1
|
Li H, Lu W, Jin Q, Sun J, Gao L, Hu J, Ling Y, Zhao W, Zhang Y, Xie X. Deciphering N-Glycosylation Dynamics of Serum Monoclonal Immunoglobulins in Multiple Myeloma via EThcD-sceHCD-MS/MS. J Proteome Res 2025; 24:2553-2563. [PMID: 40204705 DOI: 10.1021/acs.jproteome.5c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Serum glycoprotein glycosylation changes can indicate disease onset and progression. However, the site-specific N-glycosylation of monoclonal immunoglobulins (M-proteins) in multiple myeloma (MM) and its clinical implications are unclear. In this study, we isolated pathogenic micromonoclonal IgA or IgG (approximately 2 μg) from IgA-MM patients (n = 22) and IgG-MM patients (n = 30), and normal polyclonal IgA and IgG from healthy controls (HCs) (n = 16). Using EThcD-sceHCD-MS/MS, the N-glycosylation dynamics of serum M-proteins in MM were determined. Compared with polyclonal IgA1 from HCs, monoclonal IgA1 from IgA-MM patients had higher fucosylation (58.1% vs 32.1%, p < 0.001), sialylation (68.0% vs 50.8%, p = 0.011), and mannosylation (1.5% vs 0.3%, p < 0.001). While, monoclonal IgG1 from IgG-MM patients had higher fucosylation (97.8% vs 95.3%, p < 0.001). In addition, specific N-glycan abundances correlated with MM clinical features: for IgA1, HexNAc5Hex5Fuc1NeuAc1 was associated with hypocomplementemia; for IgG1, HexNAc4Hex3Fuc1 was associated with the serum albumin level (r = -0.363, p = 0.049) and estimated glomerular filtration rate (r = -0.433, p = 0.017); and HexNAc4Hex5 was associated with therapeutic prognosis. In conclusion, monoclonal IgA1 and IgG1 in MM patients and their polyclonal isotypes in HCs have distinct N-glycosylation profiles, and specific N-glycans of M-proteins are associated with MM characteristics and therapeutic prognosis.
Collapse
Affiliation(s)
- Huixian Li
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wanhong Lu
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qian Jin
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiping Sun
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Li Gao
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Juanjuan Hu
- Department of Laboratory Medicine, Institute of Clinical Laboratory Medicine of People's Liberation Army (PLA), Xijing Hospital, Fourth Military Medical University, Xi'an 710061, China
| | - Yingying Ling
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenyu Zhao
- Department of Nephrology, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Yulin 719000, China
| | - Yong Zhang
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinfang Xie
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
2
|
Roh T, Ju S, Park SY, Ahn Y, Chung J, Nakano M, Ryu G, Kim YJ, Kim G, Choi H, Lee SG, Kim IS, Lee SI, Chung C, Shimizu T, Miyoshi E, Jung SS, Park C, Yamasaki S, Park SY, Jo EK. Fucosylated haptoglobin promotes inflammation via Mincle in sepsis: an observational study. Nat Commun 2025; 16:1342. [PMID: 39904983 PMCID: PMC11794430 DOI: 10.1038/s41467-025-56524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Haptoglobin (Hp) scavenges cell-free hemoglobin and correlates with the prognosis of human sepsis, a life-threatening systemic inflammatory condition. Despite extensive research on Hp glycosylation as a glyco-biomarker for cancers, understanding glycosylated modifications of Hp in sepsis patients (SPs) remains limited. Our study reveals elevated levels of terminal fucosylation at Asn207 and Asn211 of Hp in SP plasma, along with heightened inflammatory responses, compared to healthy controls (trial registration NCT05911711). Fucosylated (Fu)-Hp purified from SPs upregulates inflammatory cytokines and chemokines, along with NLRP3 inflammasome activation. Single-cell RNA sequencing identifies a distinct macrophage-like cell population with increased expressions of inflammatory mediators and FUT4 in response to Fu-Hp. Additionally, Mincle, a C-type lectin receptor, interacts with Fu-Hp to amplify the inflammatory responses and signaling. Moreover, the Hp fucosylation (AAL) level significantly correlates with the levels of inflammatory cytokines in sepsis patients, suggesting that Fu-Hp is clinically relevant. Finally, Fu-Hp treatment significantly enhances the levels of inflammatory cytokines in the plasma and various tissues of mice. Together, our findings reveal a role of Fu-Hp, derived from sepsis patients, in driving inflammation, and suggest that targeting Fu-Hp could serve as a promising intervention for combating sepsis. Trial registration NCT05911711.
Collapse
Affiliation(s)
- Taylor Roh
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - So Young Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea.
| | - Yeonghwan Ahn
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jiyun Chung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Gyoungah Ryu
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Jae Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Geumseo Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sung-Gwon Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - In Soo Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Song-I Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Takashi Shimizu
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sung-Soo Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Xu H, Li Q, Zhang Y, He C, Zhang X, Wang Z, Zhao M, Chai Y, Zhuang W, Li B. Targeting fucosyltransferase FUT8 as a prospective therapeutic approach for DLBCL. Oncogenesis 2025; 14:1. [PMID: 39881135 PMCID: PMC11779920 DOI: 10.1038/s41389-025-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/19/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is characterized by its aggressive nature and resistance to standard chemotherapy, necessitating the development of new therapeutic approaches. The emergence of natural products and their derivatives has notably influenced cancer treatment, making morusinol, a medicine-derived monomer, a promising candidate. Here, we showed that morusinol exerted antitumor effects on DLBCL in vitro by inducing apoptosis and cell cycle arrest. Impressively, morusinol treatment exhibited potent tumor growth inhibition in vivo, proving both well-tolerated and safe in mouse models. Moreover, our investigation identified FUT8, a fucosyltransferase, as a potential target for morusinol. FUT8's role as an oncogene in DLBCL and its correlation with poor survival further underscored its significance. Furthermore, our screening efforts involving clinical and preclinical drugs unveiled a compelling synergistic effect between chidamide and morusinol. Additionally, morusinol's ability to hinder M2-like polarization of tumor-associated macrophages suggested its potential in immune response modulation within DLBCL. Collectively, morusinol showcased substantial promise as an anti-tumor agent for potential clinical application in DLBCL management, potentially augmenting established therapeutic strategies. Moreover, our findings offered promising prospects for natural products to effectively leverage its therapeutic advantages. Working model: The role of Morusinol in treating DLBCL.
Collapse
Affiliation(s)
- Hao Xu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Medical Oncology, The People's Hospital of Rugao, Nantong, China
| | - Qi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuchen Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chuan He
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyun Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Wang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Meifang Zhao
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yali Chai
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Liu S, Huang J, Liu Y, Lin J, Zhang H, Cheng L, Ye W, Liu X. Identification of serum N-glycans signatures in three major gastrointestinal cancers by high-throughput N-glycome profiling. Clin Proteomics 2024; 21:64. [PMID: 39609732 PMCID: PMC11604001 DOI: 10.1186/s12014-024-09516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Alternative N-glycosylation of serum proteins has been observed in colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC) and gastric cancer (GC), while comparative study among those three cancers has not been reported before. We aimed to identify serum N-glycans signatures and introduce a discriminative model across the gastrointestinal cancers. METHODS The study population was initially screened according to the exclusion criteria process. Serum N-glycans profiling was characterized by a high-throughput assay based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Diagnostic model was built by random forest, and unsupervised machine learning was performed to illustrate the differentiation between the three major gastrointestinal (GI) cancers. RESULTS We have found that three major gastrointestinal cancers strongly associated with significantly decreased mannosylation and mono-galactosylation, as well as increased sialylation of serum glycoproteins. A highly accurate discriminative power (> 0.90) for those gastrointestinal cancers was obtained with serum N-glycome based predictive model. Additionally, serum N-glycome profile exhibited distinct distributions across GI cancers, and several altered N-glycans were hyper-regulated in each specific disease. CONCLUSIONS Serum N-glycome profile was differentially expressed in three major gastrointestinal cancers, providing a new clinical tool for cancer diagnosis and throwing a light upon the disease-specific molecular signatures.
Collapse
Affiliation(s)
- Si Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyudong Road, Hongshan District, Wuhan, 430074, China
| | - Jianmin Huang
- Digestive Endoscopy Center, South Branch of Fujian Provincial Hospital, Fuzhou, 350000, China
| | - Yuanyuan Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyudong Road, Hongshan District, Wuhan, 430074, China
| | - Jiajing Lin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyudong Road, Hongshan District, Wuhan, 430074, China
| | - Haobo Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyudong Road, Hongshan District, Wuhan, 430074, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weimin Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyudong Road, Hongshan District, Wuhan, 430074, China.
| |
Collapse
|
5
|
Osada N, Mishra SK, Nakano M, Tokoro Y, Nagae M, Doerksen RJ, Kizuka Y. Self-regulation of MGAT4A and MGAT4B activity toward glycoproteins through interaction of lectin domain with their own N-glycans. iScience 2024; 27:111066. [PMID: 39668865 PMCID: PMC11635297 DOI: 10.1016/j.isci.2024.111066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/01/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024] Open
Abstract
N-Acetylglucosaminyltransferases-IVa (GnT-IVa or MGAT4A) and -IVb (MGAT4B) are glycosyltransferase isozymes synthesizing the β1,4-GlcNAc branch in N-glycans, a glycan structure involved in diabetes. These enzymes uniquely have a non-catalytic lectin domain, which selectively recognizes the GnT-IV product N-glycan branch, but the role of this lectin domain has remained unclear. Here, using UDP-Glo enzyme assays, we discovered that this domain is required for activity toward glycoprotein substrates but not toward free glycans. Furthermore, we found that the lectin domain itself is decorated with an N-glycan, which can serve as a self-ligand and interact with the ligand binding site of the lectin domain in a glycan structure-dependent manner. Enzyme assays using glycan-remodeled GnT-IVa demonstrated that the interaction of the self-ligand with the lectin domain suppresses GnT-IVa activity toward glycoprotein substrates. These findings unveiled a lectin-assisted self-regulatory mechanism of glycosyltransferases, which deepens our understanding of the complex pathway of N-glycan biosynthesis.
