1
|
Jin Y, Dang H, Li M. The Essential Role of Traditional Chinese Medicine Compounds in Regulating Recurrent Spontaneous Abortion by Inhibiting Oxidative Stress. Endocr Metab Immune Disord Drug Targets 2025; 25:353-363. [PMID: 39082177 DOI: 10.2174/0118715303302424240724070133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 04/09/2025]
Abstract
Due to the lack of accurate registration of RSA and miscarriages, many early miscarriages are overlooked and not diagnosed or treated promptly in hospitals. This uncertainty in pathogenesis prevents clinicians from taking targeted therapeutic measures, leading to unsatisfactory treatment outcomes and placing a heavy burden on the patient's family and the healthcare system. Oxidative stress is present in embryonic development and affects the regulation of oxidative stress in pregnancy and the reproductive endocrine system. Oxidative stress injury is a significant pathogenesis of RSA, so improving the body's ability to resist oxidative stress injury is crucial in treating RSA. For patients with RSA, there is an urgent need for safe, efficient, and cost-effective anti-oxidative stress drugs, and there is growing evidence that treatment with Traditional Chinese medicine (TCM) can improve pregnancy success with fewer adverse effects. Many active ingredients for treating RSA are mainly derived from certain components of TCM, including flavonoids, phenols, and other compounds, which have been shown to treat RSA directly or indirectly by targeting anti-oxidative stress-related pathways. This article summarizes the experimental and clinical evidence of several common TCM compounds for treating RSA. It provides ideas and perspectives for further exploring the pathogenesis of RSA and TCM compounds for treating RSA.
Collapse
Affiliation(s)
- Yi Jin
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Meihe Li
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
2
|
Balkrishna A, Sinha S, Pandey A, Singh S, Joshi M, Singh R, Varshney A. In mouse model of mixed granulocytic asthma with corticosteroid refractoriness, Bronchom mitigates airway hyperresponsiveness, inflammation and airway remodeling. Mol Med 2024; 30:120. [PMID: 39129025 PMCID: PMC11318311 DOI: 10.1186/s10020-024-00888-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Asthma is a heterogeneous, inflammatory disease with several phenotypes and endotypes. Severe asthmatics often exhibit mixed granulocytosis with reduced corticosteroid sensitivity. Bronchom is a newly developed Ayurvedic prescription medicine, indicated for the treatment of obstructive airway disorders. The purpose of the present study was to evaluate the in-vivo efficacy of Bronchom in mouse model of mixed granulocytic asthma with steroidal recalcitrance. METHODS High-performance thin layer chromatography (HPTLC) and Ultra-high performance liquid chromatography (UHPLC) were employed to identify and quantitate the phytometabolites present in Bronchom. The preclinical effectiveness of Bronchom was assessed in house dust mite (HDM) and Complete Freund's adjuvant (CFA)-induced mixed granulocytic asthma model in mice. High dose of dexamethasone was tested parallelly. Specific-pathogen-free C57BL/6 mice were immunized with HDM and CFA and nineteen days later, they were intranasally challenged with HDM for four consecutive days. Then the mice were challenged with nebulized methacholine to evaluate airway hyperresponsiveness (AHR). Inflammatory cell influx was enumerated in the bronchoalveolar lavage fluid (BALF) followed by lung histology. Additionally, the concentrations of Th2 and pro-inflammatory cytokines was assessed in the BALF by multiplexed immune assay. The mRNA expression of pro-inflammatory cytokines and Mucin 5AC (MUC5AC) was also evaluated in the lung. RESULTS HPTLC fingerprinting and UHPLC quantification of Bronchom revealed the presence of bioactive phytometabolites, namely, rosmarinic acid, gallic acid, methyl gallate, piperine, eugenol and glycyrrhizin. Bronchom effectively reduced AHR driven by HDM-CFA and the influx of total leukocytes, eosinophils and neutrophils in the BALF. In addition, Bronchom inhibited the infiltration of inflammatory cells in the lung as well as goblet cell metaplasia. Further, it also suppressed the elevated levels of Th2 cytokines and pro-inflammatory cytokines in the BALF. Similarly, Bronchom also regulated the mRNA expression of pro-inflammatory cytokines as well as MUC5AC in mice lungs. Reduced effectiveness of a high dose of the steroid, dexamethasone was observed in the model. CONCLUSIONS We have demonstrated for the first time the robust pharmacological effects of an herbo-mineral medicine in an animal model of mixed granulocytic asthma induced by HDM and CFA. The outcomes suggest the potential utility of Bronchom in severe asthmatics with a mixed granulocytic phenotype.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Patanjali UK Trust, Glasgow, UK
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Anupam Pandey
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Surjeet Singh
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Monali Joshi
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India.
