delineate detailed mechanism of opposing effects of CSL by confirming the binding of CSL and anti TLR 2 and 4 antibodies to TLRs 2 and 4 purified from HCECs using Galectin-3 Sepharose 4B column. Further, the expression of signaling proteins were monitored by Western blotting and apoptosis assay. At concentration of 0.3 µg/ml, CSL induced the activation of TLR-2,-4 and adapter protein MyD88. CSL also induced the expression of transcription factors NFkB, C-Jun and proinflammatory cytokines like interleukins -6 and -8 essential in maintaining cell proliferation. In contrast at higher concentrations i.e. 5 µg/ml CSL induces apoptotic effect as evidenced by increase in early and late apoptotic population as demonstrated by Annexin V-PI assay. Western blotting revealed that CSL treated HCECs at higher concentration lead to MyD88 dependent expression of apoptotic proteins like FADD, Caspase -8 and -3. All these results are in line with and substantiate our earlier results that indeed CSL is involved in mediating host pathogen interactions by interacting with cell surface TLRs, activating downstream signaling pathways leading to pathogenesis. Findings are of clinical significance in developing carbohydrate based therapeutic strategy to control infection and the disease.
Collapse
Affiliation(s)
| | - Shivakumar Belur
- Department of Studies in Biochemistry, Karnatak University, Dharwad, 580003, India
| | - Suhas Ballal
- Department of Studies in Biochemistry, Karnatak University, Dharwad, 580003, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad, 580003, India.
| |
Collapse
|
2
|
Belur S, Jagadeesh N, Swamy BM, Inamdar SR. A core fucose specific lectin from Cephalosporium curvulum induces cellular apoptosis in hepatocellular and pancreatic cancer cells and effective in detecting AFP. Glycoconj J 2020; 37:435-444. [PMID: 32367479 DOI: 10.1007/s10719-020-09921-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/24/2020] [Accepted: 03/18/2020] [Indexed: 01/15/2023]
Abstract
Cephalosporium curvulum lectin (CSL), a lectin from pathogenic fungus has exquisite specificity towards α1-6 linkage of core fucosylated glycans, expressed in hepatocellular and pancreatic cancer. Interaction and effect of CSL and other fucose specific lectins LCA and AOL on HepG2 and PANC-1 cells was investigated. CSL, LCA and AOL exhibited strong binding to PANC-1 cells which could be effectively blocked by competing glycoprotein mucin. Effect of CSL, LCA and AOL on PANC-1 and HepG2 cells was determined by MTT assay and all the three lectins inhibited the cell growth which could be blocked by mucin, cell cycle analysis revealed that CSL increased hypodiploid HepG2 cell population indicating cellular apoptosis. CSL induced apoptosis in HepG2 cells was confirmed by Annexin V/PI assay. CSL induced increase in early apoptotic HepG2 cell population, a time dependent increase in the expression of caspases-3, 9 and cytochrome-c was observed by western blotting suggesting the possible involvement of intrinsic caspase dependent apoptosis. Increase in ROS and decrease in MMP demonstrated involvement of intrinsic caspase dependent apoptosis. Quantification of AFP in HCC patients using CSL lectin-antibody sandwich ELISA, supports diagnostic potential of CSL.
Collapse
Affiliation(s)
- Shivakumar Belur
- Department of Studies in Biochemistry, Karnatak University, Dharwad, 580003, India
| | | | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad, 580003, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad, 580003, India.