Collapse
Affiliation(s)
- Naoko Osada
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Sushil K. Mishra
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan
| | - Yuko Tokoro
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Robert J. Doerksen
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA
| | - Yasuhiko Kizuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
6
|
Mikami M, Tanabe K, Imanishi T, Ikeda M, Hirasawa T, Yasaka M, Machida H, Yoshida H, Hasegawa M, Shimada M, Kato T, Kitamura S, Kato H, Fujii T, Kobayashi Y, Suzuki N, Tanaka K, Murakami I, Katahira T, Hayashi C, Matsuo K. Comprehensive serum glycopeptide spectra analysis to identify early-stage epithelial ovarian cancer. Sci Rep 2024; 14:20000. [PMID: 39198565 PMCID: PMC11358426 DOI: 10.1038/s41598-024-70228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is widely recognized as the most lethal gynecological malignancy; however, its early-stage detection remains a considerable clinical challenge. To address this, we have introduced a new method, named Comprehensive Serum Glycopeptide Spectral Analysis (CSGSA), which detects early-stage cancer by combining glycan alterations in serum glycoproteins with tumor markers. We detected 1712 glycopeptides using liquid chromatography-mass spectrometry from the sera obtained from 564 patients with EOC and 1149 controls across 13 institutions. Furthermore, we used a convolutional neural network to analyze the expression patterns of the glycopeptides and tumor markers. Using this approach, we successfully differentiated early-stage EOC (Stage I) from non-EOC, with an area under the curve (AUC) of 0.924 in receiver operating characteristic (ROC) analysis. This method markedly outperforms conventional tumor markers, including cancer antigen 125 (CA125, 0.842) and human epididymis protein 4 (HE4, 0.717). Notably, our method exhibited remarkable efficacy in differentiating early-stage ovarian clear cell carcinoma from endometrioma, achieving a ROC-AUC of 0.808, outperforming CA125 (0.538) and HE4 (0.557). Our study presents a promising breakthrough in the early detection of EOC through the innovative CSGSA method. The integration of glycan alterations with cancer-related tumor markers has demonstrated exceptional diagnostic potential.
Collapse
Affiliation(s)
- Mikio Mikami
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | - Kazuhiro Tanabe
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan.
| | - Tadashi Imanishi
- Genome Diversity Research Center, Graduate School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Masae Ikeda
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takeshi Hirasawa
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Miwa Yasaka
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroko Machida
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Yoshida
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masanori Hasegawa
- Department of Urology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shoichi Kitamura
- Department of Gynecology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Hisamori Kato
- Department of Gynecologic Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Takuma Fujii
- Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoichi Kobayashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kyorin University, Mitaka, Tokyo, Japan
| | - Nao Suzuki
- Department of Obstetrics and Gynecology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kyoko Tanaka
- Department of Obstetrics and Gynecology, Toho University Ohashi Medical Center, Meguro-ku, Tokyo, Japan
| | - Isao Murakami
- Department of Obstetrics and Gynecology, Toho University Ohashi Medical Center, Meguro-ku, Tokyo, Japan
| | - Tomoko Katahira
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Chihiro Hayashi
- Medical Solution Promotion Department, Medical Solution Segment, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Koji Matsuo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Hao Y, Gu C, Luo W, Shen J, Xie F, Zhao Y, Song X, Han Z, He J. The role of protein post-translational modifications in prostate cancer. PeerJ 2024; 12:e17768. [PMID: 39148683 PMCID: PMC11326433 DOI: 10.7717/peerj.17768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
Involving addition of chemical groups or protein units to specific residues of the target protein, post-translational modifications (PTMs) alter the charge, hydrophobicity, and conformation of a protein, which in turn influences protein function, protein-protein interaction, and protein aggregation. These alterations, which include phosphorylation, glycosylation, ubiquitination, methylation, acetylation, lipidation, and lactylation, are significant biological events in the development of cancer, and play vital roles in numerous biological processes. The processes behind essential functions, the screening of clinical illness signs, and the identification of therapeutic targets all depend heavily on further research into the PTMs. This review outlines the influence of several PTM types on prostate cancer (PCa) diagnosis, therapy, and prognosis in an effort to shed fresh light on the molecular causes and progression of the disease.
Collapse
Affiliation(s)
- Yinghui Hao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenqiong Gu
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Shen
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Zhao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Song
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zeping Han
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinhua He
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Sun Y, Xu X, Wu T, Fukuda T, Isaji T, Morii S, Nakano M, Gu J. Core fucosylation within the Fc-FcγR degradation pathway promotes enhanced IgG levels via exogenous L-fucose. J Biol Chem 2024; 300:107558. [PMID: 39002669 PMCID: PMC11345378 DOI: 10.1016/j.jbc.2024.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
9
|
Lou YC, Tu CF, Chou CC, Yeh HH, Chien CY, Sadotra S, Chen C, Yang RB, Hsu CH. Structural insights into the role of N-terminal integrity in PhoSL for core-fucosylated N-glycan recognition. Int J Biol Macromol 2024; 255:128309. [PMID: 37995778 DOI: 10.1016/j.ijbiomac.2023.128309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
PhoSL (Pholiota squarrosa Lectin) has an exceptional binding affinity for biomolecules with core-fucosylated N-glycans. This modification involves the addition of fucose to the inner N-acetylglucosamine within the N-glycan structure and is known to influence many physiological processes. Nevertheless, the molecular interactions underlying high-affinity binding of native PhoSL to core-fucosylated N-glycans remain largely unknown. In this study, we devised a strategy to produce PhoSL with the essential structural characteristics of the native protein (n-PhoSL). To do so, a fusion protein was expressed in E. coli and purified. Then, enzymatic cleavage and incubation with glutathione were utilized to recapitulate the native primary structure and disulfide bonding pattern. Subsequently, we identified the residues crucial for n-PhoSL binding to core-fucosylated chitobiose (N2F) via NMR spectroscopy. Additionally, crystal structures were solved for both apo n-PhoSL and its N2F complex. These analyses suggested a pivotal role of the N-terminal amine in maintaining the integrity of the binding pocket and actively contributing to core-fucose recognition. In support of this idea, the inclusion of additional residues at the N-terminus considerably reduced binding affinity and PhoSL cytotoxicity toward breast cancer cells. Taken together, these findings can facilitate the utilization of PhoSL in basic research, diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Yuan-Chao Lou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Chi Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Hong Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Sushant Sadotra
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan; Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
10
|
Lai Z, Wang Z, Yuan Z, Zhang J, Zhou J, Li D, Zhang D, Li N, Peng P, Zhou J, Li Z. Disease-Specific Haptoglobin N-Glycosylation in Inflammatory Disorders between Cancers and Benign Diseases of 3 Types of Female Internal Genital Organs. Clin Chim Acta 2023:117420. [PMID: 37285951 DOI: 10.1016/j.cca.2023.117420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND N-glycosylation of the haptoglobin is closely related to pathological states. This study aims to evaluate the association of glycosylation of disease-specific Hp (DSHp) β chain with different pathological states of the cervix, uterus, and ovary to explore differences in their inflammatory responses and to screen potential biomarkers to distinguish cancer from benign diseases. METHODS DSHp-β chains of 1956 patients with cancers and benign diseases located in the cervix, uterus, and ovary organs were separated from serum immunoinflammatory-related protein complexes (IIRPCs). The N-glycopeptides from DSHp-β chains were detected using mass spectrometry, followed by an analysis of machine learning algorithms. RESULTS 55 N-glycopeptides at N207/N211, 19 at N241, and 21 at N184 glycosylation sites of DSHp for each sample were identified. Fucosylation and sialylation of DSHp in cervix, uterus, and ovary cancer were significantly increased compared to their corresponding benign diseases (p < 0.001). The cervix diagnostic model, a combination of G2N3F, G4NFS, G7N2F2S5, GS-N&GS-N, G2N2&G4N3FS, G7N2F2S5, G2S2&G-N, and GN2F&G2F at N207/N211 sites, G3NFS2 and G3NFS at N241site, G9N2S, G6N3F6, G4N3F5S, G4N3F4S2, and G6N3F4S at N184 site), has shown a good diagnostic capability to distinguish cancer from benign diseases, with the area under curve (AUC) of 0.912. The uterus diagnostic model including G4NFS, G2S2&G2S2, G3N2S2, GG5N2F5, G2&G3NFS, and G5N2F3S3 at N207/N211 sites, and G2NF3S2 at N184 site, with an AUC of 0.731. The ovary diagnostic model including G2N3F, GF2S-N &G2F3S2, G2S&G2, and G2S&G3NS at N207/N211 sites; G2S and G3NFS at N241 site, G6N3F4S at N184 site, with an AUC of 0.747. CONCLUSIONS These findings provide insights into differences in organ-specific inflammatory responses of DSHp for different pathological states among the organs of the cervix, uterus, and ovary.
Collapse
Affiliation(s)
- Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhigang Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhonghao Yuan
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Jiyun Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Jinyu Zhou
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Dan Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Na Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, 1 Shuai Fu Yuan, Beijing, 100730, China.
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China.
| |
Collapse
|
11
|
Oh MJ, Lee SH, Kim U, An HJ. In-depth investigation of altered glycosylation in human haptoglobin associated cancer by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:496-518. [PMID: 34037272 DOI: 10.1002/mas.21707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 05/08/2023]
Abstract
Serum haptoglobin (Hp), a highly sialylated biomolecule with four N-glycosylation sites, is a positive acute-phase response glycoprotein that acts as an immunomodulator. Hp has gained considerable attention due to its potential as a signature molecule that exhibits aberrant glycosylation in inflammatory disorders and malignancies. Its glycosylation can be analyzed qualitatively and quantitatively by various methods using mass spectrometry. In this review, we have provided a brief overview of Hp structure and biological function and described mass spectrometry-based techniques for analyzing glycosylation ranging from macroheterogeneity to microheterogeneity of Hp in diseases and cancer. The sugars on haptoglobin can be a sweet bridge to link the potential of cancer-specific biomarkers to clinically relevant applications.