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
3
|
Kashyap B, Khan A, Kapoor DN. Eugenol-Loaded Transethosomal Gel for Improved Skin Delivery and Treatment of Atopic Dermatitis. AAPS PharmSciTech 2024; 25:72. [PMID: 38575745 DOI: 10.1208/s12249-024-02785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Atopic dermatitis is a skin condition characterized by lichenification (thickening and increased skin marking), eczematous lesions, dry skin, itching, and pruritus. Eugenol is an aromatic polyphenolic compound that has attracted the attention of researchers due to its anti-inflammatory, anti-oxidant, and anti-cancer properties. The primary goal of the present study was to develop and evaluate eugenol-loaded transethosomes for the treatment of AD. Eugenol-loaded transethosomes were formulated using the ethanol injection method and subsequently subjected to particle size analysis, zeta potential, entrapment efficiency, deformability index, and HRTEM analysis. Transethosomal gel was prepared by direct-dispersion method by using Carbopol 940®. Results showed transethosomes to be lipid bilayer structures with acceptable size, and high entrapment efficiency. Transethosomal formulation showed shear-thinning behavior. Eugenol-loaded transethosomal gel was significantly able to enhance the retention of the drug in the skin. Transethosomal gel was significantly able to reduce Ear thickness, DLC, TLC, and IL-6 levels in mice model of AD. These results indicate that the eugenol-loaded transethosomal gel could be a promising carrier for the topical administration of eugenol for the treatment of AD.
Collapse
Affiliation(s)
- Bhawna Kashyap
- Department of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, Solan, India, 173229
| | - Azhar Khan
- Department of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, Solan, India, 173229
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India, 173229.
| |
Collapse
|
4
|
Devi S, Chauhan S, Mannan A, Singh TG. Targeting cardiovascular risk factors with eugenol: an anti-inflammatory perspective. Inflammopharmacology 2024; 32:307-317. [PMID: 38085446 DOI: 10.1007/s10787-023-01392-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/05/2023] [Indexed: 03/03/2024]
Abstract
Inflammation is a multifaceted biological reaction to a wide range of stimuli, and it has been linked to the onset and progression of chronic diseases such as heart disease, cancer, and diabetes. Inflammatory markers found in the blood, including C-reactive protein, serum amyloid A, fibrinogen, plasma viscosity, erythrocyte sedimentation rate, interleukin-6, and soluble adhesion molecules (like intercellular adhesion molecule-1 and vascular cell adhesion molecule-1), are risk factors for cardiovascular diseases such as coronary heart disease, stroke, and peripheral arterial disease. These markers play a crucial role in understanding and assessing cardiovascular health. Due to this complicated relationship between inflammation and cardiovascular disease, anti-inflammatory agents of natural origin have been the subject of many preclinical and clinical studies in recent years. Eugenol is a natural phenolic compound found in clove oil, nutmeg oil, cinnamon oil, and bay leaf oil, as well as other essential oils. Eugenol has been shown to have anti-inflammatory properties in many forms of experimental inflammation. It may scavenge free radicals, which contribute to inflammation and tissue damage. Various studies also suggest that eugenol can limit the production of inflammatory mediators such as prostaglandins, cytokines, and chemokines. Animal models of arthritis, colitis, and lung damage, as well as human clinical studies, have shown that eugenol has phenomenal anti-inflammatory properties. These properties suggest that eugenol may be able to reduce the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
5
|