| |
Collapse
|
3
|
Singh RS, Walia AK, Kennedy JF. Mushroom lectins in biomedical research and development. Int J Biol Macromol 2020; 151:1340-1350. [DOI: 10.1016/j.ijbiomac.2019.10.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
4
|
Singh RS, Walia AK, Kennedy JF. Structural aspects and biomedical applications of microfungal lectins. Int J Biol Macromol 2019; 134:1097-1107. [DOI: 10.1016/j.ijbiomac.2019.05.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
|
5
|
Jagadeesh N, Belur S, Hegde P, Kamalanathan AS, Swamy BM, Inamdar SR. An L-fucose specific lectin from Aspergillus niger isolated from mycotic keratitis patient and its interaction with human pancreatic adenocarcinoma PANC-1 cells. Int J Biol Macromol 2019; 134:487-497. [PMID: 31051203 DOI: 10.1016/j.ijbiomac.2019.04.192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022]
Abstract
An L-fucose specific lectin from pathogenic fungus Aspergillus niger isolated from the corneal smears of keratitis patient was purified in a single step using mucin coupled sepharose-4B column by 58-fold. The purified lectin, ANL has molecular mass of 30 kDa by SDS-PAGE and 31.6 kDa by ESI-MS. ANL is a glycoprotein with 2.59% carbohydrate. ANL is blood group nonspecific and also agglutinates rabbit erythrocytes. ANL is heat stable up to 50 °C and over a pH range of 7-10. Hapten inhibition studies revealed that ANL is specific to L-fucose, galactose, lactose and glycoproteins, showing highest MIC of 3.125 μg for L-fucose, mucin and fetuin. ANL has potent antibacterial activity against Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli and also it inhibits the biofilm formation by them. ANL showed strong binding to human pancreatic adenocarcinoma PANC-1 cells which was effectively blocked by L-fucose and mucin respectively by 76.2% and 84.2%. ANL showed dose and time dependent growth inhibitory effect on PANC-1 cells with IC50 of 1.25 μg/ml at 48 h. Effect of ANL was compared with another fucose specific lectin AOL, from Aspergillus oryzae showing an IC50 of 1.85 μg/ml at 48 h revealing promising clinical potential of ANL.
Collapse
Affiliation(s)
| | - Shivakumar Belur
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Prajna Hegde
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - A S Kamalanathan
- Centre for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad 580003, India.
| |
Collapse
|
6
|
Thakur K, Kaur T, Kaur M, Hora R, Singh J. Exploration of carbohydrate binding behavior and anti-proliferative activities of Arisaema tortuosum lectin. BMC Mol Biol 2019; 20:15. [PMID: 31064325 PMCID: PMC6505227 DOI: 10.1186/s12867-019-0132-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lectins have come a long way from being identified as proteins that agglutinate cells to promising therapeutic agents in modern medicine. Through their specific binding property, they have proven to be anti-cancer, anti-insect, anti-viral agents without affecting the non-target cells. The Arisaema tortuosum lectin (ATL) is a known anti-insect and anti-cancer candidate, also has interesting physical properties. In the present work, its carbohydrate binding behavior is investigated in detail, along with its anti-proliferative property. RESULTS The microcalorimetry of ATL with a complex glycoprotein asialofetuin demonstrated trivalency contributed by multiple binding sites and enthalpically driven spontaneous association. The complex sugar specificity of ATL towards multiple sugars was also demonstrated in glycan array analysis in which the trimannosyl pentasaccharide core N-glycan [Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ] was the highest binding motif. The high binding glycans for ATL were high mannans, complex N-glycans, core fucosylated N-glycans and glycans with terminal lactosamine units attached to pentasaccharide core. ATL induced cell death in IMR-32 cells was observed as time dependent loss in cell number, formation of apoptotic bodies and DNA damage. As a first report of molecular cloning of ATL, the in silico analysis of its cDNA revealed ATL to be a β-sheet rich heterotetramer. A homology model of ATL showed beta prism architecture in each monomer with 85% residues in favoured region of Ramachandran plot. CONCLUSIONS Detailed exploration of carbohydrate binding behavior indicated ATL specificity towards complex glycans, while no binding to simple sugars, including mannose. Sequence analysis of ATL cDNA revealed that during the tandem evolutionary events, domain duplication and mutations lead to the loss of mannose specificity, acquiring of new sugar specificity towards complex sugars. It also resulted in the formation of a two-domain single chain polypeptide with both domains having different binding sites due to mutations within the consensus carbohydrate recognition sites [QXDXNXVXY]. This unique sugar specificity can account for its significant biological properties. Overall finding of present work signifies anti-cancer, anti-insect and anti-viral potential of ATL making it an interesting molecule for future research and/or theragnostic applications.
