1
|
Chen S, Zeng X, Wu M, Zhu J, Wu Y. Sodium Alginate Hydrogel Infusion of Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles and p38α Antagonistic Peptides in Myocardial Infarction Fibrosis Mitigation. J Am Heart Assoc 2025; 14:e036887. [PMID: 40178108 DOI: 10.1161/jaha.124.036887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/27/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND Myocardial fibrosis is a pathological hallmark of heart failure post infarction, emphasizing the need for innovative treatment strategies. This research assesses the antifibrotic potential of a sodium alginate (SA) hydrogel loaded with extracellular vesicles (EVs) from bone marrow mesenchymal stem cells and PAP (p38α antagonistic peptides), aiming to interfere with fibrosis-inducing pathways in myocardial tissue after infarction. METHODS We induced fibrosis in mouse cardiac fibroblasts through hypoxia and disrupted the Mapk14 gene to study its contribution to fibrosis. Mesenchymal stem cell-derived EVs, loaded with PAP, were encapsulated in the SA hydrogel (EVs-PAP@SA). The formulation was tested in vitro for its effect on fibrotic marker expression and cell behavior, and in vivo in a murine model of myocardial infarction for its therapeutic efficacy. RESULTS Map k14 silencing showed a decrease in the fibrotic response of cardiac fibroblasts. Treatment with the EVs-PAP@SA hydrogel notably reduced profibrotic signaling, increased cell proliferation and migration, and lowered apoptosis rates. The in vivo treatment with the hydrogel post myocardial infarction significantly diminished myocardial fibrosis and improved cardiac performance. CONCLUSIONS The study endorses the SA hydrogel as an effective vehicle for delivering mesenchymal stem cell-derived EVs and PAP to the heart post myocardial infarction, providing a novel approach for modulating myocardial fibrosis and promoting cardiac healing.
Collapse
Affiliation(s)
- Siyao Chen
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Xiaodong Zeng
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Meifeng Wu
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Jiade Zhu
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| | - Yijin Wu
- Department of Intensive Care Unit of Cardiovascular Surgery Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University Guangzhou China
| |
Collapse
|
2
|
Sokal A, Mruczek P, Niedoba M, Dewalska A, Stocerz K, Kadela-Tomanek M. Anticancer Activity of Ether Derivatives of Chrysin. Molecules 2025; 30:960. [PMID: 40005270 PMCID: PMC11857933 DOI: 10.3390/molecules30040960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Chrysin, a naturally occurring flavonoid, exhibits a broad spectrum of biological activities, including showing anticancer properties. However, its clinical application is limited by poor bioavailability and low solubility. The introduction of an amine, amide, ester, or alkoxy group to a flavone skeleton influences the biological activity. This review also discusses hybrid compounds, such as the chrysin-porphyrin hybrid, which are characterized by higher biological activity and better bioavailability properties than single molecules. This review concentrates on the anticancer activity of chrysin and its derivatives against the most popular cancers, such as breast, lung, prostate, and gastrointestinal tumors.
Collapse
Affiliation(s)
- Arkadiusz Sokal
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (A.S.); (P.M.)
- Doctoral School, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.); (A.D.); (K.S.)
| | - Patryk Mruczek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (A.S.); (P.M.)
| | - Mateusz Niedoba
- Doctoral School, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.); (A.D.); (K.S.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland
| | - Agnieszka Dewalska
- Doctoral School, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.); (A.D.); (K.S.)
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana Str., 41-800 Zabrze, Poland
| | - Klaudia Stocerz
- Doctoral School, Medical University of Silesia in Katowice, 15 Poniatowskiego Str., 40-055 Katowice, Poland; (M.N.); (A.D.); (K.S.)
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 10 Jedności Str., 41-200 Sosnowiec, Poland
| | - Monika Kadela-Tomanek
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
3
|
Zhou P, Xu HJ, Wang L. Cardiovascular protective effects of natural flavonoids on intestinal barrier injury. Mol Cell Biochem 2025:10.1007/s11010-025-05213-2. [PMID: 39820766 DOI: 10.1007/s11010-025-05213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Natural flavonoids may be utilized as an important therapy for cardiovascular diseases (CVDs) caused by intestinal barrier damage. More research is being conducted on the protective properties of natural flavonoids against intestinal barrier injury, although the underlying processes remain unknown. Thus, the purpose of this article is to present current research on natural flavonoids to reduce the incidence of CVDs by protecting intestinal barrier injury, with a particular emphasis on intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression). Furthermore, the mechanisms driving intestinal barrier injury development are briefly explored, as well as natural flavonoids having CVD-protective actions on the intestinal barrier. In addition, natural flavonoids with myocardial protective effects were docked with ZO-1 targets to find natural products with higher activity. These natural flavonoids can improve intestinal mechanical barrier function through anti-oxidant or anti-inflammatory mechanism, and then prevent the occurrence and development of CVDs.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hui-Juan Xu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
4
|
Xu H, Yu S, Lin C, Dong D, Xiao J, Ye Y, Wang M. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155409. [PMID: 38342018 DOI: 10.1016/j.phymed.2024.155409] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Flavonoids are extensively present in fruits, vegetables, grains, and medicinal plants. Myocardial ischemia and reperfusion (MI/R) comprise a sequence of detrimental incidents following myocardial ischemia. Research indicates that flavonoids have the potential to act as cardioprotective agents against MI/R injuries. Several specific flavonoids, e.g., luteolin, hesperidin, quercetin, kaempferol, and puerarin, have demonstrated cardioprotective activities in animal models. PURPOSE The objective of this review is to identify the cardioprotective flavonoids, investigate their mechanisms of action, and explore their application in myocardial ischemia. METHODS A search of PubMed database and Google Scholar was conducted using keywords "myocardial ischemia" and "flavonoids". Studies published within the last 10 years reporting on the cardioprotective effects of natural flavonoids on animal models were analyzed. RESULTS A total of 55 natural flavonoids were identified and discussed within this review. It can be summarized that flavonoids regulate the following main strategies: antioxidation, anti-inflammation, calcium modulation, mitochondrial protection, ER stress inhibition, anti-apoptosis, ferroptosis inhibition, autophagy modulation, and inhibition of adverse cardiac remodeling. Additionally, the number and position of OH, 3'4'-catechol, C2=C3, and C4=O may play a significant role in the cardioprotective activity of flavonoids. CONCLUSION This review serves as a reference for designing a daily diet to prevent or reduce damages following ischemia and screening of flavonoids for clinical application.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China
| | - Shenglong Yu
- Department of Cardiovascular, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Chunxi Lin
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Dingjun Dong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Campus, E-32004 Ourense, Spain
| | - Yanbin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China.
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China.
| |
Collapse
|
5
|
Hao B, Yang Z, Liu H, Liu Y, Wang S. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Curr Issues Mol Biol 2024; 46:2884-2925. [PMID: 38666911 PMCID: PMC11049524 DOI: 10.3390/cimb46040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.
Collapse
Affiliation(s)
| | | | | | | | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (B.H.); (Z.Y.); (H.L.); (Y.L.)
| |
Collapse
|
6
|
Zhao X, Dai R, Wang J, Cao L, Chen P, Yao W, Cheng F, Bao B, Zhang L. Analysis of the permeable and retainable components of Cayratia japonica ointment through intact or broken skin after topical application by UPLC-Q-TOF-MS/MS combined with in vitro transdermal assay. J Pharm Biomed Anal 2024; 238:115853. [PMID: 37976992 DOI: 10.1016/j.jpba.2023.115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Cayratia japonica ointment has been used for many years to promote wound healing after perianal abscess surgery. This study aimed to determine the skin-permeable and skin-retainable components of Cayratia japonica ointment after topical application to intact or broken skin via UPLC-Q-TOF-MS/MS analysis and in vitro transdermal assay. Moreover, a combination of semi-quantitative and molecular docking analyses was performed to identify the main active components of the Cayratia japonica ointment and the probable phases of the wound healing process that they act on. Modified vertical Franz diffusion cells and abdominal skin of rats were selected for the in vitro transdermal study. Mass spectrometry data were collected in both positive and negative ion modes. A total of 7 flavonoids (schaftoside, luteolin-7-O-glucuronide, luteolin-7-O-glucoside, apigenin-7-O-glucuronide, luteolin, apigenin, and chrysin) and 1 coumarin (esculetin), were found to permeate and/or retained by intact or broken skin. Among them, the flavonoids were more permeable through intact/broken skin and exhibited stronger binding affinities for targets related to the inflammatory and proliferative phases of wound healing. This study suggests that the flavonoids in Cayratia japonica ointment are most likely the main active components and are crucial at the inflammatory and proliferative phases of wound healing.