Usmani K, Jain SK, Yadav S. Mechanism of action of certain medicinal plants for the treatment of asthma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116828. [PMID: 37369335 DOI: 10.1016/j.jep.2023.116828] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asthma is often treated and prevented using the pharmacological properties of traditional medicinal plants. These healthcare systems are among the most well-known, conveniently accessible, and economically priced in India and several other Asian countries. Traditional Indian Ayurvedic plants have the potential to be used as phyto-therapeutics, to create novel anti-asthmatic drugs, and as a cost-effective source of pharmaceuticals. Current conventional therapies have drawbacks, including serious side effects and expensive costs that interfere with treatment compliance and affect the patient's quality of life. The primary objective of the article is to comprehensively evaluate the advancement of research on the protective phytochemicals of traditional plants that target immune responses and signaling cascades in inflammatory experimental asthma models. The study would assist in paving the way for the creation of natural phytomedicines that are protective, anti-inflammatory, and immunomodulatory against asthma, which may then be used in individualized asthma therapy. AIM OF THE STUDY The study demonstrates the mechanisms of action of phytochemicals present in traditional medicinal plants, diminish pulmonary disorder in both in vivo and in vitro models of asthma. MATERIALS AND METHODS A comprehensive review of the literature on conventional plant-based asthma therapies was performed from 2006 to 2022. The study uses authoritative scientific sources such as PubMed, PubChem Compound, Wiley Online Library, Science Direct, Springer Link, and Google Scholar to collect information on potential phytochemicals and their mechanisms of action. World Flora Online (http://www.worldfloraonline.org) and Plants of the World Online (https://wcsp.science.kew.org) databases were used for the scientific names of medicinal plants. RESULTS The study outlines the phytochemical mechanisms of some traditional Ayurveda botanicals used to treat asthma. Active phytochemicals including curcumin, withaferin-A, piperine, glabridin, glycyrrhizin, 18β-glycyrrhetinic acid, trans-cinnamaldehyde, α-hederin, thymoquinone, eugenol, [6]-shogoal, and gingerol may treat asthma by controlling inflammation and airway remodeling. The study concluded that certain Ayurvedic plants' phytochemicals have the ability to reduce inflammation and modulate the immune system, that can effectively cure asthma. CONCLUSION Plants used in traditional Ayurvedic medicine have been utilized for millennia, advocating phyto-therapy as a treatment for a variety of illnesses. A theoretical foundation for the use of cutting-edge asthma treatments has been built with the growth of experimental research on traditional phytochemicals. In-depth phytochemical research for the treatment of asthma using Indian Traditional Ayurvedic herbs is compiled in the study. The approach for preventative therapeutics and cutting-edge alternatives to battle the molecular pathways in the pathophysiology of asthma are the key themes of the study. The phytochemical mechanism of action of traditional Ayurvedic herbs is explained to get the attention of the pharmaceutical industry so they can make future anti-asthma drugs for personalized asthma care in the community. The study develops strategies for customized phyto-therapeutics, concentrating on low-cost, side-effect-free approaches that employ bioactive phytochemicals from plants as the major source of effective anti-asthmatic therapy.
Collapse
Affiliation(s)
- Kainat Usmani
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Subodh Kumar Jain
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| | - Shweta Yadav
- Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
6
|
Hasan MR, Alotaibi BS, Althafar ZM, Mujamammi AH, Jameela J. An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: "Elixir of Life". Molecules 2023; 28:1193. [PMID: 36770859 PMCID: PMC9919305 DOI: 10.3390/molecules28031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of "queen of herbs" and "Elixir of Life" in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi.