Collapse
Affiliation(s)
- Myung Jin Oh
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Sung Hyeon Lee
- Department of Biomedical Research Center, Korea University Guro Hospital, Seoul, South Korea
| | - Unyoung Kim
- Division of Bioanalysis, Biocomplete Inc., Seoul, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Daejeon, South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
12
|
Doud EH, Yeh ES. Mass Spectrometry-Based Glycoproteomic Workflows for Cancer Biomarker Discovery. Technol Cancer Res Treat 2023; 22:15330338221148811. [PMID: 36740994 PMCID: PMC9903044 DOI: 10.1177/15330338221148811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glycosylation has a clear role in cancer initiation and progression, with numerous studies identifying distinct glycan features or specific glycoproteoforms associated with cancer. Common findings include that aggressive cancers tend to have higher expression levels of enzymes that regulate glycosylation as well as glycoproteins with greater levels of complexity, increased branching, and enhanced chain length1. Research in cancer glycoproteomics over the last 50-plus years has mainly focused on technology development used to observe global changes in glycosylation. Efforts have also been made to connect glycans to their protein carriers as well as to delineate the role of these modifications in intracellular signaling and subsequent cell function. This review discusses currently available techniques utilizing mass spectrometry-based technologies used to study glycosylation and highlights areas for future advancement.
Collapse
Affiliation(s)
- Emma H. Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, USA
| | - Elizabeth S. Yeh
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, USA
| |
Collapse
|
13
|
Construction of long non-coding RNA- and microRNA-mediated competing endogenous RNA networks in alcohol-related esophageal cancer. PLoS One 2022; 17:e0269742. [PMID: 35704638 PMCID: PMC9200351 DOI: 10.1371/journal.pone.0269742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
The current study aimed to explore the lncRNA–miRNA–mRNA networks associated with alcohol-related esophageal cancer (EC). RNA-sequencing and clinical data were downloaded from The Cancer Genome Atlas and the differentially expressed genes (DEGs), long non-coding RNAs (lncRNAs, DELs), and miRNAs (DEMs) in patients with alcohol-related and non-alcohol-related EC were identified. Prognostic RNAs were identified by performing Kaplan–Meier survival analyses. Weighted gene co-expression network analysis was employed to build the gene modules. The lncRNA–miRNA–mRNA competing endogenous RNA (ceRNA) networks were constructed based on our in silico analyses using data from miRcode, starBase, and miRTarBase databases. Functional enrichment analysis was performed for the genes in the identified ceRNA networks. A total of 906 DEGs, 40 DELs, and 52 DEMs were identified. There were eight lncRNAs and miRNAs each, including ST7-AS2 and miR-1269, which were significantly associated with the survival rate of patients with EC. Of the seven gene modules, the blue and turquoise modules were closely related to disease progression; the genes in this module were selected to construct the ceRNA networks. SNHG12–miR-1–ST6GAL1, SNHG3–miR-1–ST6GAL1, SPAG5-AS1–miR-133a–ST6GAL1, and SNHG12–hsa-miR-33a–ST6GA interactions, associated with the N-glycan biosynthesis pathway, may have key roles in alcohol-related EC. Thus, the identified biomarkers provide a novel insight into the molecular mechanism of alcohol-related EC.
Collapse
|
14
|
Lee J, Yeo I, Kim Y, Shin D, Kim J, Kim Y, Lim YS, Kim Y. Comparison of Fucose-Specific Lectins to Improve Quantitative AFP-L3 Assay for Diagnosing Hepatocellular Carcinoma Using Mass Spectrometry. J Proteome Res 2022; 21:1548-1557. [PMID: 35536554 DOI: 10.1021/acs.jproteome.2c00196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycoproteins have many important biological functions. In particular, aberrant glycosylation has been observed in various cancers, such as liver cancer. A well-known glycoprotein biomarker is α-fetoprotein (AFP), a surveillance biomarker for hepatocellular carcinoma (HCC) that contains a glycosylation site at asparagine 251. The low diagnostic sensitivity of AFP led researchers to focus on AFP-L3, which has the same sequence as conventional AFP but contains a fucosylated glycan. AFP-L3 has high affinity for Lens culinaris agglutinin (LCA) lectin, prompting many groups to use it for detecting AFP-L3. However, a few studies have identified more effective lectins for fractionating AFP-L3. In this study, we compared the amounts of enriched AFP-L3 with five fucose-specific lectins─LCA, Lotus tetragonolobus lectin (LTL), Ulex europaeus agglutinin I (UEA I), Aleuria aurantia lectin (AAL), and Aspergillus oryzae lectin (AOL)─to identify better lectins and improve HCC diagnostic assays using mass spectrometry (MS). Our results indicate that LTL was the most effective lectin for capturing AFP-L3 species, yielding approximately 3-fold more AFP-L3 than LCA from the same pool of HCC serum samples. Thus, we recommend the use of LTL for AFP-L3 assays, given its potential to improve the diagnostic sensitivity in patients having limited results by conventional LCA assay. The MS data have been deposited to the PeptideAtlas (PASS01752).
Collapse
Affiliation(s)
- Jihyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea
| | - Injoon Yeo
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea
| | - Yoseop Kim
- Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dongyoon Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea
| | - Jaenyeon Kim
- Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yeongshin Kim
- Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Young-Suk Lim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, Songpa-gu, Seoul 05505, Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, 103 Daehak-ro, Jongro-gu, Seoul 03080, Korea.,Department of Biomedical Engineering, Seoul National University College of Engineering, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
15
|
Tu CF, Li FA, Li LH, Yang RB. Quantitative glycoproteomics analysis identifies novel FUT8 targets and signaling networks critical for breast cancer cell invasiveness. Breast Cancer Res 2022; 24:21. [PMID: 35303925 PMCID: PMC8932202 DOI: 10.1186/s13058-022-01513-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We recently showed that fucosyltransferase 8 (FUT8)-mediated core fucosylation of transforming growth factor-β receptor enhances its signaling and promotes breast cancer invasion and metastasis. However, the complete FUT8 target glycoproteins and their downstream signaling networks critical for breast cancer progression remain largely unknown. METHOD We performed quantitative glycoproteomics with two highly invasive breast cancer cell lines to unravel a comprehensive list of core-fucosylated glycoproteins by comparison to parental wild-type and FUT8-knockout counterpart cells. In addition, ingenuity pathway analysis (IPA) was performed to highlight the most enriched biological functions and signaling pathways mediated by FUT8 targets. Novel FUT8 target glycoproteins with biological interest were functionally studied and validated by using LCA (Lens culinaris agglutinin) blotting and LC-MS/MS (liquid chromatography-tandem mass spectrometry) analysis. RESULTS Loss-of-function studies demonstrated that FUT8 knockout suppressed the invasiveness of highly aggressive breast carcinoma cells. Quantitative glycoproteomics identified 140 common target glycoproteins. Ingenuity pathway analysis (IPA) of these target proteins gave a global and novel perspective on signaling networks essential for breast cancer cell migration and invasion. In addition, we showed that core fucosylation of integrin αvβ5 or IL6ST might be crucial for breast cancer cell adhesion to vitronectin or enhanced cellular signaling to interleukin 6 and oncostatin M, two cytokines implicated in the breast cancer epithelial-mesenchymal transition and metastasis. CONCLUSIONS Our report reveals a comprehensive list of core-fucosylated target proteins and provides novel insights into signaling networks crucial for breast cancer progression. These findings will assist in deciphering the complex molecular mechanisms and developing diagnostic or therapeutic approaches targeting these signaling pathways in breast cancer metastasis.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan. .,Biomedical Translation Research Center, Academia Sinica, Taipei, 115202, Taiwan. .,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
16
|
Hatano K, Yoneyama T, Hatakeyama S, Tomiyama E, Tsuchiya M, Nishimoto M, Yoshimura K, Miyoshi E, Uemura H, Ohyama C, Nonomura N, Fujita K. Simultaneous analysis of serum α2,3-linked sialylation and core-type fucosylation of prostate-specific antigen for the detection of high-grade prostate cancer. Br J Cancer 2022; 126:764-770. [PMID: 34802050 PMCID: PMC8888746 DOI: 10.1038/s41416-021-01637-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Altered prostate-specific antigen (PSA) glycosylation patterns can be useful biomarkers in detecting high-grade prostate cancer (HGPC). The microfluidic immunoassay system can analyse α2,3-linked sialylated PSA (α2,3-Sia-PSA) and α1,6-linked fucosylated PSA (α1,6-Fuc-PSA) using different lectins, Mackkia amurensis agglutinin and Pholiota squarrosa lectin, respectively. Here, we investigated the diagnostic value of simultaneous analysis of α2,3-Sia-PSA and α1,6-Fuc-PSA for the detection of HGPC. METHODS Men with serum PSA levels of 4-20 ng/mL who underwent prostate biopsy were included. The model to predict HGPC (Gleason grade ≥2) was constructed by multivariate logistic regression analysis, in combination with α2,3-Sia-PSA and α1,6-Fuc-PSA (SF index). RESULTS In the development cohort (n = 150), the SF index showed good discrimination for HGPC (area under the receiver-operating curve (AUC) 0.842; 95% confidence interval (CI) 0.782-0.903), compared to the single PSA test (AUC 0.632, 95% CI 0.543-0.721), α2,3-Sia-PSA (AUC 0.711, 95% CI 0.629-0.793) and α1,6-Fuc-PSA (AUC 0.738, 95% CI 0.657-0.819). Decision-curve analysis showed the superior benefit of the SF index. In the validation cohort (n = 57), the SF index showed good discrimination for HGPC (AUC 0.769, 95% CI 0.643-0.895). CONCLUSIONS The SF index could differentiate HGPC, providing useful information for decision making for prostate biopsy in men with abnormal PSA levels.