Collapse
Affiliation(s)
- Xuelong Zhao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, China
| | - Ruixue Dai
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, China
| | - Jing Wang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China
| | - Liangliang Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, China
| | - Peidong Chen
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Weifeng Yao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Fangfang Cheng
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Beihua Bao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Li Zhang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Centre of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, Jiangsu Province, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
7
|
Xu ZJ, Zhang PY, Li ZQ, Zhu HP, Tan WL, Ren PH. LncRNA AC125982.2 regulates apoptosis of cardiomyocytes through mir-450b-3p/ATG4B axis in a rat model with myocardial infarction. Heliyon 2023; 9:e22467. [PMID: 38074857 PMCID: PMC10700634 DOI: 10.1016/j.heliyon.2023.e22467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The occurrence and disability of myocardial infarction (MI) are on the rise globally, making it a significant contributor to cardiovascular mortality. Irreversible myocardial apoptosis plays a crucial role in causing MI. Long non-coding RNAs (LncRNAs) are key regulators of the cardiac remodeling process. Therefore, it is necessary to explore the effect of LncRNAs on cardiomyocyte apoptosis in MI. METHODS The rat-MI model was constructed, LncRNA-Seq and qPCR analyses were used to determine differentially expressed genes obtained from heart tissue of rats in the MI and sham groups. The miRanda software was used to predict the binding sites of LncRNA-miRNA and miRNA-mRNA, which were futhrer verified by dual luciferase assay. The LncRNA-miRNA-apoptosis pathway was further validated using hypoxia-exposed primary cardiomyocytes. RESULTS Compared to the sham group, 412 LncRNAs were upregulated and 501 LncRNAs were downregulated in MI-rat heart tissues. Among them, LncRNA AC125982.2 was most significantly upregulated in MI-rat heart tissues and hypoxic cardiomyocytes. Knockdown of AC125982.2 and ATG4B expression reversed hypoxia-induced apoptosis. In addition, transfection of mir-450b-3p inhibitor attenuated the protective effect of AC125982.2 knockdown. Moreover, we found that AC125982.2 modulated ATG4B expression by acting as a sponge for miR-450b-3p. CONCLUSION Upregulated AC125982.2 expression regulates ATG4B by sponging miR-450b-3p, promoting cardiomyocyte apoptosis and contributing to rat MI development.
Collapse
Affiliation(s)
- Zhi-jun Xu
- Guangzhou Medical University, Guangzhou, 511436, China
| | | | - Zhen-qiu Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Han-ping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wei-lu Tan
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Pei-hua Ren
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| |
Collapse
|
8
|
Farag A, Mandour AS, Kaneda M, Elfadadny A, Elhaieg A, Shimada K, Tanaka R. Effect of trehalose on heart functions in rats model after myocardial infarction: assessment of novel intraventricular pressure and heart rate variability. Front Cardiovasc Med 2023; 10:1182628. [PMID: 37469485 PMCID: PMC10353053 DOI: 10.3389/fcvm.2023.1182628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
Background Myocardial infarctions remain a leading cause of global deaths. Developing novel drugs to target cardiac remodeling after myocardial injury is challenging. There is an increasing interest in exploring natural cardioprotective agents and non-invasive tools like intraventricular pressure gradients (IVPG) and heart rate variability (HRV) analysis in myocardial infarctions. Trehalose (TRE), a natural disaccharide, shows promise in treating atherosclerosis, myocardial infarction, and neurodegenerative disorders. Objectives The objective of this study was to investigate the effectiveness of TRE in improving cardiac functions measured by IVPG and HRV and reducing myocardial remodeling following myocardial infarction in rat model. Methods Rats were divided into three groups: sham, myocardial infarction (MI), and trehalose-treated MI (TRE) groups. The animals in the MI and TRE groups underwent permanent ligation of the left anterior descending artery. The TRE group received 2% trehalose in their drinking water for four weeks after the surgery. At the end of the experiment, heart function was assessed using conventional echocardiography, novel color M-mode echocardiography for IVPG evaluation, and HRV analysis. After euthanasia, gross image scoring, histopathology, immunohistochemistry, and quantitative real-time PCR were performed to evaluate inflammatory reactions, oxidative stress, and apoptosis. Results The MI group exhibited significantly lower values in multiple IVPG parameters. In contrast, TRE administration showed an ameliorative effect on IVPG changes, with results comparable to the sham group. Additionally, TRE improved HRV parameters, mitigated morphological changes induced by myocardial infarction, reduced histological alterations in wall mass, and suppressed inflammatory reactions within the infarcted heart tissues. Furthermore, TRE demonstrated antioxidant, anti-apoptotic and anti-fibrotic properties. Conclusion The investigation into the effect of trehalose on a myocardial infarction rat model has yielded promising outcomes, as evidenced by improvements observed through conventional echocardiography, histological analysis, and immunohistochemical analysis. While minor trends were noticed in IVPG and HRV measurements. However, our findings offer valuable insights and demonstrate a correlation between IVPG, HRV, and other traditional markers of echo assessment in the myocardial infarction vs. sham groups. This alignment suggests the potential of IVPG and HRV as additional indicators for future research in this field.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed S. Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur El-Beheira, Egypt
| | - Asmaa Elhaieg
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
9
|
Meshram S, Verma VK, Mutneja E, Sahu AK, Malik S, Mishra P, Bhatia J, Arya DS. Evidence-based mechanistic role of chrysin towards protection of cardiac hypertrophy and fibrosis in rats. Br J Nutr 2023; 129:1105-1118. [PMID: 35177130 DOI: 10.1017/s0007114522000472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cardiac hypertrophy is the enlargement of cardiomyocytes in response to persistent release of catecholamine which further leads to cardiac fibrosis. Chrysin, flavonoid from honey, is well known for its multifarious properties like antioxidant, anti-inflammatory, anti-fibrotic and anti-apoptotic. To investigate the cardioprotective potential of chrysin against isoproterenol (ISO), cardiac hypertrophy and fibrosis are induced in rats. Acclimatised male albino Wistar rats were divided into seven groups (n 6): normal (carboxymethyl cellulose at 0·5 % p.o.; as vehicle), hypertrophy control (ISO 3 mg/kg, s.c.), CHY15 + H, CHY30 + H & CHY60 + H (chrysin; p.o.15, 30 and 60 mg/kg respectively + ISO at 3 mg/kg, s.c.), CHY60 (chrysin 60 mg/kg in per se) and LST + H (losartan 10 mg/kg p.o. + ISO 3 mg/kg, s.c.) were treated for 28 d. After the dosing schedule on day 29, haemodynamic parameters were recorded, after that blood and heart were excised for biochemical, histological, ultra-structural and molecular evaluations. ISO administration significantly increases heart weight:body weight ratio, pro-oxidants, inflammatory and cardiac injury markers. Further, histopathological, ultra-structural and molecular studies confirmed deteriorative changes due to ISO administration. Pre-treatment with chrysin of 60 mg/kg reversed the ISO-induced damage to myocardium and prevent cardiac hypertrophy and fibrosis through various anti-inflammatory, anti-apoptotic, antioxidant and anti-fibrotic pathways. Data demonstrated that chrysin attenuated myocardial hypertrophy and prevented fibrosis via activation of transforming growth factor-beta (TGF-β)/Smad signalling pathway.