Collapse
Affiliation(s)
- Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ziyad Mohammed Althafar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ahmed Hussain Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Jafar Jameela
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| |
Collapse
|
7
|
Eugenol suppresses the proliferation and invasion of TNF-α-induced fibroblast-like synoviocytes via regulating NF-κB and COX-2. Biochem Biophys Res Commun 2022; 612:63-69. [DOI: 10.1016/j.bbrc.2022.04.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 02/07/2023]
|
8
|
Bittencourt-Mernak MI, Pinheiro NM, da Silva RC, Ponci V, Banzato R, Pinheiro AJMCR, Olivo CR, Tibério IFLC, Lima Neto LG, Santana FPR, Lago JHG, Prado CM. Effects of Eugenol and Dehydrodieugenol B from Nectandra leucantha against Lipopolysaccharide (LPS)-Induced Experimental Acute Lung Inflammation. JOURNAL OF NATURAL PRODUCTS 2021; 84:2282-2294. [PMID: 34264084 DOI: 10.1021/acs.jnatprod.1c00386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute lung injury (ALI) is an important public health problem. The present work investigated whether dehydrodieugenol B treatment, a compound isolated from Brazilian plant Nectandra leucantha (Lauraceae), modulates experimental ALI and compared the observed effects to eugenol. Effects of dehydrodieugenol B in vitro in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were evaluated. The lung and systemic inflammatory profile, lung function, and possible mechanisms involved in BALB/C male mice (6-8 weeks) with ALI induced by LPS instillation (5 mg/kg) was assayed. Dehydrodieugenol B did not affect the cell viability and inhibited the increase in NO release and IL-1β and IL-6 gene expression induced by LPS. In vivo, both compounds reduced lung edema, inflammatory cells, and the IL-6 and IL-1 β levels in bronchoalveolar lavage fluid, as well as reduced inflammatory cell infiltration and those positive to iNOS, MMP-9, and TIMP-1, and reduced the collagen content and the 8-isoprostane expression in lung tissue. Eugenol and dehydrodieugenol B also inhibited the phosphorylation of Jc-Jun-NH2 terminal Kinase (JNK), a signaling protein involved in the MAPKinase pathway. There was no effect of these compounds in lung function. Therefore, eugenol and dehydrodieugenol B ameliorates several features of experimental ALI and could be considered as a pharmacological tool to ameliorate acute lung inflammation.
Collapse
Affiliation(s)
| | - Nathalia M Pinheiro
- Department of Bioscience, Federal University of São Paulo, Santos, SP, 11015-020, Brazil
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Rafael C da Silva
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
| | - Vitor Ponci
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
| | - Rosana Banzato
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Aruanã J M C R Pinheiro
- Universidade CEUMA, São Luís, MA, 65075-120, Brazil
- Programa de Pós-Graduação da Rede BIONORTE, São Luís, MA, 65055-310, Brazil
| | - Clarice R Olivo
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| | - Lídio G Lima Neto
- Universidade CEUMA, São Luís, MA, 65075-120, Brazil
- Programa de Pós-Graduação da Rede BIONORTE, São Luís, MA, 65055-310, Brazil
| | - Fernanda P R Santana
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
- Department of Medicine-Nephrology, Federal University of São Paulo, São Paulo, SP, 04023-062, Brazil
| | - João H G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, SP, 09210-170, Brazil
| | - Carla M Prado
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
- Department of Bioscience, Federal University of São Paulo, Santos, SP, 11015-020, Brazil
- Department of Medicine, School of Medicine, University of São Paulo, São Paulo, SP, 01246-000, Brazil
| |
Collapse
|
9
|
Pleiotropic Effects of Eugenol: The Good, the Bad, and the Unknown. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3165159. [PMID: 33747344 PMCID: PMC7943301 DOI: 10.1155/2021/3165159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Phytocompounds and medicinal herbs were used in traditional ancient medicine and are nowadays increasingly screened in both experimental and clinical settings due to their beneficial effects in several major pathologies. Similar to the drug industry, phytotherapy is interested in using nanobased delivery systems to view the identification and characterization of the cellular and molecular therapeutic targets of plant components. Eugenol, the major phenolic constituent of clove essential oil, is a particularly versatile phytochemical with a vast range of therapeutic properties, among which the anti-inflammatory, antioxidant, and anticarcinogenic effects have been systematically addressed. In the past decade, with the emerging understanding of the role of mitochondria as critical organelles in the pathophysiology of noncommunicable diseases, research regarding the role of phytochemicals as modulators of bioenergetics and metabolism is on a rise. Here, we present a brief overview of the major pharmacological properties of eugenol, with special emphasis on its applications in dental medicine, and provide preliminary data regarding its effects, alone, and included in polyurethane nanostructures, on mitochondrial bioenergetics, and glycolysis in human HaCaT keratinocytes.