Collapse
Affiliation(s)
- Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tohru Yoneyama
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shingo Hatakeyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mutsumi Tsuchiya
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mitsuhisa Nishimoto
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kazuhiro Yoshimura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan.
| |
Collapse
|
17
|
Fujita K, Hatano K, Hashimoto M, Tomiyama E, Miyoshi E, Nonomura N, Uemura H. Fucosylation in Urological Cancers. Int J Mol Sci 2021; 22:13333. [PMID: 34948129 PMCID: PMC8708646 DOI: 10.3390/ijms222413333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023] Open
Abstract
Fucosylation is an oligosaccharide modification that plays an important role in immune response and malignancy, and specific fucosyltransferases (FUTs) catalyze the three types of fucosylations: core-type, Lewis type, and H type. FUTs regulate cancer proliferation, invasiveness, and resistance to chemotherapy by modifying the glycosylation of signaling receptors. Oligosaccharides on PD-1/PD-L1 proteins are specifically fucosylated, leading to functional modifications. Expression of FUTs is upregulated in renal cell carcinoma, bladder cancer, and prostate cancer. Aberrant fucosylation in prostate-specific antigen (PSA) could be used as a novel biomarker for prostate cancer. Furthermore, elucidation of the biological function of fucosylation could result in the development of novel therapeutic targets. Further studies are needed in the field of fucosylation glycobiology in urological malignancies.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Sayama 589-8511, Osaka, Japan; (M.H.); (H.U.)
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan; (K.H.); (E.T.); (N.N.)
| | - Mamoru Hashimoto
- Department of Urology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Sayama 589-8511, Osaka, Japan; (M.H.); (H.U.)
| | - Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan; (K.H.); (E.T.); (N.N.)
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan;
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita 565-0871, Osaka, Japan; (K.H.); (E.T.); (N.N.)
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Sayama 589-8511, Osaka, Japan; (M.H.); (H.U.)
| |
Collapse
|
18
|
Smith J, Millán-Martín S, Mittermayr S, Hilborne V, Davey G, Polom K, Roviello F, Bones J. 2-Dimensional ultra-high performance liquid chromatography and DMT-MM derivatization paired with tandem mass spectrometry for comprehensive serum N-glycome characterization. Anal Chim Acta 2021; 1179:338840. [PMID: 34535264 DOI: 10.1016/j.aca.2021.338840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/25/2022]
Abstract
Glycosylation is a prominent co- and post-translational modification which contributes to a variety of important biological functions. Protein glycosylation characteristics, particularly N-glycosylation, are influenced by changes in one's pathological state, such as through the presence of disease, and as such, there is great interest in N-glycans as potential disease biomarkers. Human serum is an attractive source for N-glycan based biomarker studies as circulatory proteins are representative of one's physiology, with many serum proteins containing N-glycosylation. The difficulty in comprehensively characterizing the serum N-glycome arises from the absence of a biosynthetic template resulting in great structural heterogeneity and complexity. To help overcome these challenges we developed a 2-dimensional liquid chromatography platform which utilizes offline weak anion exchange (WAX) chromatography in the first dimension and hydrophilic interaction liquid chromatography (HILIC) in the second dimension to separate N-glycans by charge, corresponding to degree of sialylation, and size, respectively. Performing these separations offline enables subsequent derivatization with 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) for sialic acid linkage determination and the identification of sialic acid linkage isomers. Subsequent tandem mass spectrometry analysis revealed the identification of 212 complete and partial N-glycan structures including low abundant N-glycans containing acetyl and sulphate modifications. The identifications obtained through this platform were then applied to N-glycans released from a set of stage 3 gastric cancer serum samples obtained from patients before (pre-op) and after (post-op) tumour resection to investigate how the serum N-glycome can facilitate differentiation between the two pathological states.
Collapse
Affiliation(s)
- Josh Smith
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co. Dublin, A94 X099, Ireland; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Silvia Millán-Martín
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co. Dublin, A94 X099, Ireland
| | - Stefan Mittermayr
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co. Dublin, A94 X099, Ireland
| | - Vivian Hilborne
- Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Gavin Davey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 R590, Ireland
| | - Karol Polom
- Department of General Surgery and Surgical Oncology, University of Siena, Siena, Italy; Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Franco Roviello
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Jonathan Bones
- Characterisation and Comparability Laboratory, The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Co. Dublin, A94 X099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland.
| |
Collapse
|
19
|
Nakano M, Sabido-Bozo S, Okazaki K, Aguilera-Romero A, Rodriguez-Gallardo S, Cortes-Gomez A, Lopez S, Ikeda A, Funato K, Muñiz M. Structural analysis of the GPI glycan. PLoS One 2021; 16:e0257435. [PMID: 34529709 PMCID: PMC8445438 DOI: 10.1371/journal.pone.0257435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is an essential post-translational modification in all eukaryotes that occurs at the endoplasmic reticulum (ER) and serves to deliver GPI-anchored proteins (GPI-APs) to the cell surface where they play a wide variety of vital physiological roles. This paper describes a specialized method for purification and structural analysis of the GPI glycan of individual GPI-APs in yeast. The protocol involves the expression of a specific GPI-AP tagged with GFP, enzymatic release from the cellular membrane fraction, immunopurification, separation by electrophoresis and analysis of the peptides bearing GPI glycans by mass spectrometry after trypsin digestion. We used specifically this protocol to address the structural remodeling that undergoes the GPI glycan of a specific GPI-AP during its transport to the cell surface. This method can be also applied to investigate the GPI-AP biosynthetic pathway and to directly confirm predicted GPI-anchoring of individual proteins.
Collapse
Affiliation(s)
- Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail: (MN); (KF); (MM)
| | - Susana Sabido-Bozo
- Facultad de Biologia, Departamento de Biologia Celular, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Universidad de Sevilla e Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Kouta Okazaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Auxiliadora Aguilera-Romero
- Facultad de Biologia, Departamento de Biologia Celular, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Universidad de Sevilla e Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Sofia Rodriguez-Gallardo
- Facultad de Biologia, Departamento de Biologia Celular, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Universidad de Sevilla e Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Alejandro Cortes-Gomez
- Facultad de Biologia, Departamento de Biologia Celular, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Universidad de Sevilla e Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Sergio Lopez
- Facultad de Biologia, Departamento de Biologia Celular, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Universidad de Sevilla e Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Atsuko Ikeda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail: (MN); (KF); (MM)
| | - Manuel Muñiz
- Facultad de Biologia, Departamento de Biologia Celular, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Universidad de Sevilla e Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
- * E-mail: (MN); (KF); (MM)
| |
Collapse
|
20
|
Shu H, Zhang L, Chen Y, Guo Y, Li L, Chen F, Cao Z, Yan G, Lu C, Liu C, Zhang S. Quantification of Intact O-Glycopeptides on Haptoglobin in Sera of Patients With Hepatocellular Carcinoma and Liver Cirrhosis. Front Chem 2021; 9:705341. [PMID: 34336790 PMCID: PMC8316590 DOI: 10.3389/fchem.2021.705341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022] Open
Abstract
Haptoglobin (Hp) is one of the acute-phase response proteins secreted by the liver, and its aberrant N-glycosylation was previously reported in hepatocellular carcinoma (HCC). Limited studies on Hp O-glycosylation have been previously reported. In this study, we aimed to discover and confirm its O-glycosylation in HCC based on lectin binding and mass spectrometry (MS) detection. First, serum Hp was purified from patients with liver cirrhosis (LC) and HCC, respectively. Then, five lectins with Gal or GalNAc monosaccharide specificity were chosen to perform lectin blot, and the results showed that Hp in HCC bound to these lectins in a much stronger manner than that in LC. Furthermore, label-free quantification based on MS was performed. A total of 26 intact O-glycopeptides were identified on Hp, and most of them were elevated in HCC as compared to LC. Among them, the intensity of HYEGS316TVPEK (H1N1S1) on Hp was the highest in HCC patients. Increased HYEGS316TVPEK (H1N1S1) in HCC was quantified and confirmed using the MS method based on 18O/16O C-terminal labeling and multiple reaction monitoring. This study provided a comprehensive understanding of the glycosylation of Hp in liver diseases.
Collapse
Affiliation(s)
- Hong Shu
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.,Department of Clinical Laboratory, Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yijie Guo
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China
| | - Limin Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanghua Chen
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Zhao Cao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guoquan Yan
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| |
Collapse
|
21
|
Jeong S, Kim U, Oh M, Nam J, Park S, Choi Y, Lee D, Kim J, An H. Detection of Aberrant Glycosylation of Serum Haptoglobin for Gastric Cancer Diagnosis Using a Middle-Up-Down Glycoproteome Platform. J Pers Med 2021; 11:575. [PMID: 34207451 PMCID: PMC8235735 DOI: 10.3390/jpm11060575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer is a frequently occurring cancer and is the leading cause of cancer-related deaths. Recent studies have shown that aberrant glycosylation of serum haptoglobin is closely related to gastric cancer and has enormous potential for use in diagnosis. However, there is no platform with high reliability and high reproducibility to comprehensively analyze haptoglobin glycosylation covering microheterogeneity to macroheterogeneity for clinical applications. In this study, we developed a middle-up-down glycoproteome platform for fast and accurate monitoring of haptoglobin glycosylation. This platform utilizes an online purification of LC for sample desalting, and an in silico haptoglobin glycopeptide library constructed by combining peptides and N-glycans to readily identify glycopeptides. In addition, site-specific glycosylation with glycan heterogeneity can be obtained through only a single MS analysis. Haptoglobin glycosylation in clinical samples consisting of healthy controls (n = 47) and gastric cancer patients (n = 43) was extensively investigated using three groups of tryptic glycopeptides: GP1 (including Asn184), GP2 (including Asn207 and Asn211), and GP3 (including Asn241). A total of 23 individual glycopeptides were determined as potential biomarkers (p < 0.00001). In addition, to improve diagnostic efficacy, we derived representative group biomarkers with high AUC values (0.929 to 0.977) through logistic regression analysis for each GP group. It has been found that glycosylation of haptoglobin is highly associated with gastric cancer, especially the glycosite Asn241. Our assay not only allows to quickly and easily obtain information on glycosylation heterogeneity of a target glycoprotein but also makes it an efficient tool for biomarker discovery and clinical diagnosis.
Collapse
Affiliation(s)
- Seunghyup Jeong
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | | | - Myungjin Oh
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jihyeon Nam
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Sehoon Park
- Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Yoonjin Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Dongho Lee
- Department of Internal Medicine for Gastroenterology, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea;
| | - Hyunjoo An
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea; (S.J.); (M.O.); (J.N.)