Collapse
Affiliation(s)
- Sonali Meshram
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Vipin Kumar Verma
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Ekta Mutneja
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Anil Kumar Sahu
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Salma Malik
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Prashant Mishra
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Dharamvir S Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi110029, India
| |
Collapse
|
10
|
Yuvaraj S, Ajeeth AK, Puhari SSM, Abhishek A, Ramprasath T, Vasudevan V, Vignesh N, Selvam GS. Chrysin protects cardiac H9c2 cells against H 2O 2-induced endoplasmic reticulum stress by up-regulating the Nrf2/PERK pathway. Mol Cell Biochem 2023; 478:539-553. [PMID: 35943656 DOI: 10.1007/s11010-022-04531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
Oxidative and endoplasmic reticulum (ER) stress-mediated cardiac apoptosis is an essential pathological process in cardiovascular diseases (CVDs). Chrysin (Chy) is a natural flavonoid that exerts several health benefits, particularly anti-oxidative and anti-apoptotic effects. However, its protective effect against CVDs and its mechanism of action at a molecular level remains unclear. Therefore, the present study aimed to investigate the interaction of ER stress response protein with Chy by computational analysis and molecular action in H2O2-induced oxidative and ER stress in cardiomyoblast cells. H9c2 cells were pre-treated with 50 μM of Chy for 24 h and exposed to H2O2 for 1 h. Explore the Chy-mediated Nrf2 signalling on ER stress reduction, H9c2 cell lines were transfected with Nrf2 siRNA for 48 h and further treated with Chy for 24 h and subjected to H2O2 for 1 h. Chy pre-treatment increased the Nrf2-regulated gene expression, reduced the ER stress signalling genes such as CHOP and GRP78, and increased the PERK and AFT6 expression compared to H2O2-treated cells. Chy preincubation down-regulated the expression of PI3K, NF-κB, and caspase-3. Fluorescence staining revealed that Chy reduced intracellular ROS generation, ER stress, apoptosis, and increased MMP. This beneficial effect of Chy was abolished when silencing Nrf2 in H9c2 cells. Overall, the present study confirmed that Chy showed the cardioprotective effect by attenuating ER stress via the activation of Nrf2 signalling. Therefore, the study concluded that improving Nrf2 signalling by Chy supplementation could provide a promising therapeutic target in oxidative and ER stress-mediated CVDs complications.
Collapse
Affiliation(s)
- Subramani Yuvaraj
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Arumugam Kalaiselvi Ajeeth
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Shanavas Syed Mohamed Puhari
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Albert Abhishek
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Varadaraj Vasudevan
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Narasimman Vignesh
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Govindan Sadasivam Selvam
- Molecular Cardiology Unit, Department of Biochemistry, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
11
|
Zhou P, Ma YY, Zhao XN, Hua F. Phytochemicals as potential target on thioredoxin-interacting protein (TXNIP) for the treatment of cardiovascular diseases. Inflammopharmacology 2023; 31:207-220. [PMID: 36609715 DOI: 10.1007/s10787-022-01130-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
Cardiovascular diseases (CVDs) are currently the major cause of death and morbidity on a global scale. Thioredoxin-interacting protein (TXNIP) is a marker related to metabolism, oxidation, and inflammation induced in CVDs. The overexpression of TXNIP is closely related to the occurrence and development of CVDs. Hence, TXNIP inhibition is critical for reducing the overactivation of its downstream signaling pathway and, as a result, myocardial cell damage. Due to the chemical variety of dietary phytochemicals, they have garnered increased interest for CVDs prevention and therapy. Phytochemicals are a source of medicinal compounds for a variety of conditions, which aids in the development of effective and safe TXNIP-targeting medications. The objective of this article is to find and virtual screen novel safe, effective, and economically viable TXNIP inhibitors from flavonoids, phenols, and alkaloids derived from foods and plants. The results of the docking study revealed that silibinin, rutin, luteolin, baicalin, procyanidin B2, hesperetin, icariin, and tilianin in flavonoids, polydatin, resveratrol, and salidroside in phenols, and neferine in alkaloids had the highest Vina scores, indicating that these compounds are the active chemicals on TXNIP. In particular, silibinin can be utilized as a lead chemical in the process of structural alteration. These dietary phytochemicals may aid in the discovery of lead compounds for the development of innovative TXNIP agents for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Yao-Yao Ma
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Xiao-Ni Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, People's Republic of China
| | - Fang Hua
- School of Pharmacy, Anhui Xinhua University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
12
|
Zhen C, Wu X, Zhang J, Liu D, Li G, Yan Y, He X, Miao J, Song H, Yan Y, Zhang Y. Ganoderma lucidum polysaccharides attenuates pressure-overload-induced pathological cardiac hypertrophy. Front Pharmacol 2023; 14:1127123. [PMID: 37033616 PMCID: PMC10076566 DOI: 10.3389/fphar.2023.1127123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Pathological cardiac hypertrophy is an important risk factor for cardiovascular disease. However, drug therapies that can reverse the maladaptive process and restore heart function are limited. Ganoderma lucidum polysaccharides (GLPs) are one of the main active components of G. lucidum (Ganoderma lucidum), and they have various pharmacological effects. GLPs have been used as Chinese medicine prescriptions for clinical treatment. In this study, cardiac hypertrophy was induced by transverse aortic constriction (TAC) in mice. We found that GLPs ameliorate Ang II-induced cardiomyocyte hypertrophy in vitro and attenuate pressure overload-induced cardiac hypertrophy in vivo. Further research indicated that GLPs attenuated the mRNA levels of hypertrophic and fibrotic markers to inhibit cardiac hypertrophy through the PPARγ/PGC-1α pathway. Overall, these results indicate that GLPs inhibit cardiac hypertrophy through downregulating key genes for hypertrophy and fibrosis and attenuate pressure overload-induced pathological cardiac hypertrophy by activating PPARγ. This study provides important theoretical support for the potential of using GLPs to treat pathological myocardial hypertrophy and heart failure.
Collapse
Affiliation(s)
- Changlin Zhen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Xunxun Wu
- School of Biomedical Science, Huaqiao University, Quanzhou, China
| | - Jing Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Dan Liu
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Guoli Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yongbo Yan
- The People’s Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing, China
| | - Xiuzhen He
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Jiawei Miao
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Hongxia Song
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yifan Yan
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
- *Correspondence: Yifan Yan, ; Yonghui Zhang,
| | - Yonghui Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
- *Correspondence: Yifan Yan, ; Yonghui Zhang,
| |
Collapse
|
13
|
Zhou P, Zhao XN, Ma YY, Tang TJ, Wang SS, Wang L, Huang JL. Virtual screening analysis of natural flavonoids as trimethylamine (TMA)-lyase inhibitors for coronary heart disease. J Food Biochem 2022; 46:e14376. [PMID: 35945702 DOI: 10.1111/jfbc.14376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and progression of CHD. The gut microbial metabolite, trimethylamine-N-oxide (TMAO), is intimately linked to the pathophysiology of CHD. TMAO is formed when trimethylamine (TMA) is converted by flavin-containing monooxygenases in the hepatocytes. Therefore, inhibition of TMA production is essential to reduce TMAO levels. Flavonoids may reduce the risk of death from cardiovascular disease. In this article, we reviewed and evaluated twenty-two flavonoids for the therapy of CHD based on their inhibition of TMA-lyase by molecular docking. Docking results revealed that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had a good binding effect with TMA-lyase. This indicates that these chemicals were the most active and could be used as lead compounds for structural modification in the future. PRACTICAL APPLICATIONS: Flavonoids are a large class of polyphenolic compounds found in fruits, vegetables, flowers, tea, and herbal medicines, which are inexorably metabolized and transformed into bioactive metabolites by α-rhamnosidase, β-glucuronidase, β-glucosidase, and nitroreductase produced by the gut microbiota, which plays a beneficial role in the prevention and treatment of cardiovascular diseases. Because flavonoids protect the cardiovascular system and regulate the gut microbiota, and the gut microbiota is directly connected to TMAO, thus, reducing TMAO levels involves blocking the transition of TMA to TMAO, which may be performed by reducing TMA synthesis. Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had good binding effects on TMA-lyase, which were the most active and could be used as lead compounds for structural modification.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
| | - Xiao-Ni Zhao
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yao-Yao Ma
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Tong-Juan Tang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shu-Shu Wang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Liang Wang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