Collapse
|
10
|
Pinheiro FG, Moreira-Gomes MD, Machado MN, Almeida TDS, Barboza PDPA, Silva Oliveira LF, Ávila Cavalcante FS, Leal-Cardoso JH, Fortunato RS, Zin WA. Eugenol mitigated acute lung but not spermatic toxicity of C 60 fullerene emulsion in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116188. [PMID: 33302087 DOI: 10.1016/j.envpol.2020.116188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/04/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
C60 fullerene (C60) is a nano-pollutant that can damage the respiratory system. Eugenol exhibits significant anti-inflammatory and antioxidant properties. We aimed to investigate the time course of C60 emulsion-induced pulmonary and spermatic harms, as well as the effect of eugenol on C60 emulsion toxicity. The first group of mice (protocol 1) received intratracheally C60 emulsion (1.0 mg/kg BW) or vehicle and were tested at 12, 24, 72 and 96 h (F groups) thereafter. The second group of mice (protocol 2) received intratracheally C60 emulsion or vehicle, 1 h later were gavaged with eugenol (150 mg/kg) or vehicle, and experiments were done 24 h after instillation. Lung mechanics, morphology, redox markers, cytokines and epididymal spermatozoa were analyzed. Protocol 1: Tissue damping (G) and elastance (H) were significantly higher in F24 than in others groups, except for H in F72. Morphological and inflammatory parameters were worst at 24 h and subsequently declined until 96 h, whereas redox and spermatic parameters worsened over the whole period. Eugenol eliminated the increase in G, H, cellularity, and cytokines, attenuated oxidative stress induced by C60 exposure, but had no effect on sperm. Hence, exposure to C60 emulsion deteriorated lung morphofunctional, redox and inflammatory characteristics and increased the risk of infertility. Furthermore, eugenol avoided those changes, but did not prevent sperm damage.
Collapse
Affiliation(s)
- Felipe Gomes Pinheiro
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Ceará, Brazil
| | - Maria Diana Moreira-Gomes
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Ceará, Brazil
| | - Mariana Nascimento Machado
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tailane Dos Santos Almeida
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - José Henrique Leal-Cardoso
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, Ceará, Brazil
| | - Rodrigo Soares Fortunato
- Laboratory of Endocrine Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
|
12
|
Santana FPR, da Silva RC, Ponci V, Pinheiro AJMCR, Olivo CR, Caperuto LC, Arantes-Costa FM, Claudio SR, Ribeiro DA, Tibério IFLC, Lima-Neto LG, Lago JHG, Prado CM. Dehydrodieugenol improved lung inflammation in an asthma model by inhibiting the STAT3/SOCS3 and MAPK pathways. Biochem Pharmacol 2020; 180:114175. [PMID: 32717226 DOI: 10.1016/j.bcp.2020.114175] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Eugenol, a common phenylpropanoid derivative found in different plant species, has well-described anti-inflammatory effects associated with the development of occupational hypersensitive asthma. Dehydrodieugenol, a dimeric eugenol derivative, exhibits anti-inflammatory and antioxidant activities and can be found in the Brazilian plant species Nectandra leucantha (Lauraceae). The biological effects of dehydrodieugenol on lung inflammation remain unclear. PURPOSE This study aimed to investigate the effects of eugenol and dehydrodieugenol isolated from N. leucantha in an experimental model of asthma. METHODS In the present work, the toxic effects of eugenol and dehydrodieugenol on RAW 264.7 cells and their oxidant and inflammatory effects before lipopolysaccharide (LPS) exposure were tested. Then, male BALB/c mice were sensitized with ovalbumin through a 29-day protocol and treated with vehicle, eugenol, dehydrodieugenol or dexamethasone for eight days beginning on the 22nd day until the end of the protocol. Lung function; the inflammatory profile; and the protein expression of ERK1/2, JNK, p38, VAChT, STAT3, and SOCS3 in the lung were evaluated by immunoblotting. RESULTS Eugenol and dehydrodieugenol were nontoxic to cells. Both compounds inhibited NO release and the gene expression of IL-1β and IL-6 in LPS-stimulated RAW 264.7 cells. In OVA-sensitized animals, dehydrodieugenol reduced lung inflammatory cell numbers and the lung concentrations of IL-4, IL-13, IL-17, and IL-10. These anti-inflammatory effects were associated with inhibition of the JNK, p38 and ERK1/2, VAChT and STAT3/SOCS3 pathways. Moreover, treatment with dehydrodieugenol effectively attenuated airway hyperresponsiveness. CONCLUSION The obtained data demonstrate, for the first time, that dehydrodieugenol was more effective than eugenol in counteracting allergic airway inflammation in mice, especially its inhibition of the JNK, p38 and ERK1/2, components of MAPK pathway. Therefore, dehydrodieugenol can be considered a prototype for the development of new and effective agents for the treatment of asthmatic patients.