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
22
|
Fujita K, Hatano K, Tomiyama E, Hayashi Y, Matsushita M, Tsuchiya M, Yoshikawa T, Date M, Miyoshi E, Nonomura N. Serum core-type fucosylated prostate-specific antigen index for the detection of high-risk prostate cancer. Int J Cancer 2021; 148:3111-3118. [PMID: 33594666 DOI: 10.1002/ijc.33517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 01/09/2023]
Abstract
It is known that core-type fucosylation is higher in prostate cancer cells than in other cancer cell types and is associated with high-risk prostate cancer. Here, we developed an automated microcapillary electrophoresis-based immunoassay system for measuring serum core-type fucosylated prostate-specific antigen (PSA) and evaluated whether the serum fucosylated PSA index (FPI) can detect high-risk prostate cancer. Core-type fucosylated-free PSA was measured by our automated microcapillary electrophoresis-based immunoassay system with Pholiota squarrosa lectin. The FPI was calculated from total PSA and the percentage of fucosylated-free PSA. The optimum model to predict Gleason grade (GG) ≥2 was constructed by multivariate logistic regression analysis. Discrimination was assessed by determining the area under the receiver operator characteristic curve (AUC). The study included 252 men who underwent prostate needle biopsy due to elevated serum PSA levels (4-20 ng/mL), including 138 with GG ≥2. A higher FPI was significantly associated with GG (P < .0001). Multivariate logistic regression analysis showed that age, prostate volume and FPI were significant predictors of GG ≥2. The AUC of FPI and the model were 0.729 (95% confidence interval [CI]: 0.668-0.790) and 0.837 (95% CI: 0.788-0.886), respectively, compared to 0.629 (95% CI: 0.561-0.698) for PSA. Decision curve analysis showed the superior benefit of FPI and the model when compared to PSA. In a cohort with serum PSA levels <20 ng/mL, FPI could differentiate high-risk prostate cancer from biopsy-negative or low-risk prostate cancer. Therefore, FPI could be a useful adjunct in prostate biopsy counseling for men with abnormal PSA levels.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mutsumi Tsuchiya
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
23
|
Ma M, Guo D, Tan Z, Du J, Guan F, Li X. Fucosyltransferase 8 regulation and breast cancer suppression by transcription factor activator protein 2γ. Cancer Sci 2021; 112:3190-3204. [PMID: 34036684 PMCID: PMC8353918 DOI: 10.1111/cas.14987] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
Alterations of glycosyltransferase expression are often associated with tumor occurrence and progression. Among the many glycosyltransferases, increased expression of fucosyltransferase 8 (FUT8) has been frequently observed to be involved in progression and metastasis of various types of cancer. The regulatory mechanisms of FUT8 expression remain unclear. FUT8 expression was shown, in this study, to be elevated in breast cancer. Systematic analysis revealed that transcription factor activator protein 2γ (AP-2γ) is the target gene of microRNA-10b (miR-10b), which we previously identified as a positive regulator of FUT8. Overexpression of AP-2γ inhibited FUT8 expression, with associated reduction of cell invasiveness and migration ability. AP-2γ was capable of binding to transcription factor STAT3, and phosphorylation of STAT3 induced transcription of the FUT8 gene. On the basis of our findings, we propose that binding of AP-2γ to STAT3 results in formation of the AP-2γ/STAT3 complex and consequent inhibition of STAT3 phosphorylation, thereby preventing entry of p-STAT3 into the nucleus to initiate FUT8 transcription. This study clarifies the molecular mechanisms whereby transcription factor AP-2γ regulates FUT8 expression in breast cancer.
Collapse
Affiliation(s)
- Minxing Ma
- Department of Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Dong Guo
- Department of Central Lab, Cheeloo College of Medicine, Weihai Municipal Hospital, Shandong University, Weihai, China
| | - Zengqi Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Jun Du
- Department of Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
24
|
Paton B, Suarez M, Herrero P, Canela N. Glycosylation Biomarkers Associated with Age-Related Diseases and Current Methods for Glycan Analysis. Int J Mol Sci 2021; 22:5788. [PMID: 34071388 PMCID: PMC8198018 DOI: 10.3390/ijms22115788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Ageing is a complex process which implies the accumulation of molecular, cellular and organ damage, leading to an increased vulnerability to disease. In Western societies, the increase in the elderly population, which is accompanied by ageing-associated pathologies such as cardiovascular and mental diseases, is becoming an increasing economic and social burden for governments. In order to prevent, treat and determine which subjects are more likely to develop these age-related diseases, predictive biomarkers are required. In this sense, some studies suggest that glycans have a potential role as disease biomarkers, as they modify the functions of proteins and take part in intra- and intercellular biological processes. As the glycome reflects the real-time status of these interactions, its characterisation can provide potential diagnostic and prognostic biomarkers for multifactorial diseases. This review gathers the alterations in protein glycosylation profiles that are associated with ageing and age-related diseases, such as cancer, type 2 diabetes mellitus, metabolic syndrome and several chronic inflammatory diseases. Furthermore, the review includes the available techniques for the determination and characterisation of glycans, such as liquid chromatography, electrophoresis, nuclear magnetic resonance and mass spectrometry.
Collapse
Affiliation(s)
- Beatrix Paton
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| |
Collapse
|
25
|
Functional milk proteome analysis of genetically diverse goats from different agro climatic regions. J Proteomics 2020; 227:103916. [PMID: 32711164 DOI: 10.1016/j.jprot.2020.103916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022]
Abstract
Goat milk, a choice of substitution to mother's milk for its composition, fulfils nutritional requirement of infants, pregnant mothers and older people. The present study was carried out to unravel the milk proteome profiles from geographically and genetically diverse goat breeds by gel based 2DE and nLC-MS/MS. A total of 1307 functional proteins comprising casein and other low abundance proteins were identified. Gene annotations revealed that the majority of the proteins were involved in binding function, catalytic activity and structural molecules and localised in nucleus and membrane. The distinguished proteins were involved in 144 KEGG pathways in information processing, metabolism, cellular process, organismal systems and diseases. The large number of proteins and peptides including bioactive peptides were reported from goat milk from diverse agro-climatic regions of India indicating their significant potential for human health applications. SIGNIFICANCE: Goat milk in India is used in various Ayurvedic formulations to treat a number of ailments and allergies as well as for nutraceutical formulations. The study identifies milk protein variants both at protein and DNA level and subsequent identification of proteins by 2DE and nLC-MS/MS resulting in a proteome comprising of 1307 proteins. The specific proteins and peptides having significant role in immune regulation, disease pathways, cellular growth and metabolism have been identified. The results contribute to goat milk protein and peptide database which is very limited. We identified proteins for specific functional categories and associated them with different pathways for studying functional diversity of goat milk proteins. The proteins and peptides identified can be used for multiple human health application.
Collapse
|
26
|
di Masi A, De Simone G, Ciaccio C, D'Orso S, Coletta M, Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med 2020; 73:100851. [PMID: 32660714 DOI: 10.1016/j.mam.2020.100851] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Haptoglobin (Hp) belongs to the family of acute-phase plasma proteins and represents the most important plasma detoxifier of hemoglobin (Hb). The basic Hp molecule is a tetrameric protein built by two α/β dimers. Each Hp α/β dimer is encoded by a single gene and is synthesized as a single polypeptide. Following post-translational protease-dependent cleavage of the Hp polypeptide, the α and β chains are linked by disulfide bridge(s) to generate the mature Hp protein. As human Hp gene is characterized by two common Hp1 and Hp2 alleles, three major genotypes can result (i.e., Hp1-1, Hp2-1, and Hp2-2). Hp regulates Hb clearance from circulation by the macrophage-specific receptor CD163, thus preventing Hb-mediated severe consequences for health. Indeed, the antioxidant and Hb binding properties of Hp as well as its ability to stimulate cells of the monocyte/macrophage lineage and to modulate the helper T-cell type 1 and type 2 balance significantly associate with a variety of pathogenic disorders (e.g., infectious diseases, diabetes, cardiovascular diseases, and cancer). Alternative functions of the variants Hp1 and Hp2 have been reported, particularly in the susceptibility and protection against infectious (e.g., pulmonary tuberculosis, HIV, and malaria) and non-infectious (e.g., diabetes, cardiovascular diseases and obesity) diseases. Both high and low levels of Hp are indicative of clinical conditions: Hp plasma levels increase during infections, inflammation, and various malignant diseases, and decrease during malnutrition, hemolysis, hepatic disease, allergic reactions, and seizure disorders. Of note, the Hp:Hb complexes display heme-based reactivity; in fact, they bind several ferrous and ferric ligands, including O2, CO, and NO, and display (pseudo-)enzymatic properties (e.g., NO and peroxynitrite detoxification). Here, genetic, biochemical, biomedical, and biotechnological aspects of Hp are reviewed.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Silvia D'Orso
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146, Roma, Italy.