| | - Jin-Ling Huang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
| |
Collapse
|
14
|
Yang M, Xiong J, Zou Q, Wang X, Hu K, Zhao Q. Sinapic Acid Attenuated Cardiac Remodeling After Myocardial Infarction by Promoting Macrophage M2 Polarization Through the PPARγ Pathway. Front Cardiovasc Med 2022; 9:915903. [PMID: 35898278 PMCID: PMC9309384 DOI: 10.3389/fcvm.2022.915903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Macrophage polarization is an important regulatory mechanism of ventricular remodeling. Studies have shown that sinapic acid (SA) exerts an anti-inflammatory effect. However, the effect of SA on macrophages is still unclear. Objectives The purpose of the study was to investigate the role of SA in macrophage polarization and ventricular remodeling after myocardial infarction (MI). Methods An MI model was established by ligating the left coronary artery. The rats with MI were treated with SA for 1 or 4 weeks after MI. The effect of SA on bone marrow-derived macrophages (BMDMs) was also observed in vitro. Results Cardiac systolic dysfunction was significantly improved after SA treatment. SA reduced MCP-1 and CCR2 expression and macrophage infiltration. SA decreased the levels of the inflammatory factors TNF-α, IL-1α, IL-1β, and iNOS and increased the levels of the M2 macrophage markers CD206, Arg-1, IL-10, Ym-1, Fizz-1, and TGF-β at 1 week after MI. SA significantly increased CD68+/CD206+ macrophage infiltration. Myocardial interstitial fibrosis and MMP-2 and MMP-9 levels were decreased, and the sympathetic nerve marker TH and nerve sprouting marker GAP43 were suppressed after SA treatment at 4 weeks after MI. The PPARγ level was notably upregulated after SA treatment. In vitro, SA also increased the expression of PPARγ mRNA in BMDMs and IL-4-treated BMDMs in a concentration-dependent manner. SA enhanced Arg1 and IL-10 expression in BMDMs, and the PPARγ antagonist GW9662 attenuated M2 macrophage marker expression. Conclusions Our results demonstrated that SA attenuated structural and neural remodeling by promoting macrophage M2 polarization via PPARγ activation after MI.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Xiong
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qingyan Zhao
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Ke Hu
| |
Collapse
|
15
|
Cheng W, Cui C, Liu G, Ye C, Shao F, Bagchi AK, Mehta JL, Wang X. NF-κB, A Potential Therapeutic Target in Cardiovascular Diseases. Cardiovasc Drugs Ther 2022; 37:571-584. [PMID: 35796905 DOI: 10.1007/s10557-022-07362-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. Atherosclerosis is the basis of major CVDs - myocardial ischemia, heart failure, and stroke. Among numerous functional molecules, the transcription factor nuclear factor κB (NF-κB) has been linked to downstream target genes involved in atherosclerosis. The activation of the NF-κB family and its downstream target genes in response to environmental and cellular stress, hypoxia, and ischemia initiate different pathological events such as innate and adaptive immunity, and cell survival, differentiation, and proliferation. Thus, NF-κB is a potential therapeutic target in the treatment of atherosclerosis and related CVDs. Several biologics and small molecules as well as peptide/proteins have been shown to regulate NF-κB dependent signaling pathways. In this review, we will focus on the function of NF-κB in CVDs and the role of NF-κB inhibitors in the treatment of CVDs.
Collapse
Affiliation(s)
- Weijia Cheng
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Can Cui
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chenji Ye
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Fang Shao
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450046, China
| | - Ashim K Bagchi
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA.
| | - Xianwei Wang
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China. .,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
16
|
Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022; 27:molecules27092901. [PMID: 35566252 PMCID: PMC9100260 DOI: 10.3390/molecules27092901] [Citation(s) in RCA: 324] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
Hydroxylated polyphenols, also called flavonoids, are richly present in vegetables, fruits, cereals, nuts, herbs, seeds, stems, and flowers of numerous plants. They possess numerous medicinal properties such as antioxidant, anti-cancer, anti-microbial, neuroprotective, and anti-inflammation. Studies show that flavonoids activate antioxidant pathways that render an anti-inflammatory effect. They inhibit the secretions of enzymes such as lysozymes and β-glucuronidase and inhibit the secretion of arachidonic acid, which reduces inflammatory reactions. Flavonoids such as quercetin, genistein, apigenin, kaempferol, and epigallocatechin 3-gallate modulate the expression and activation of a cytokine such as interleukin-1beta (IL-1β), Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8); regulate the gene expression of many pro-inflammatory molecules such s nuclear factor kappa-light chain enhancer of activated B cells (NF-κB), activator protein-1 (AP-1), intercellular adhesion molecule-1 (ICAM), vascular cell adhesion molecule-1 (VCAM), and E-selectins; and also inhibits inducible nitric oxide (NO) synthase, cyclooxygenase-2, and lipoxygenase, which are pro-inflammatory enzymes. Understanding the anti-inflammatory action of flavonoids provides better treatment options, including coronavirus disease 2019 (COVID-19)-induced inflammation, inflammatory bowel disease, obstructive pulmonary disorder, arthritis, Alzheimer’s disease, cardiovascular disease, atherosclerosis, and cancer. This review highlights the sources, biochemical activities, and role of flavonoids in enhancing human health.
Collapse
|
17
|
|
18
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
19
|
Talebi M, Talebi M, Farkhondeh T, Simal-Gandara J, Kopustinskiene DM, Bernatoniene J, Pourbagher-Shahri AM, Samarghandian S. Promising Protective Effects of Chrysin in Cardiometabolic Diseases. Curr Drug Targets 2021; 23:458-470. [PMID: 34636295 DOI: 10.2174/1389450122666211005113234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Cardiometabolic diseases (CMD) have a great burden in terms of morbidity and mortality worldwide. The vicious cycle of CMD consists of type II diabetes, hypertension, dyslipidemia, obesity, and atherosclerosis interacting and feedbacking each other. The natural flavonoid chrysin has been displayed to own a broad spectrum of therapeutic impacts for human health. Herein, we did an in-depth investigation of the novel mechanisms of chrysin's cardioprotection against cardiometabolic disorder. Studies have shown that chrysin protects the cardiovascular system by enhancing the intrinsic antioxidative defense system. This antioxidant boost by chrysin protects against several risk factors of cardiometabolic disorders including atherosclerosis, vascular inflammation and dysfunction, platelet aggregation, hypertension, dyslipidemia, cardiotoxicity, myocardial infarction, injury and remodeling, diabetes-induced injuries, and obesity. Chrysin also exhibited anti-inflammatory mechanisms through inhibiting pro-inflammatory pathways including NF-κB, MAPK, and PI3k/Akt. Furthermore, chrysin modulated NO pathway, RAS system, AGE/RAGE pathway, PPARs pathway which contributed to the risk factors of cardiometabolic disorders. Taken together, the mechanisms in which chrysin protects against cardiometabolic disorder are more than merely antioxidation and anti-inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381. Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019. United States
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand. Iran
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense. Spain
| | - Dalia M Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas. Lithuania
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas. Lithuania
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
20
|
Xingyue L, Shuang L, Qiang W, Jinjuan F, Yongjian Y. Chrysin Ameliorates Sepsis-Induced Cardiac Dysfunction Through Upregulating Nfr2/Heme Oxygenase 1 Pathway. J Cardiovasc Pharmacol 2021; 77:491-500. [PMID: 33818552 DOI: 10.1097/fjc.0000000000000989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT The incidence of myocardial dysfunction caused by sepsis is high, and the mortality of patients with sepsis can be significantly increased. During sepsis, oxidative stress and inflammation can lead to severe organ dysfunction. Flavone chrysin is one of the indispensable biological active ingredients for different fruits and vegetables and has antioxidant and anti-inflammatory properties. However, it is not clear whether chrysin is an effective treatment for heart dysfunction caused by sepsis. We found that it had protective effects against the harmful effects caused by LPS, manifested in improved survival, normalized cardiac function, improved partial pathological scores of myocardial tissue, and remission of apoptosis, as well as reduced oxidative stress and inflammation. Mechanism studies have found that chrysin is an important antioxidant protein, a key regulator of heme oxygenase 1 (HO-1). We found that HO-1 levels were increased after LPS intervention, and chrysin further increased HO-1 levels, along with the addition of Nrf2, a regulator of antioxidant proteins. Pretreatment with PD98059, an extracellular signal-regulated kinase-specific inhibitor, blocked chrysin-mediated phosphorylation of Nrf2 and the nuclear translocation of Nrf2. The protective effect of chrysin on sepsis-induced cardiac dysfunction was blocked by ZnPP, which is a HO-1 blocker. Chrysin increased antioxidant activity and reduced markers of oxidative stress (SOD and MDA) and inflammation (MPO and IL-1β), all of which were blocked by ZnPP. This indicates that HO-1 is the upstream molecule regulating the protective effect of chrysin. Thus, by upregulation of HO-1, chrysin protects against LPS-induced cardiac dysfunction and inflammation by inhibiting oxidative stress.