Collapse
Affiliation(s)
- Kshema Thakur
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
- Present Address: Department of Biochemistry, Dr. Y.S.P. Govt. Medical College, Distt. Sirmaur, Nahan, H.P 173001 India
| | - Tarnjeet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Rachna Hora
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
7
|
Purification and characterization of a heterodimeric mycelial lectin from Penicillium proteolyticum with potent mitogenic activity. Int J Biol Macromol 2019; 128:124-131. [DOI: 10.1016/j.ijbiomac.2019.01.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
|
8
|
Cabanettes A, Perkams L, Spies C, Unverzagt C, Varrot A. Recognition of Complex Core-Fucosylated N-Glycans by a Mini Lectin. Angew Chem Int Ed Engl 2018; 57:10178-10181. [PMID: 29956878 DOI: 10.1002/anie.201805165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 12/11/2022]
Abstract
The mini fungal lectin PhoSL was recombinantly produced and characterized. Despite a length of only 40 amino acids, PhoSL exclusively recognizes N-glycans with α1,6-linked fucose. Core fucosylation influences the intrinsic properties and bioactivities of mammalian N-glycoproteins and its level is linked to various cancers. Thus, PhoSL serves as a promising tool for glycoprofiling. Without structural precedence, the crystal structure was solved using the zinc anomalous signal, and revealed an interlaced trimer creating a novel protein fold termed β-prism III. Three biantennary core-fucosylated N-glycan azides of 8 to 12 sugars were cocrystallized with PhoSL. The resulting highly resolved structures gave a detailed view on how the exclusive recognition of α1,6-fucosylated N-glycans by such a small protein occurs. This work also provided a protein consensus motif for the observed specificity as well as a glimpse into N-glycan flexibility upon binding.
Collapse
Affiliation(s)
| | - Lukas Perkams
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Carolina Spies
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Carlo Unverzagt
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | | |
Collapse
|
9
|
Cabanettes A, Perkams L, Spies C, Unverzagt C, Varrot A. Recognition of Complex Core-Fucosylated N-Glycans by a Mini Lectin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Lukas Perkams
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Germany
| | - Carolina Spies
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Germany
| | - Carlo Unverzagt
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Germany
| | | |
Collapse
|
10
|
Hegde P, Rajakumar SB, Swamy BM, Inamdar SR. A mitogenic lectin from
Rhizoctonia bataticola
arrests growth, inhibits metastasis, and induces apoptosis in human colon epithelial cancer cells. J Cell Biochem 2018; 119:5632-5645. [DOI: 10.1002/jcb.26740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/25/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Prajna Hegde
- Department of Studies in BiochemistryKarnatak UniversityDharwadKarnatakaIndia
| | | | - Bale M. Swamy
- Department of Studies in BiochemistryKarnatak UniversityDharwadKarnatakaIndia
| | | |
Collapse
|
11
|
An overview of lectin–glycan interactions: a key event in initiating fungal infection and pathogenesis. Arch Microbiol 2018; 200:371-382. [DOI: 10.1007/s00203-018-1487-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/01/2017] [Accepted: 01/30/2018] [Indexed: 01/16/2023]
|
12
|
Thakur K, Kaur T, Singh J, Rabbani G, Khan RH, Hora R, Kaur M. Sauromatum guttatum lectin: Spectral studies, lectin-carbohydrate interaction, molecular cloning and in silico analysis. Int J Biol Macromol 2017; 104:1267-1279. [DOI: 10.1016/j.ijbiomac.2017.06.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
|
13
|
Ballal S, Belur S, Laha P, Roy S, Swamy BM, Inamdar SR. Mitogenic lectins from Cephalosporium curvulum (CSL) and Aspergillus oryzae (AOL) mediate host-pathogen interactions leading to mycotic keratitis. Mol Cell Biochem 2017; 434:209-219. [PMID: 28470344 DOI: 10.1007/s11010-017-3050-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/27/2017] [Indexed: 11/28/2022]
Abstract
A core-fucose-specific lectin, CSL from Cephalosporium curvulum, has been reported earlier. Here we assign the role for CSL and another lectin AOL, from pathogenic fungus Aspergillus oryzae, in causing mycotic keratitis. CSL and AOL show strong binding to immortalized and primary human corneal epithelial cells (HCECs) which are inhibited by asialofetuin, confirming their glycan-mediated binding. CSL and AOL showed increase in viability at lower concentrations (0.07 µg/ml) whereas at higher concentrations (0.15 µg/ml and 0.30 µg/ml), have inhibitory effect on immortalized HCECs. Lectin-mediated effect was comparable with the effect induced by the Colony Forming Units (CFUs) of C. curvulum and A. oryzae. CFUs induced more than 1.5-fold increase in HCECs proliferation. Both lectins and fungal CFUs induce secretion of proinflammatory cytokines IL6 and IL8 implicated in ocular diseases. This was supported by upregulation of TLR2 and 4 by lectins as revealed by flow cytometry and RT-PCR. CSL and AOL mediate host-pathogen interactions leading to mycotic keratitis. The mechanism of pathogenesis is possibly initiated through surface binding of mycelia through the lectins to TLR2/4 followed by upregulation of proinflammatory cytokines IL6, IL8 and TLR2 and 4. Understanding the mechanism of pathogenesis is of clinical significance in designing and developing therapeutic strategy to control the infection.