| |
Collapse
|
27
|
Jeong S, Oh MJ, Kim U, Lee J, Kim JH, An HJ. Glycosylation of serum haptoglobin as a marker of gastric cancer: an overview for clinicians. Expert Rev Proteomics 2020; 17:109-117. [DOI: 10.1080/14789450.2020.1740091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Seunghyup Jeong
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Myung Jin Oh
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Unyong Kim
- Biocomplete Inc, Seoul, Republic of Korea
| | - Jua Lee
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Han Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Joo An
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
28
|
Manabe Y, Marchetti R, Takakura Y, Nagasaki M, Nihei W, Takebe T, Tanaka K, Kabayama K, Chiodo F, Hanashima S, Kamada Y, Miyoshi E, Dulal HP, Yamaguchi Y, Adachi Y, Ohno N, Tanaka H, Silipo A, Fukase K, Molinaro A. The Core Fucose on an IgG Antibody is an Endogenous Ligand of Dectin-1. Angew Chem Int Ed Engl 2019; 58:18697-18702. [PMID: 31625659 DOI: 10.1002/anie.201911875] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 01/07/2023]
Abstract
The core fucose, a major modification of N-glycans, is implicated in immune regulation, such as the attenuation of the antibody-dependent cell-mediated cytotoxicity of antibody drugs and the inhibition of anti-tumor responses via the promotion of PD-1 expression on T cells. Although the core fucose regulates many biological processes, no core fucose recognition molecule has been identified in mammals. Herein, we report that Dectin-1, a known anti-β-glucan lectin, recognizes the core fucose on IgG antibodies. A combination of biophysical experiments further suggested that Dectin-1 recognizes aromatic amino acids adjacent to the N-terminal asparagine at the glycosylation site as well as the core fucose. Thus, Dectin-1 appears to be the first lectin-like molecule involved in the heterovalent and specific recognition of characteristic N-glycans on antibodies.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Napoli, Italy
| | - Yohei Takakura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Masahiro Nagasaki
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Wataru Nihei
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tomoyuki Takebe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Fabrizio Chiodo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Dept. of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry & Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Graduate School of Medicine, Osaka University, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hari Prasad Dulal
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshiki Yamaguchi
- Laboratory of Pharmaceutical Physical Chemistry, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H-101, Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Napoli, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Napoli, Italy
| |
Collapse
|
29
|
Structural basis for the specific cleavage of core-fucosylated N-glycans by endo-β- N-acetylglucosaminidase from the fungus Cordyceps militaris. J Biol Chem 2019; 294:17143-17154. [PMID: 31548313 PMCID: PMC6851319 DOI: 10.1074/jbc.ra119.010842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
N-Linked glycans play important roles in various cellular and immunological events. Endo-β-N-acetylglucosaminidase (ENGase) can release or transglycosylate N-glycans and is a promising tool for the chemoenzymatic synthesis of glycoproteins with homogeneously modified glycans. The ability of ENGases to act on core-fucosylated glycans is a key factor determining their therapeutic utility because mammalian N-glycans are frequently α-1,6-fucosylated. Although the biochemistries and structures of various ENGases have been studied extensively, the structural basis for the recognition of the core fucose and the asparagine-linked GlcNAc is unclear. Herein, we determined the crystal structures of a core fucose-specific ENGase from the caterpillar fungus Cordyceps militaris (Endo-CoM), which belongs to glycoside hydrolase family 18. Structures complexed with fucose-containing ligands were determined at 1.75-2.35 Å resolutions. The fucose moiety linked to GlcNAc is extensively recognized by protein residues in a round-shaped pocket, whereas the asparagine moiety linked to the GlcNAc is exposed to the solvent. The N-glycan-binding cleft of Endo-CoM is Y-shaped, and several lysine and arginine residues are present at its terminal regions. These structural features were consistent with the activity of Endo-CoM on fucose-containing glycans on rituximab (IgG) and its preference for a sialobiantennary substrate. Comparisons with other ENGases provided structural insights into their core fucose tolerance and specificity. In particular, Endo-F3, a known core fucose-specific ENGase, has a similar fucose-binding pocket, but the surrounding residues are not shared with Endo-CoM. Our study provides a foothold for protein engineering to develop enzymatic tools for the preparation of more effective therapeutic antibodies.
Collapse
|
30
|
Manabe Y, Marchetti R, Takakura Y, Nagasaki M, Nihei W, Takebe T, Tanaka K, Kabayama K, Chiodo F, Hanashima S, Kamada Y, Miyoshi E, Dulal HP, Yamaguchi Y, Adachi Y, Ohno N, Tanaka H, Silipo A, Fukase K, Molinaro A. The Core Fucose on an IgG Antibody is an Endogenous Ligand of Dectin‐1. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and EducationProject Research Center for Fundamental SciencesGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Roberta Marchetti
- Department of Chemical SciencesUniversity of Naples Federico II Via Cinthia 4 80126 Napoli Italy
| | - Yohei Takakura
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Masahiro Nagasaki
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Wataru Nihei
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Tomoyuki Takebe
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Katsunori Tanaka
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Biofunctional Synthetic Chemistry LaboratoryRIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kazuya Kabayama
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and EducationProject Research Center for Fundamental SciencesGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Fabrizio Chiodo
- Amsterdam UMCVrije Universiteit AmsterdamDept. of Molecular Cell Biology and ImmunologyAmsterdam Infection and Immunity Institute Amsterdam The Netherlands
| | - Shinya Hanashima
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry & Clinical InvestigationGraduate School of MedicineOsaka University 1–7 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical InvestigationGraduate School of MedicineOsaka University 1–7 Yamada-oka, Suita Osaka 565-0871 Japan
| | - Hari Prasad Dulal
- Structural Glycobiology TeamSystems Glycobiology Research GroupRIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yoshiki Yamaguchi
- Laboratory of Pharmaceutical Physical ChemistryTohoku Medical and Pharmaceutical University 4-4-1 Komatsushima Aoba-ku, Sendai Miyagi 981-8558 Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial ProductsSchool of PharmacyTokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial ProductsSchool of PharmacyTokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and EngineeringTokyo Institute of Technology 2-12-1-H-101, Ookayama, Meguro Tokyo 152-8552 Japan
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico II Via Cinthia 4 80126 Napoli Italy
| | - Koichi Fukase
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and EducationProject Research Center for Fundamental SciencesGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Antonio Molinaro
- Department of ChemistryGraduate School of ScienceOsaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Department of Chemical SciencesUniversity of Naples Federico II Via Cinthia 4 80126 Napoli Italy
| |
Collapse
|
31
|
Ciereszko A, Dietrich MA, Słowińska M, Nynca J, Ciborowski M, Kisluk J, Michalska-Falkowska A, Reszec J, Sierko E, Nikliński J. Identification of protein changes in the blood plasma of lung cancer patients subjected to chemotherapy using a 2D-DIGE approach. PLoS One 2019; 14:e0223840. [PMID: 31622403 PMCID: PMC6797170 DOI: 10.1371/journal.pone.0223840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
A comparative analysis of blood samples (depleted of albumin and IgG) obtained from lung cancer patients before chemotherapy versus after a second cycle of chemotherapy was performed using two-dimensional difference gel electrophoresis (2D-DIGE). The control group consisted of eight patients with non-cancerous lung diseases, and the experimental group consisted of four adenocarcinoma (ADC) and four squamous cell carcinoma (SCC) patients. Analyses of gels revealed significant changes in proteins and/or their proteoforms between control patients and lung cancer patients, both before and after a second cycle of chemotherapy. Most of these proteins were related to inflammation, including acute phase proteins (APPs) such as forms of haptoglobin and transferrin, complement component C3, and clusterin. The variable expression of APPs can potentially be used for profiling lung cancer. The greatest changes observed after chemotherapy were in transferrin and serotransferrin, which likely reflect disturbances in iron turnover after chemotherapy-induced anaemia. Significant changes in plasma proteins between ADC and SCC patients were also revealed, suggesting use of plasma vitronectin as a potential marker of SCC.
Collapse
Affiliation(s)
- Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- * E-mail:
| | - Mariola A. Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Nynca
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Joanna Kisluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | | | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
32
|
Dalal K, Dalal B, Bhatia S, Shukla A, Shankarkumar A. Analysis of serum Haptoglobin using glycoproteomics and lectin immunoassay in liver diseases in Hepatitis B virus infection. Clin Chim Acta 2019; 495:309-317. [PMID: 31014754 DOI: 10.1016/j.cca.2019.04.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) due to Hepatitis B viral (HBV) infection is a major cause in Asia-Pacific countries. Its early detection is of paramount importance using a marker having both sensitivity and specificity. The present study promises diagnostic and prognostic markers by the identification of site-specific glycoforms on Haptoglobin (Hp) using LC-MS/MS and lectin ELISA in liver diseased conditions in HBV infection. METHODS Three groups of patients: chronic, liver cirrhosis and HCC with HBV infection along with controls were enrolled. Hp was purified using affinity column chromatography and, peptide sequence, N-glycosylation site, glycan composition and glycoforms were identified using mass spectrometry. Quantitative lectin ELISA was used to measure levels of fucosylation on Hp in liver diseases due to HBV. RESULTS Hp levels were significantly lower in HCC when compared with Non-HCC cases (p < .05). Fucosylated glycoforms were significantly increased at site Asn184, Asn207 and Asn211 in liver diseased stages versus controls. A significant association was observed between the Fuc-Hp/Hp Elisa index and, advanced liver disease stages and controls using lectin Elisa (p < .001). CONCLUSION Quantitation of fucosylation levels on Hp protein using Lectin ELISA may be useful glycobiomarker either alone or in combination (AFP + DCP + FucHp; AUC = 0.94) in HBV HCC diagnosis in clinical practice.