Collapse
Affiliation(s)
- Li Xingyue
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Li Shuang
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, PR China ; and
| | - Wang Qiang
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, PR China ; and
| | - Fu Jinjuan
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Yang Yongjian
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, PR China ; and
| |
Collapse
|
21
|
Yuvaraj S, Ramprasath T, Saravanan B, Vasudevan V, Sasikumar S, Selvam GS. Chrysin attenuates high-fat-diet-induced myocardial oxidative stress via upregulating eNOS and Nrf2 target genes in rats. Mol Cell Biochem 2021; 476:2719-2727. [PMID: 33677805 DOI: 10.1007/s11010-021-04105-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Hypercholesterolemia is one of the risk factors associated with increased morbidity and mortality in cardiovascular disorders. Chrysin (Chy) is reported to exhibit anti-inflammatory, anti-cancerous, anti-oxidative, anti-aging, and anti-atherogenic properties. In the present study, we aimed to investigate whether Chy would mediate the cardioprotective effect against hypercholesterolemia-triggered myocardial oxidative stress. Male Sprague Dawley rats were divided into different groups as control and fed with high-fat diet (HFD) followed by oral administration of Chy (100 mg/kg b.wt), atorvastatin (Atv) (10 mg/kg b.wt), and L-NAME (10 mg/kg b.wt) for 30 days. At the end of the experimental period, the rats were sacrificed and tissues were harvested. Biochemical results showed a significant increase of cardiac disease marker enzymes (ALT, AST, and CKMB), lipid peroxidation, and lipid profile (TC, TG, LDL, and VLDL) in HFD-fed rat tissues when compared to control, whereas oral administration of Chy significantly reduced the activities of these marker enzymes and controlled the lipid profile. qRT-PCR studies revealed that Chy administration significantly increased the expression of endothelial nitric oxide synthase (eNOS), and Nrf2 target genes such as SOD, catalase, and GCL3 in left ventricular heart tissue of HFD-challenged rats. Immunohistochemistry results also showed that Chy treatment increased myocardial protein expression of eNOS and Nrf2 in HFD-challenged rats. Concluding the results of the present study, the Chy could mediate the cardioprotective effect through the activation of eNOS and Nrf2 signaling against hypercholesterolemia-induced oxidative stress. Thus, the administration of Chy would provide a promising therapeutic strategy for the prevention of HFD-induced oxidative stress-mediated myocardial complications.
Collapse
Affiliation(s)
- Subramani Yuvaraj
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Balakrishnan Saravanan
- National Institute for Research in Tuberculosis (NIRT) - ICMR Chetpet, Chennai, 600 031, India
| | - Varadaraj Vasudevan
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Sundaresan Sasikumar
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Govindan Sadasivam Selvam
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| |
Collapse
|
22
|
Salazar J, Cano C, Pérez JL, Castro A, Díaz MP, Garrido B, Carrasquero R, Chacín M, Velasco M, D Marco L, Rojas-Quintero J, Bermúdez V. Role of Dietary Polyphenols in Adipose Tissue Browning: A Narrative Review. Curr Pharm Des 2021; 26:4444-4460. [PMID: 32611294 DOI: 10.2174/1381612826666200701211422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Lifestyle modifications such as energy restriction and increased physical activity are highly effective in the management of obesity. However, adherence to these therapeutic approaches is poor. On the other hand, synthetic drugs used for obesity control are plagued by adverse effects. Despite these failures, adipose tissue is still an attractive therapeutic target for novel molecules, and thus, the characterisation of new and safer anti-obesity drugs is of significant interest. For this reason, in recent years, phenolic constituents of diverse plants have drawn much attention due to their health-promoting properties, opening new research lines related to brown adipose tissue activation and white adipose tissue (WAT) browning. The goal is to increase energy expenditure levels through thermogenic activity activation by multiple factors, like polyphenols. The suggested mechanisms by which polyphenols can modulate thermogenesis include Nor-epinephrine/Catechol-O-Methyl-Transferase (NE/COMT) inhibition, PPARγ co-activator alpha (PGC-1α)-dependent pathways activation, and mitochondrial biogenesis, among others. Although polyphenols such as quercetin, catechins, chrysin, luteolin, curcumin, resveratrol, gallic acid, and lignans have shown a positive effect on Non-Shivering Thermogenesis and WAT browning, most of them have only been active in murine models or in vitro systems, and their reproducibility in humans has to be proved. Probably in the future, an approach that includes these compounds as part of the nutritional regimen in conjunction with physical exercise, pharmacological and surgical therapy, would allow modulating a pathophysiological mechanism that is still elusive.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José L Pérez
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas, Venezuela
| | - Luis D Marco
- Hospital Clínico Universitario, INCLIVA, Nephrology department, Valencia, Espana
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
23
|
Sun LJ, Qiao W, Xiao YJ, Ren WD. Layer-specific strain for assessing the effect of naringin on systolic myocardial dysfunction induced by sepsis and its underlying mechanisms. J Int Med Res 2021; 49:300060520986369. [PMID: 33445988 PMCID: PMC7812414 DOI: 10.1177/0300060520986369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the protective effects of naringin on myocardial deformation and oxidative responses in rats with sepsis-induced myocardial dysfunction (SIMD). METHODS Global and segmental layer-specific longitudinal strain (LS) was assessed by speckle tracking echocardiography. Serum levels of creatine kinase, lactate dehydrogenase, superoxide dismutase, and malondialdehyde were measured. The activity of cleaved caspase-3 was determined by immunohistochemistry. Protein expression levels of Kelch-like ECH-related protein 1 (Keap1), nuclear erythroid factor 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were measured by western blotting. RESULTS Naringin inhibited the lipopolysaccharide-induced decrease in global and layer-specific LS of the left ventricle. Naringin also increased superoxide dismutase expression and decreased malondialdehyde, creatine kinase, lactate dehydrogenase, and cleaved caspase-3 expression in rats with SIMD. Furthermore, naringin increased Nrf2 and HO-1 protein expression levels, and decreased Keap1 protein expression levels in rats with SIMD. CONCLUSION Layer-specific LS analysis of myocardial function by speckle tracking echocardiography can reflect early changes in myocardial systolic function. Naringin may possess a protective effect through moderating lipopolysaccharide-induced myocardial oxidative stress via the Keap1/Nrf2/HO-1 pathway in rats with SIMD.
Collapse
Affiliation(s)
- Li-Juan Sun
- Department of Ultrasound, First Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Wei Qiao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yang-Jie Xiao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Wei-Dong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
24
|
Abedi F, Ghasemi S, Farkhondeh T, Azimi-Nezhad M, Shakibaei M, Samarghandian S. Possible Potential Effects of Honey and Its Main Components Against Covid-19 Infection. Dose Response 2021; 19:1559325820982423. [PMID: 33867892 PMCID: PMC8020257 DOI: 10.1177/1559325820982423] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 01/25/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral pneumonia that is spreading rapidly worldwide. The main feature of this disease is a severe acute respiratory syndrome and caused by coronavirus 2 (SARS-CoV-2). There are several unknowns about the pathogenesis and therapeutically treatment of COVID-19 infection. In addition, available treatment protocols have not been effective in managing COVID-19 infection. It is proposed that natural anti-oxidants such as lemon, green tea, saffron, curcuma longa, etc. with high flavonoids like safranal, crocin, crocetin, catechins, resveratrol, calebin A, curcumin have therapeutic potential against viral infections. In this context, honey and its main components are being investigated as an option for patients with COVID-19. The present study may indicate that honey and its main components inhibit the entry of the virus into the host cell and its replication as well as modulate the inflammatory cascade. This review provides basic information for the possible potential effects of honey and its main components for fighting with SARS-CoV-2.
Collapse
Affiliation(s)
- Farshid Abedi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeedeh Ghasemi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Azimi-Nezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
25
|
Wen K, Fang X, Yang J, Yao Y, Nandakumar KS, Salem ML, Cheng K. Recent Research on Flavonoids and their Biomedical Applications. Curr Med Chem 2021; 28:1042-1066. [PMID: 32660393 DOI: 10.2174/0929867327666200713184138] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, commonly found in various plants, are a class of polyphenolic compounds having a basic structural unit of 2-phenylchromone. Flavonoid compounds have attracted much attention due to their wide biological applications. In order to facilitate further research on the biomedical application of flavonoids, we surveyed the literature published on the use of flavonoids in medicine during the past decade, documented the commonly found structures in natural flavonoids, and summarized their pharmacological activities as well as associated mechanisms of action against a variety of health disorders including chronic inflammation, cancer, cardiovascular complications and hypoglycemia. In this mini-review, we provide suggestions for further research on the biomedical applications of flavonoids.