Collapse
Affiliation(s)
- Suhas Ballal
- Department of Studies in Biochemistry, Karnatak University, Dharwad, 580003, India
| | - Shivakumar Belur
- Department of Studies in Biochemistry, Karnatak University, Dharwad, 580003, India
| | - Preeti Laha
- Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - B M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad, 580003, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad, 580003, India.
| |
Collapse
|
14
|
Zhou J, Yang W, Hu Y, Höti N, Liu Y, Shah P, Sun S, Clark D, Thomas S, Zhang H. Site-Specific Fucosylation Analysis Identifying Glycoproteins Associated with Aggressive Prostate Cancer Cell Lines Using Tandem Affinity Enrichments of Intact Glycopeptides Followed by Mass Spectrometry. Anal Chem 2017; 89:7623-7630. [PMID: 28627880 PMCID: PMC5599242 DOI: 10.1021/acs.analchem.7b01493] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fucosylation (Fuc) of glycoproteins plays an important role in regulating protein function and has been associated with the development of several cancer types including prostate cancer (Pca). Therefore, the research of Fuc glycoproteins has attracted increasing attention recently in the analytical field. Herein, a strategy based on lectin affinity enrichments of intact glycopeptides followed by mass spectrometry has been established to evaluate the specificities of various Fuc-binding lectins for glycosite-specific Fuc analysis of nonaggressive (NAG) and aggressive (AG) Pca cell lines. The enrichment specificities of Fuc glycopeptides using lectins (LCA, PSA, AAL, LTL, UEA I, and AOL) and MAX extraction cartridges alone, or in tandem, were evaluated. Our results showed that the use of lectin enrichment significantly increased the ratio of fucosylated glycopeptides to total glycopeptides compared to MAX enrichment. Furthermore, tandem use of lectin followed by MAX increased the number of identifications of Fuc glycopeptides compared to using lectin enrichment alone. LCA, PSA, and AOL showed stronger binding capacity than AAL, LTL, and UEA I. Also, LCA and PSA bound specifically to core Fuc, whereas AOL, AAL, and UEA I showed binding to both core Fuc and branch Fuc. The optimized enrichment method with tandem enrichment of LCA followed by MAX (LCA-MAX) was then applied to examine the Fuc glycoproteomes in two NAG and two AG Pca cell lines. In total, 973 intact Fuc glycopeptides were identified and quantified from 252 Fuc proteins by using the tandem-mass-tags (TMT) labeling and nanoliquid chromatography-mass spectrometry (nanoLC-MS/MS) analysis. Further data analysis revealed that 51 Fuc glycopeptides were overexpressed more than 2-fold in AG cell lines compared to NAG cells. The analysis of protein core fucosylation has great potential for aiding our understanding of invasive activity of AG Pca and may lead to the development of diagnostic approaches for AG Pca.
Collapse
Affiliation(s)
- Jianliang Zhou
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
- Department of Traditional Chinese Medicines, Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Naseruddin Höti
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Yang Liu
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Shisheng Sun
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - David Clark
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Stefani Thomas
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore 21287, Maryland United States
| |
Collapse
|
15
|
Abstract
An experimental observation on selecting binding partners underlies the introduction of the term 'lectin'. Agglutination of erythrocytes depending on their blood-group status revealed the presence of activities in plant extracts that act in an epitope-specific manner like antibodies. As it turned out, their binding partners on the cell surface are carbohydrates of glycoconjugates. By definition, lectins are glycan-specific (mono- or oligosaccharides presented by glycoconjugates or polysaccharides) receptors, distinguished from antibodies, from enzymes using carbohydrates as substrates and from transporters of free saccharides. They are ubiquitous in Nature and structurally widely diversified. More than a dozen types of folding pattern have evolved for proteins that bind glycans. Used as tool, this capacity facilitates versatile mapping of glycan presence so that plant/fungal and also animal/human lectins have found a broad spectrum of biomedical applications. The functional pairing with physiological counterreceptors is involved in a wide range of cellular activities from cell adhesion, glycoconjugate trafficking to growth regulation and lets lectins act as sensors/effectors in host defense.
Collapse
|