Collapse
Affiliation(s)
- K Dalal
- Transfusion Transmitted Diseases Department, National Institute of Immunohaematology (ICMR), 13th Floor, New Multi-storeyed Bldg, KEM Hospital Campus, Parel, Mumbai 400 012, Maharashtra, India
| | - B Dalal
- Transfusion Transmitted Diseases Department, National Institute of Immunohaematology (ICMR), 13th Floor, New Multi-storeyed Bldg, KEM Hospital Campus, Parel, Mumbai 400 012, Maharashtra, India
| | - S Bhatia
- Department of Gastroenterology, Seth G S Medical College and K E M Hospital, Acharya Donde Marg, Parel, Mumbai 400 012, Maharashtra, India
| | - A Shukla
- Department of Gastroenterology, Seth G S Medical College and K E M Hospital, Acharya Donde Marg, Parel, Mumbai 400 012, Maharashtra, India
| | - A Shankarkumar
- Transfusion Transmitted Diseases Department, National Institute of Immunohaematology (ICMR), 13th Floor, New Multi-storeyed Bldg, KEM Hospital Campus, Parel, Mumbai 400 012, Maharashtra, India.
| |
Collapse
|
33
|
Hu M, Lan Y, Lu A, Ma X, Zhang L. Glycan-based biomarkers for diagnosis of cancers and other diseases: Past, present, and future. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:1-24. [PMID: 30905444 DOI: 10.1016/bs.pmbts.2018.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are essential biomolecules in regulating human physiology and pathology ranging from signal transduction to microbial infections. Developing complex human diseases, such as cancer, diabetes, and cardiovascular diseases, are a combination of genetic and environmental factors. Genetics dominates embryonic development and the passing of genes to the next generation whereas the information in glycans reflects the impact of internal and external environmental factors, such as diseases, lifestyle, and social factors, on a person's health and disease. The reason behind this is that glycans are not directly encoded in a genetic template. Instead, they are assembled dynamically by hundreds of enzymes organized in more than 10 complex biosynthetic pathways. Any environmental changes affecting enzymatic activities or the availability of high-energy monosaccharide donors in a specific location will disturb the final structure of glycans. The glycan structure-dependent biological activities subsequently enable or disable gene expressions, which partially explain that it is difficult to pinpoint specific genetic defects to aging-associated diseases. Glycan-based biomarkers are currently used for diagnosis of diabetes, cancers, and other complex diseases. We will recapitulate the discovery of glucose, glycated proteins, glycan-, and glycoprotein-based biomarkers followed by summarizing clinically used glycan/glycoprotein-based biomarkers. The potential serum/plasma-derived N- and O-linked glycans as biomarkers will also be discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Alexander Lu
- Program in Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Xuexiao Ma
- Department of Spine Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
34
|
Sun Y, Wang C, Sun X, Guo M. Comparative Proteomics of Whey and Milk Fat Globule Membrane Proteins of Guanzhong Goat and Holstein Cow Mature Milk. J Food Sci 2019; 84:244-253. [PMID: 30620781 DOI: 10.1111/1750-3841.14428] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022]
Abstract
Guanzhong goat and Holstein cow milks are the major milk supply for the Chinese dairy industry. Whey proteins and milk fat globule membrane (MFGM) proteins of both milk were characterized and compared using proteomic techniques. A total of 283, 159, 593, and 349 proteins were identified, respectively, in whey and MFGM for the two species using Liquid Chromatography combined with Tandem Mass Spectrometry (LC-MS/MS). Functional categories analyses showed that both goat and cow MFGM proteins had three most abundant proteins of phosphoproteins, membrane-related and acetylation-related proteins. Gene ontology (GO) annotation revealed that whey proteins in goat and cow milk exhibited different biological processes and molecular functions while both enriched in extracellular exosome for cellular components. Both goat and cow MFGM proteins showed main biological process of oxidation-reduction, cellular component of extracellular exosome, and molecular function of poly(A) RNA binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that large number of both goat and cow whey proteins were involved in disease, metabolism, and immune pathways with different number and types. The most general pathways for goat and cow MFGM proteins were metabolism pathways and disease pathways, respectively. The results indicated that Guanzhong goat and Holstein cow milk were different in varieties of whey proteins and MFGM proteins and their functions and pathways. PRACTICAL APPLICATION: Guanzhong goat and Holstein cow milks are the major milk sources for the Chinese consumers. However, information about proteomics of whey and MFGM proteins of Guanzhong goat and Holstein cow milk is limited. Our study characterized and compared both whey and MFGM proteins using proteomic techniques. The results provide useful information for infant formula and milk protein products in the Chinese dairy industry.
Collapse
Affiliation(s)
- Yuxue Sun
- Dept. of Food Science, College of Food Science and Engineering, Jilin Univ., Changchun, Jilin, 130062, China
| | - Cuina Wang
- Dept. of Food Science, College of Food Science and Engineering, Jilin Univ., Changchun, Jilin, 130062, China
| | - Xiaomeng Sun
- Dept. of Food Science, College of Food Science and Engineering, Jilin Univ., Changchun, Jilin, 130062, China
| | - Mingruo Guo
- Dept. of Nutrition and Food Sciences, College of Agriculture and Life Sciences, Univ. of Vermont, Burlington, VT, 05405, USA.,College of Food Science, Northeast Agriculture Univ., Harbin, 150030, China
| |
Collapse
|
35
|
Zhu J, Chen Z, Zhang J, An M, Wu J, Yu Q, Skilton SJ, Bern M, Sen KI, Li L, Lubman DM. Differential Quantitative Determination of Site-Specific Intact N-Glycopeptides in Serum Haptoglobin between Hepatocellular Carcinoma and Cirrhosis Using LC-EThcD-MS/MS. J Proteome Res 2019; 18:359-371. [PMID: 30370771 PMCID: PMC6465142 DOI: 10.1021/acs.jproteome.8b00654] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intact N-glycopeptide analysis remains challenging due to the complexity of glycopeptide structures, low abundance of glycopeptides in protein digests, and difficulties in data interpretation/quantitation. Herein, we developed a workflow that involved advanced methodologies, the EThcD-MS/MS fragmentation method and data interpretation software, for differential analysis of the microheterogeneity of site-specific intact N-glycopeptides of serum haptoglobin between early hepatocellular carcinoma (HCC) and liver cirrhosis. Haptoglobin was immunopurified from 20 μL of serum in patients with early HCC, liver cirrhosis, and healthy controls, respectively, followed by trypsin/GluC digestion, glycopeptide enrichment, and LC-EThcD-MS/MS analysis. Identification and differential quantitation of site-specific N-glycopeptides were performed using a combination of Byonic and Byologic software. In total, 93, 87, and 68 site-specific N-glycopeptides were identified in early HCC, liver cirrhosis, and healthy controls, respectively, with high confidence. The increased variety of N-glycopeptides in liver diseases compared to healthy controls was due to increased branching with hyper-fucosylation and sialylation. Differential quantitation analysis showed that 5 site-specific N-glycopeptides on sites N184 and N241 were significantly elevated in early HCC compared to cirrhosis ( p < 0.05) and normal controls ( p ≤ 0.001). The result demonstrates that the workflow provides a strategy for detailed profiles of N-glycopeptides of patient samples as well as for relative quantitation to determine the level changes in site-specific N-glycopeptides between disease states.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Mingrui An
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Jing Wu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Qing Yu
- School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - St. John Skilton
- Protein Metrics Incorporated, San Carlos, California 94070, United States
| | - Marshall Bern
- Protein Metrics Incorporated, San Carlos, California 94070, United States
| | - K. Ilker Sen
- Protein Metrics Incorporated, San Carlos, California 94070, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Peng W, Zhao J, Dong X, Banazadeh A, Huang Y, Hussien A, Mechref Y. Clinical application of quantitative glycomics. Expert Rev Proteomics 2018; 15:1007-1031. [PMID: 30380947 PMCID: PMC6647030 DOI: 10.1080/14789450.2018.1543594] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aberrant glycosylation has been associated with many diseases. Decades of research activities have reported many reliable glycan biomarkers of different diseases which enable effective disease diagnostics and prognostics. However, none of the glycan markers have been approved for clinical diagnosis. Thus, a review of these studies is needed to guide the successful clinical translation. Area covered: In this review, we describe and discuss advances in analytical methods enabling clinical glycan biomarker discovery, focusing only on studies of released glycans. This review also summarizes the different glycobiomarkers identified for cancers, Alzheimer's disease, diabetes, hepatitis B and C, and other diseases. Expert commentary: Along with the development of techniques in quantitative glycomics, more glycans or glycan patterns have been reported as better potential biomarkers of different diseases and proved to have greater diagnostic/diagnostic sensitivity and specificity than existing markers. However, to successfully apply glycan markers in clinical diagnosis, more studies and verifications on large biological cohorts need to be performed. In addition, faster and more efficient glycomic strategies need to be developed to shorten the turnaround time. Thus, glycan biomarkers have an immense chance to be used in clinical prognosis and diagnosis of many diseases in the near future.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| | - Ahmed Hussien
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
- Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409, United States
| |
Collapse
|
37
|
Tkac J, Bertok T, Hires M, Jane E, Lorencova L, Kasak P. Glycomics of prostate cancer: updates. Expert Rev Proteomics 2018; 16:65-76. [PMID: 30451032 DOI: 10.1080/14789450.2019.1549993] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Prostate cancer (PCa) is a life-threatening disease affecting millions of men. The current best PCa biomarker (level of prostate-specific antigen in serum) lacks specificity for PCa diagnostics and this is why novel PCa biomarkers in addition to the conventional ones based on biomolecules such as DNA, RNA and proteins need to be identified. Areas covered: This review details the potential of glycans-based biomarkers to become diagnostic, prognostic, predictive and therapeutic PCa biomarkers with a brief description of the innovative approaches applied to glycan analysis to date. Finally, the review covers the possibility to use exosomes as a rich source of glycans for future innovative and advanced diagnostics of PCa. The review covers updates in the field since 2016. Expert commentary: The summary provided in this review paper suggests that glycan-based biomarkers can offer high-assay accuracy not only for diagnostic purposes but also for monitoring/surveillance of the PCa disease.
Collapse
Affiliation(s)
- Jan Tkac
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Tomas Bertok
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Michal Hires
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia
| | - Eduard Jane
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia
| | - Lenka Lorencova
- a Slovak Academy of Sciences , Institute of Chemistry , Bratislava , Slovakia.,b Glycanostics Ltd ., Bratislava , Slovakia
| | - Peter Kasak
- c Center for Advanced Materials , Qatar University , Doha , Qatar
| |
Collapse
|
38
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
39
|
Zhang Z, Wuhrer M, Holst S. Serum sialylation changes in cancer. Glycoconj J 2018; 35:139-160. [PMID: 29680984 PMCID: PMC5916985 DOI: 10.1007/s10719-018-9820-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
Cancer is a major cause of death in both developing and developed countries. Early detection and efficient therapy can greatly enhance survival. Aberrant glycosylation has been recognized to be one of the hallmarks of cancer as glycans participate in many cancer-associated events. Cancer-associated glycosylation changes often involve sialic acids which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the literature on changes of sialylation in serum of cancer patients. Furthermore, the methods available to measure serum and plasma sialic acids as well as possible underlying biochemical mechanisms involved in the serum sialylation changes are surveyed. In general, total serum sialylation levels appear to be increased with various malignancies and show a potential for clinical applications, especially for disease monitoring and prognosis. In addition to overall sialic acid levels and the amount of sialic acid per total protein, glycoprofiling of specific cancer-associated glycoproteins, acute phase proteins and immunoglobulins in serum as well as the measurements of sialylation-related enzymes such as sialidases and sialyltransferases have been reported for early detection of cancer, assessing cancer progression and improving prognosis of cancer patients. Moreover, sialic-acid containing glycan antigens such as CA19-9, sialyl Lewis X and sialyl Tn on serum proteins have also displayed their value in cancer diagnosis and management whereby increased levels of these factors positively correlated with metastasis or poor prognosis.