Collapse
Affiliation(s)
- Kangmei Wen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochuan Fang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junli Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongfang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | | | | | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family. They are ligand-activated transcription factors and exist in three different isoforms, PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs regulate a variety of functions, including glucose and lipid homeostasis, inflammation, and development. They exhibit tissue and cell type-specific expression patterns and functions. Besides the established notion of the therapeutic potential of PPAR agonists for the treatment of glucose and lipid disorders, more recent data propose specific PPAR ligands as potential therapies for cardiovascular diseases. In this review, we focus on the knowledge of PPAR function in myocardial infarction, a severe pathological condition for which therapeutic use of PPAR modulation has been suggested.
Collapse
|
27
|
Ren PH, Zhang ZM, Wang P, Zhu HP, Li ZQ. Yangxinkang tablet protects against cardiac dysfunction and remodelling after myocardial infarction in rats through inhibition of AMPK/mTOR-mediated autophagy. PHARMACEUTICAL BIOLOGY 2020; 58:321-327. [PMID: 32285737 PMCID: PMC7178820 DOI: 10.1080/13880209.2020.1748662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Context: Acute myocardial infarction (AMI) is defined as myocardial necrosis. Clinicians use the traditional Chinese patent medicine Yangxinkang Tablet (YXK) to treat chronic heart failure.Objective: To explore the effects of YXK on heart injury following AMI and the underlying mechanisms.Materials and methods: The AMI model was produced in Wistar rats by permanent ligation of the left anterior descending coronary artery. Rats were divided into the following five groups: Sham (n = 6), MI (Model, n = 10), AICAR (AMPK agonist, 50 mg/kg/d, i.p., n = 10), Compound C (AMPK inhibitor, 10 mg/kg/d, i.p., n = 10), and YXK (0.72 g/kg/d, gavage, n = 10) groups. Cardiac function, cardiac fibrosis, apoptosis, and expression of p-AMPK, p-mTOR, and autophagy-related proteins was measured after 4 weeks of treatment after the successful modelling of the AMI.Results: Compared to MI group, both YXK and AMPK inhibitor improved cardiac dysfunction and reduced cardiac fibrosis (15.6 ± 2.3; 22.6 ± 4.6 vs. 34.6 ± 4.3%) and myocardial cell apoptosis (12 ± 3.67; 25.6 ± 6.8 vs. 54 ± 4.8%). Futhermore, YXK and AMPK inhibitor significantly decreased p-AMPK expression by 11.05% and 14.64%, LC3II/I by 25.08% and 35.28% and Beclin-1 by 66.71% and 33.85%, increased p-mTOR by 22.14% and 47.46% and p62 by 70.83% and 18.58%.Conclusions: The underlying mechanism appears to include suppression of autophagy via inhibiting AMPK/mTOR signalling, suggesting that YXK may serve as a potentially effective Chinese herbal compound for suppressing cardiac fibrosis in heart injury.
Collapse
Affiliation(s)
- Pei-hua Ren
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-min Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Han-ping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen-qiu Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Lu Q, Guo P, Guo J, Ares I, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Targeting peroxisome proliferator-activated receptors: A new strategy for the treatment of cardiac fibrosis. Pharmacol Ther 2020; 219:107702. [PMID: 33022300 DOI: 10.1016/j.pharmthera.2020.107702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Cardiac fibrosis is a pathogenic factor of many cardiovascular diseases (CVD), which seriously affects people's life, and health and causes huge economic losses. Increasing evidence has shown that peroxisome proliferator-activated receptors (PPARs) can regulate the progression of cardiac fibrosis. For the first time, this review systematically summarizes the literature on cardiac fibrosis from the perspective of PPARs from 2010 to 2020. Moreover, the role of each PPARs in cardiac fibrosis was clarified in this scientific revision from the perspectives of pharmacologically active substances, known agonists, natural extract compounds, and nucleic-acid-based drugs in different CVD models. Furthermore, the combination of multiple PPARs on the treatment of cardiac fibrosis is discussed. This scientific review provides new ideas for targeting PPARs in the treatment of cardiac fibrosis and provides strategies for the development of new, safe, and effective pharmacological antagonists against cardiac fibrosis based on PPAR activity.
Collapse
Affiliation(s)
- Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pu Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingchao Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040 Madrid, Spain
| |
Collapse
|
29
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
30
|
Ni G, Wang K, Zhou Y, Wu X, Wang J, Shang H, Wang L, Li X. Citri reticulatae Pericarpium attenuates Ang II-induced pathological cardiac hypertrophy via upregulating peroxisome proliferator-activated receptors gamma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1064. [PMID: 33145283 PMCID: PMC7575934 DOI: 10.21037/atm-20-2118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Pathological cardiac hypertrophy is a major risk factor for cardiovascular diseases, including heart failure. However, limited pharmacological therapies are available for reversing the maladaptive process and restoring cardiac function. Citri reticulatae Pericarpium (CRP) has been used in traditional Chinese medicine prescriptions for clinical treatment. Previous studies have shown that CRP and its ingredients have beneficial effects on the cardiovascular system. However, whether CRP has a protective effect against pathological cardiac hypertrophy remains unknown. Methods Primary neonatal rat cardiomyocytes (NRCMs) were treated with angiotensin II (Ang II) to induce pathological hypertrophy in vitro. Immunofluorescent staining and quantitative real-time PCR (qRT-PCR) were used to determine the cell size and the expression of hypertrophic gene markers (Anp and Bnp), respectively. Male C57BL/6 mice were subjected to the investigation of cardiac hypertrophy induced by Ang II (2.5 mg/kg/d for 4 weeks). CRP (0.5 g/kg/d for 4 weeks) was administrated to treat mice with or without peroxisome proliferator-activated receptors gamma (PPARγ) inhibitor T0070907 (1 mg/kg/d for 4 weeks treatment) infused with Ang II. Cardiac hypertrophy (hematoxylin-eosin staining and qRT-PCR), fibrosis (Masson’s Trichrome staining, qRT-PCR, and western blot), and cardiac function (echocardiography) were examined in these mice. Western blot was used to determine the protein level of PPARγ and PGC-1α both in NRCMs and in mice. Results We found that CRP could prevent Ang II-induced pathological cardiac hypertrophy evidenced by improving cardiac function, decreasing hypertrophic growth and reducing cardiac fibrosis. Also, we demonstrated that PPARγ was upregulated by CRP both in NRCMs and in hearts. Moreover, PPARγ inhibitor could abolish the inhibitory effects of CRP on Ang II-induced pathological cardiac hypertrophy. Conclusions CRP attenuates Ang II-induced pathological cardiac hypertrophy by activating PPARγ.
Collapse
Affiliation(s)
- Gehui Ni
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yufei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
HMGB1 Aggravates Pressure Overload-Induced Left Ventricular Dysfunction by Promoting Myocardial Fibrosis. Int J Hypertens 2020. [DOI: 10.1155/2020/7270351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aim. Fibrosis had important effects on pressure overload-induced left ventricular (LV) dysfunction. High-mobility group box 1 (HMGB1), which was closely associated with fibrosis, was involved in the pressure overload-induced cardiac injury. This study determines the role of HMGB1 in LV dysfunction under pressure overload. Methods. Transverse aortic constriction (TAC) operation was performed on male C57BL/6J mice to build the model of pressure overload, while HMGB1 or PBS was injected into the LV wall. Cardiac function, collagen volume, and relevant genes were detected. Results. Echocardiography demonstrated that the levels of LV ejection fraction (LVEF) were markedly decreased on day 28 after TAC, which was consistent with raised collagen in the myocardium. Moreover, we found that the exposure of mice to TAC + HMGB1 is associated with higher mortality, BNP, and collagen volume in the myocardium and lower LVEF. In addition, real-time PCR showed that the expression of collagen type I, TGF-β, and MMP2 markedly increased in the myocardium after TAC, while HMGB1 overexpression further raised the TGF-β expression but not collagen type I and MMP2 expressions. Conclusion. This study indicated that exogenous HMGB1 overexpression in the myocardium aggravated the pressure overload-induced LV dysfunction by promoting cardiac fibrosis, which may be mediated by increasing the TGF-β expression.