Collapse
Affiliation(s)
- Zejian Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands.,Department of Biochemistry and Molecular Biology, Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postzone S3, Postbus 9600, 2300 RC, Leiden, NL, The Netherlands.
| |
Collapse
|
40
|
Nishino K, Koda S, Kataoka N, Takamatsu S, Nakano M, Ikeda S, Kamamatsu Y, Morishita K, Moriwaki K, Eguchi H, Yamamoto E, Kikkawa F, Tomita Y, Kamada Y, Miyoshi E. Establishment of an antibody specific for cancer-associated haptoglobin: a possible implication of clinical investigation. Oncotarget 2018; 9:12732-12744. [PMID: 29560105 PMCID: PMC5849169 DOI: 10.18632/oncotarget.24332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/20/2018] [Indexed: 12/13/2022] Open
Abstract
We previously found that the serum level of fucosylated haptoglobin (Fuc-Hpt) was significantly increased in pancreatic cancer patients. To delineate the mechanism underlying this increase and develop a simple detection method, we set out to generate a monoclonal antibody (mAb) specific for Fuc-Hpt. After multiple screenings by enzyme-linked immunosorbent assay (ELISA), a 10-7G mAb was identified as being highly specific for Fuc-Hpt generated in a cell line as well as for Hpt derived from a pancreatic cancer patient. As a result from affinity chromatography with 10-7G mAb, followed by lectin blot and mass spectrometry analyses, it was found that 10-7G mAb predominantly recognized both Fuc-Hpt and prohaptoglobin (proHpt), which was also fucosylated. In immunohistochemical analyses, hepatocytes surrounding metastasized cancer cells were stained by the 10-7G mAb, but neither the original cancer cells themselves nor normal hepatocytes exhibited positive staining, suggesting that metastasized cancer cells promote Fuc-Hpt production in adjacent hepatocytes. Serum level of Fuc-Hpt determined with newly developed ELISA system using the 10-7G mAb, was increased in patients of pancreatic and colorectal cancer. Interestingly, dramatic increases in Fuc-Hpt levels were observed at the stage IV of colorectal cancer. These results indicate that the 10-7G mAb developed is a promising antibody which recognizes Fuc-Hpt and could be a useful diagnostic tool for detecting liver metastasis of cancer.
Collapse
Affiliation(s)
- Kimihiro Nishino
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sayaka Koda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoya Kataoka
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Shun Ikeda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuka Kamamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koichi Morishita
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenta Moriwaki
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eiko Yamamoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yasuhiko Tomita
- Department of Pathology, International University of Health and Welfare, Narita, Chiba, Japan
| | - Yoshihiro Kamada
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
41
|
Kailemia MJ, Xu G, Wong M, Li Q, Goonatilleke E, Leon F, Lebrilla CB. Recent Advances in the Mass Spectrometry Methods for Glycomics and Cancer. Anal Chem 2018; 90:208-224. [PMID: 29049885 PMCID: PMC6200424 DOI: 10.1021/acs.analchem.7b04202] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muchena J. Kailemia
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- These authors contributed equally to this work
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Frank Leon
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
- Foods for Health Institute, University of California, Davis, CA 95616, USA
| |
Collapse
|
42
|
Holst S, Belo AI, Giovannetti E, van Die I, Wuhrer M. Profiling of different pancreatic cancer cells used as models for metastatic behaviour shows large variation in their N-glycosylation. Sci Rep 2017; 7:16623. [PMID: 29192278 PMCID: PMC5709460 DOI: 10.1038/s41598-017-16811-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 11/16/2017] [Indexed: 12/18/2022] Open
Abstract
To characterise pancreatic cancer cells from different sources which are used as model systems to study the metastatic behaviour in pancreatic ductal adenocarcinoma (PDAC), we compared the N-glycan imprint of four PDAC cells which were previously shown to differ in their galectin-4 expression and metastatic potential in vivo. Next to the sister cell lines Pa-Tu-8988S and Pa-Tu-8988T, which were isolated from the same liver metastasis of a PDAC, this included two primary PDAC cell cultures, PDAC1 and PDAC2. Additionally, we extended the N-glycan profiling to a normal, immortalized pancreatic duct cell line. Our results revealed major differences in the N-glycosylation of the different PDAC cells as well as compared to the control cell line, suggesting changes of the N-glycosylation in PDAC. The N-glycan profiles of the PDAC cells, however, differed vastly as well and demonstrate the diversity of PDAC model systems, which ultimately affects the interpretation of functional studies. The results from this study form the basis for further biological evaluation of the role of protein glycosylation in PDAC and highlight that conclusions from one cell line cannot be generalised, but should be regarded in the context of the corresponding phenotype.
Collapse
Affiliation(s)
- Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ana I Belo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Tu CF, Wu MY, Lin YC, Kannagi R, Yang RB. FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation. Breast Cancer Res 2017; 19:111. [PMID: 28982386 PMCID: PMC5629780 DOI: 10.1186/s13058-017-0904-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Core fucosylation (addition of fucose in α-1,6-linkage to core N-acetylglucosamine of N-glycans) catalyzed by fucosyltransferase 8 (FUT8) is critical for signaling receptors involved in many physiological and pathological processes such as cell growth, adhesion, and tumor metastasis. Transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition (EMT) regulates the invasion and metastasis of breast tumors. However, whether receptor core fucosylation affects TGF-β signaling during breast cancer progression remains largely unknown. METHOD In this study, gene expression profiling and western blot were used to validate the EMT-associated expression of FUT8. Lentivirus-mediated gain-of-function study, short hairpin RNA (shRNA) or CRISPR/Cas9-mediated loss-of-function studies and pharmacological inhibition of FUT8 were used to elucidate the molecular function of FUT8 during TGF-β-induced EMT in breast carcinoma cells. In addition, lectin blot, luciferase assay, and in vitro ligand binding assay were employed to demonstrate the involvement of FUT8 in the TGF-β1 signaling pathway. The role of FUT8 in breast cancer migration, invasion, and metastasis was confirmed using an in vitro transwell assay and mammary fat pad xenograft in vivo tumor model. RESULTS Gene expression profiling analysis revealed that FUT8 is upregulated in TGF-β-induced EMT; the process was associated with the migratory and invasive abilities of several breast carcinoma cell lines. Gain-of-function and loss-of-function studies demonstrated that FUT8 overexpression stimulated the EMT process, whereas FUT8 knockdown suppressed the invasiveness of highly aggressive breast carcinoma cells. Furthermore, TGF-β receptor complexes might be core fucosylated by FUT8 to facilitate TGF-β binding and enhance downstream signaling. Importantly, FUT8 inhibition suppressed the invasive ability of highly metastatic breast cancer cells and impaired their lung metastasis. CONCLUSIONS Our results reveal a positive feedback mechanism of FUT8-mediated receptor core fucosylation that promotes TGF-β signaling and EMT, thus stimulating breast cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Meng-Ying Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Institute of Pharmacology, National Yang-Ming University, Taipei, 11221, Taiwan. .,Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
44
|
Profiling of core fucosylated N-glycans using a novel bacterial lectin that specifically recognizes α1,6 fucosylated chitobiose. Sci Rep 2016; 6:34195. [PMID: 27678371 PMCID: PMC5039751 DOI: 10.1038/srep34195] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
A novel fucose-binding lectin (SL2-1) from the bacterium Streptomyces rapamycinicus was identified by analysis of metagenomic DNA sequences. SL2-1 belongs to a new group of bacterial fucose-specific lectins that have no similarity to known bacterial fucose-binding proteins, but are related to certain eukaryotic fucose-binding lectins. The 17 kDa protein was expressed recombinantly in E. coli and purified by affinity chromatography. Glycan microarray analysis with fluorescently labeled recombinant SL2-1 demonstrated its ability to bind to core α1-6 fucosylated N-glycans, but not to core α1-3 fucosylated N-glycans, or other α1-2, α1-3 and α1-4 fucosylated oligosaccharides. The minimal high affinity binding epitope of SL2-1 was α1-6 fucosylated di-n-acetylchitobiose. The recombinant lectin was efficient in detection of N-glycan core fucosylation using lectin blotting and lectin ELISA assays. Finally, a workflow using SL2-1 for selective and quantitative profiling of core fucosylated N-glycans using UPLC-HILIC-FLR analysis was established. The approach was validated for selective capture and analysis of core fucosylated N-glycans present in complex glycan mixtures derived from mammalian serum IgG.
Collapse
|
45
|
Enzymes for N-Glycan Branching and Their Genetic and Nongenetic Regulation in Cancer. Biomolecules 2016; 6:biom6020025. [PMID: 27136596 PMCID: PMC4919920 DOI: 10.3390/biom6020025] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
N-glycan, a fundamental and versatile protein modification in mammals, plays critical roles in various physiological and pathological events including cancer progression. The formation of N-glycan branches catalyzed by specific N-acetylglucosaminyltransferases [GnT-III, GnT-IVs, GnT-V, GnT-IX (Vb)] and a fucosyltransferase, Fut8, provides functionally diverse N-glycosylated proteins. Aberrations of these branches are often found in cancer cells and are profoundly involved in cancer growth, invasion and metastasis. In this review, we focus on the GlcNAc and fucose branches of N-glycans and describe how their expression is dysregulated in cancer by genetic and nongenetic mechanisms including epigenetics and nucleotide sugar metabolisms. We also survey the roles that these N-glycans play in cancer progression and therapeutics. Finally, we discuss possible applications of our knowledge on basic glycobiology to the development of medicine and biomarkers for cancer therapy.
Collapse
|