Collapse
|
32
|
Bt Hj Idrus R, Sainik NQAV, Nordin A, Saim AB, Sulaiman N. Cardioprotective Effects of Honey and Its Constituent: An Evidence-Based Review of Laboratory Studies and Clinical Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3613. [PMID: 32455701 PMCID: PMC7277934 DOI: 10.3390/ijerph17103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease is a major public health burden worldwide. Myocardial infarction is the most common form of cardiovascular disease resulting from low blood supply to the heart. It can lead to further complications such as cardiac arrhythmia, toxic metabolite accumulation, and permanently infarcted areas. Honey is one of the most prized medicinal remedies used since ancient times. There is evidence that indicates honey can function as a cardioprotective agent in cardiovascular diseases. The present review compiles and discusses the available evidence on the effect of honey on cardiovascular diseases. Three electronic databases, namely, PubMed, Scopus, and MEDLINE via EBSCOhost, were searched between January 1959 and March 2020 to identify reports on the cardioprotective effect of honey. Based on the pre-set eligibility criteria, 25 qualified articles were selected and discussed in this review. Honey investigated in the studies included varieties according to their geological origin. Honey protects the heart via lipid metabolism improvement, antioxidative activity, blood pressure modulation, heartbeat restoration, myocardial infarct area reduction, antiaging properties, and cell apoptosis attenuation. This review establishes honey as a potential candidate to be explored further as a natural and dietary alternative to the management of cardiovascular disease.
Collapse
Affiliation(s)
- Ruszymah Bt Hj Idrus
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.H.I.); (A.N.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | | | - Abid Nordin
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.H.I.); (A.N.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Ampang, Selangor 68000, Malaysia;
| | - Nadiah Sulaiman
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia; (R.B.H.I.); (A.N.)
| |
Collapse
|
33
|
Chen H, Li M, Liu L, Zhu D, Tian G. Telmisartan improves myocardial remodeling by inhibiting leptin autocrine activity and activating PPARγ. Exp Biol Med (Maywood) 2020; 245:654-666. [PMID: 32075431 DOI: 10.1177/1535370220908215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanism responsible for myocardial remodeling in hypertensive left ventricular hypertrophy (LVH) is complex. This study was designed to investigate the role of telmisartan in improving myocardial remodeling in hypertensive LVH and to explore the molecular mechanisms underlying the effects of telmisartan on hypertensive LVH. Hypertensive LVH was established in eight-week-old male Sprague–Dawley (SD) rats by abdominal aortic constriction. Telmisartan was intragastrically administered six weeks after surgery. Telmisartan improved cardiac dysfunction and myocardial fibrosis and reduced myocardial renin-angiotensin-aldosterone system (RAAS) activity and leptin levels in hypertensive LVH rats. To assess the mechanism underlying hypertensive LVH, cardiac fibroblasts were treated in vitro with angiotensin II (Ang II) or leptin, plus various inhibitors. Ang II stimulated leptin synthesis and secretion in cardiac fibroblasts by promoting AP-1 nuclear translocation via the AT1R-ROS-ERK1/2 pathway. Leptin induced collagen metabolism disorder in cardiac fibroblasts via the JAK2/STAT3 pathway. Telmisartan improved collagen metabolism disorder by inhibiting leptin induced by local Ang II in an autocrine manner. Telmisartan also improved Ang II-induced collagen metabolism disorder by inhibiting STAT3 phosphorylation, a leptin downstream signal, by activating PPAR-γ. Telmisartan therefore improved myocardial remodeling in hypertensive LVH rats by acting as an AT1R antagonist, inhibiting leptin autocrine activity induced by local Ang II and by acting as a PPAR-γ agonist, inhibiting downstream leptin activation of STAT3 phosphorylation. These findings indicate the crosstalk between local myocardial RAAS and leptin and suggest a molecular mechanism by which telmisartan improves myocardial remodeling in hypertensive LVH. Impact statement This study shows the crosstalk between local myocardial RAAS and leptin in hypertensive LVH rats; that Ang II induces myocardial remodeling by stimulating leptin autocrine activity by promoting AP-1 nuclear translocation via the AT1R-ROS-ERK1/2 pathway; and that telmisartan improves myocardial remodeling by inhibiting local Ang II-induced leptin autocrine activity and by inhibiting the leptin downstream signal STAT3 phosphorylation by activating PPAR-γ. These findings reveal novel molecular mechanisms by which telmisartan improves myocardial remodeling and could help to identify therapeutic targets for hypertensive LVH.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| | - Min Li
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China.,Department of Cardiovascular Medicine, Weifang Traditional Chinese Medicine Hospital, Weifang City 261000, China
| | - Lei Liu
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| | - Danjun Zhu
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| | - Gang Tian
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| |
Collapse
|
34
|
Chrysin Modulates Genes Related to Inflammation, Tissue Remodeling, and Cell Proliferation in the Gastric Ulcer Healing. Int J Mol Sci 2020; 21:ijms21030760. [PMID: 31979417 PMCID: PMC7038074 DOI: 10.3390/ijms21030760] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Chrysin exhibits anti-inflammatory and antioxidant activities. Here, the gastroprotective effect of chrysin was investigated in mouse models of gastric ulcer induced by absolute ethanol, acetic acid, and ischemia-reperfusion injury. The gastric-healing effect was evaluated at 7 and 14 days after treatment; the mechanism of action was verified using the expression of metalloproteinase 2 (MMP-2) and 9 (MMP-9), caspase-3, cyclooxygenase 1 (COX-1) and 2 (COX-2), epidermal growth factor (EGF), and interleukin-10. Chrysin (10 mg/kg) inhibited macroscopic lesions and increased catalase activity in the mouse model established using absolute ethanol. It ameliorated the gastric ulcer caused by acetic acid by improving the expression of inflammatory genes such as COX-2, inhibiting negative remodeling promoted by MMP-9, increasing cell proliferation effect via EGF, and reducing cellular apoptosis by modulating caspase-3. A faster healing effect was evident in the first 7 days of treatment compared to 14 days of treatment, indicating the pharmacological potential of chrysin. Overall, these results demonstrate the potent effect of chrysin in the gastrointestinal tract and elucidate the genes involved in the healing of gastric ulcers. Moreover, an increase in the levels of gastric mucosa defensive factors is involved in the activity of chrysin in the gastric mucosa.
Collapse
|
35
|
Choy KW, Murugan D, Leong XF, Abas R, Alias A, Mustafa MR. Flavonoids as Natural Anti-Inflammatory Agents Targeting Nuclear Factor-Kappa B (NFκB) Signaling in Cardiovascular Diseases: A Mini Review. Front Pharmacol 2019; 10:1295. [PMID: 31749703 PMCID: PMC6842955 DOI: 10.3389/fphar.2019.01295] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/10/2019] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) such as angina, hypertension, myocardial ischemia, and heart failure are the leading causes of morbidity and mortality worldwide. One of the major transcription factors widely associated with CVDs is nuclear factor-kappa B (NFκB). NFκB activation initiates the canonical and non-conical pathways that promotes activation of transcription factors leading to inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines. Flavonoids are bioactive polyphenolic compounds found abundantly in various fruits, vegetables, beverages (tea, coffee), nuts, and cereal products with cardiovascular protective properties. Flavonoids can be classified into six subgroups based on their chemical structures: flavanones, flavones, flavonols, flavan-3-ols, isoflavones, and anthocyanidins. As NFκB inhibitors, these flavonoids may modulate the expression of pro-inflammatory genes leading to the attenuation of the inflammatory responses underlying various cardiovascular pathology. This review presents an update on the anti-inflammatory actions of flavonoids via inhibition of NFκB mechanism supporting the therapeutic potential of these natural compounds in various CVDs.
Collapse
Affiliation(s)
- Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Xin-Fang Leong
- Centre for Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Aspalilah Alias
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Natural Product research and Drug Discovery (CENAR), Wellness Research Cluster, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Liu M, Li W, Wang H, Yin L, Ye B, Tang Y, Huang C. CTRP9 Ameliorates Atrial Inflammation, Fibrosis, and Vulnerability to Atrial Fibrillation in Post-Myocardial Infarction Rats. J Am Heart Assoc 2019; 8:e013133. [PMID: 31623508 PMCID: PMC6898814 DOI: 10.1161/jaha.119.013133] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Inflammation and fibrosis play an important role in the pathogenesis of atrial fibrillation (AF) after myocardial infarction (MI). CTRP9 (C1q/tumor necrosis factor‐related protein‐9) as a secreted glycoprotein can reverse left ventricle remodeling post‐MI, but its effects on MI‐induced atrial inflammation, fibrosis, and associated AF are unknown. Methods and Results MI model rats received adenoviral supplementation of CTRP9 (Ad‐CTRP9) by jugular‐vein injection. Cardiac function, inflammatory, and fibrotic indexes and related signaling pathways, electrophysiological properties, and AF inducibility of atria in vivo and ex vivo were detected in 3 or 7 days after MI. shCTRP9 (short hairpin CTRP9) and shRNA were injected into rat and performed similar detection at day 5 or 10. Adverse atrial inflammation and fibrosis, cardiac dysfunction were induced in both MI and Ad‐GFP (adenovirus‐encoding green fluorescent protein)+MI rats. Systemic CTRP9 treatment improved cardiac dysfunction post‐MI. CTRP9 markedly ameliorated macrophage infiltration and attenuated the inflammatory responses by downregulating interleukin‐1β and interleukin‐6, and upregulating interleukin‐10, in 3 days post‐MI; depressed left atrial fibrosis by decreasing the expressions of collagen types I and III, α‐SMA, and transforming growth factor β1 in 7 days post‐MI possibly through depressing the Toll‐like receptor 4/nuclear factor‐κB and Smad2/3 signaling pathways. Electrophysiologic recordings showed that increased AF inducibility and duration, and prolongation of interatrial conduction time induced by MI were attenuated by CTRP9; moreover, CTRP9 was negatively correlated with interleukin‐1β and AF duration. Downregulation of CTRP9 aggravated atrial inflammation, fibrosis, susceptibility of AF and prolonged interatrial conduction time, without affecting cardiac function. Conclusions CTRP9 is effective at attenuating atrial inflammation and fibrosis, possibly via its inhibitory effects on the Toll‐like receptor 4/nuclear factor‐κB and Smad2/3 signaling pathways, and may be an original upstream therapy for AF in early phase of MI.
Collapse
Affiliation(s)
- Mingxin Liu
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Wei Li
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Huibo Wang
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Lin Yin
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Bingjie Ye
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Yanhong Tang
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| | - Congxin Huang
- Department of Cardiology Renmin Hospital of Wuhan University Hubei China.,Cardiovascular Research Institute of Wuhan University Hubei China.,Hubei Key Laboratory of Cardiology Hubei China
| |
Collapse
|
37
|
Fan C, Shi J, Zhuang Y, Zhang L, Huang L, Yang W, Chen B, Chen Y, Xiao Z, Shen H, Zhao Y, Dai J. Myocardial-Infarction-Responsive Smart Hydrogels Targeting Matrix Metalloproteinase for On-Demand Growth Factor Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902900. [PMID: 31408234 DOI: 10.1002/adma.201902900] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Although in situ restoration of blood supply to the infarction region and attenuating pre-existing extracellular matrix degradation remain potential therapeutic approaches for myocardial infarction (MI), local delivery of therapeutics has been limited by low accumulation (inefficacy) and unnecessary diffusion (toxicity). Here, a dual functional MI-responsive hydrogel is fabricated for on-demand drug delivery to promote angiogenesis and inhibit cardiac remodeling by targeting upregulated matrix metalloproteinase-2/9 (MMP-2/9) after MI. A glutathione (GSH)-modified collagen hydrogel (collagen-GSH) is prepared by conjugating collagen amine groups with GSH sulfhydryl groups and the recombinant protein GST-TIMP-bFGF (bFGF: basic fibroblast growth factor) by fusing bFGF with glutathione-S-transferase (GST) and MMP-2/9 cleavable peptide PLGLAG (TIMP). Specific binding between GST and GSH significantly improves the amount of GST-TIMP-bFGF loaded in collagen-GSH hydrogel. The TIMP peptide enclosed between GST and bFGF responds to MMPs for on-demand release during MI. Additionally, the TIMP peptide is a competitive substrate of MMPs that inhibits the excessive degradation of cardiac matrix by MMPs after MI. GST-TIMP-bFGF/collagen-GSH hydrogels promote the recovery of MI rats by enhancing vascularization and ameliorating myocardium remodeling. The results suggest that on-demand growth factor delivery by synchronously controlling binding and responsive release to promote angiogenesis and attenuate cardiac remodeling might be promising for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Caixia Fan
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jiajia Shi
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lulu Zhang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lei Huang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wen Yang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Bing Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyan Chen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
38
|
Liu M, Yin L, Li W, Hu J, Wang H, Ye B, Tang Y, Huang C. C1q/TNF-related protein-9 promotes macrophage polarization and improves cardiac dysfunction after myocardial infarction. J Cell Physiol 2019; 234:18731-18747. [PMID: 30953351 PMCID: PMC6618013 DOI: 10.1002/jcp.28513] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
The timely regulation of inflammatory M1 macrophage polarization toward regenerative M2 macrophages suggests the possibility of immunotherapy after myocardial infarction (MI). C1q/TNF‐related protein‐9 (CTRP9) has anti‐inflammatory effects and can ameliorate heart function in mice after long‐term myocardial infarction. The role of CTRP9 in macrophage polarization remains completely unclear. This study determined whether CTRP9 can preserve post‐MI early cardiac function through the regulation of macrophage polarization. In the present study, an adenovirus‐delivered CTRP9 supplement promoted macrophage polarization at Day 3 post MI and improved cardiac function at Day 7 post MI. Pretreatment with gCTRP9 promoted the M1 to M2 polarization transition and attenuated inflammation after lipopolysaccharide + interferon‐γ stimulation; the effects were partly abrogated by the adenosine monophosphate kinase (AMPK) inhibitor compound C and were obviously reinforced by pyrrolidine dithiocarbamate, a nuclear factor‐κB (NF‐κB) inhibitor. Meanwhile, CTPR9 markedly reduced the expression of toll‐like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and NF‐κB p65 phosphorylation by promoting AMPK phosphorylation in vivo and in vitro. Moreover, the competitive binding of gCTRP9 and LPS to the myeloid differentiation protein 2 (MD2)/TLR4 complex was associated with direct binding to MD2, thereby inhibiting the downstream signaling molecule MyD88. Taken together, we demonstrated that CTRP9 improved post‐MI early cardiac function, at least in part, by modulating M1/M2 macrophage polarization, largely via the TLR4/MD2/MyD88 and AMPK‐NF‐κB pathways.
Collapse
Affiliation(s)
- Mingxin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Juan Hu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Institute of Hypertension, Central South University, Changsha, Hunan, China
| | - Huibo Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bingjie Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
39
|
Farkhondeh T, Samarghandian S, Bafandeh F. The Cardiovascular Protective Effects of Chrysin: A Narrative Review on Experimental Researches. Cardiovasc Hematol Agents Med Chem 2019; 17:17-27. [PMID: 30648526 PMCID: PMC6865076 DOI: 10.2174/1871525717666190114145137] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Chrysin is one of the flavonoids fruits, vegetables, and plant especially found in honey, it has been indicated that its cardiovascular protective effect is due to its antioxidative effects and anti inflammatory activities. Chrysin exerts an antioxidant effect by enhancing the antioxidant system, suppressing pro-oxidant enzymes, scavenging free radicals and chelating redox active transition metal ions. Chrysin decreases lipid synthesis and also increases its metabolism, thereby ameliorating blood lipid profile. Chrysin modulates vascular function by increasing the bioavailability of endothelial nitric oxide. Chrysin inhibits the development of atherosclerosis by decreasing vascular inflammation. The anti-inflammatory effects of chrysin may relate to its inhibitory effect on the nuclear transcriptional factor-kB signaling pathway. It also prevents vascular smooth muscle cells proliferation and thrombogenesis. Altogether, chrysin may be effective as a natural agent for the prevention and treatment of cardiovascular diseases; however, several clinical trial studies should be done to confirm its protective effects on humans.
Collapse
Affiliation(s)
| | - Saeed Samarghandian
- Address correspondence to this author at the Noncommunicable Diseases Research Center, University of Medical Sciences, Neyshabur, Iran; Tel: +989151200945; E-mail:
| | | |
Collapse
|