Collapse
Affiliation(s)
- Fernanda P R Santana
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil; Department of Medicine, School of Medicine, University of São Paulo, SP, Brazil
| | - Rafael C da Silva
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | - Vitor Ponci
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | - Aruanã J M C R Pinheiro
- Universidade CEUMA, São Luís, MA, Brazil; Programa de Pós-Graduação da Rede BIONORTE, Brazil
| | - Clarice R Olivo
- Department of Medicine, School of Medicine, University of São Paulo, SP, Brazil
| | - Luciana C Caperuto
- Department of Biological Science, Federal University of São Paulo, Diadema, SP, Brazil
| | | | - Samuel R Claudio
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil
| | - Daniel A Ribeiro
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil
| | | | - Lídio G Lima-Neto
- Universidade CEUMA, São Luís, MA, Brazil; Programa de Pós-Graduação da Rede BIONORTE, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo André, SP, Brazil
| | - Carla M Prado
- Department of Bioscience, Federal University of São Paulo, Santos, Brazil.
| |
Collapse
|
13
|
Balkrishna A, Solleti SK, Singh H, Tomer M, Sharma N, Varshney A. Calcio-herbal formulation, Divya-Swasari-Ras, alleviates chronic inflammation and suppresses airway remodelling in mouse model of allergic asthma by modulating pro-inflammatory cytokine response. Biomed Pharmacother 2020; 126:110063. [PMID: 32145582 DOI: 10.1016/j.biopha.2020.110063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic allergic respiratory disease with limited therapeutic options. Here we validated the potential anti-inflammatory, anti-asthmatic and immunomodulatory therapeutic properties of calcio-herbal ayurvedic formulation, Divya-Swasari-Ras (DSR) in-vivo, using mouse model of ovalbumin (OVA) induced allergic asthma. HPLC analysis identified the presence of various bioactive indicating molecules and ICP-OES recognized the presence of Ca mineral in the DSR formulation. Here we show that DSR treatment significantly reduced cardinal features of allergic asthma including inflammatory cell accumulation, specifically lymphocytes and eosinophils in the Broncho-Alveolar Lavage (BAL) fluids, airway inflammation, airway remodelling, and pro-inflammatory molecules expression. Conversely, number of macrophages recoverable by BAL were increased upon DSR treatment. Histology analysis of mice lungs revealed that DSR attenuates inflammatory cell infiltration in lungs and thickening of bronchial epithelium. PAS staining confirmed the decrease in OVA-induced mucus secretion at the mucosal epithelium; and trichrome staining confirmed the decrease in peribronchial collagen deposition upon DSR treatment. DSR reduced the OVA-induced pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) levels in BALF and whole lung steady state mRNA levels (IL-4, -5, -33, IFN-γ, IL-6 and IL-1β). Biochemical assays for markers of oxidative stress and antioxidant defence mechanism confirmed that DSR increases the activity of SOD, Catalase, GPx, GSH, GSH/GSSG ratio and decreases the levels of MDA activity, GSSG, EPO and Nitrite levels in whole lungs. Collectively, present study suggests that, DSR effectively protects against allergic airway inflammation and possess potential therapeutic option for allergic asthma management.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, 249 405, Uttarakhand, India
| | - Siva Kumar Solleti
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India
| | - Hoshiyar Singh
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India
| | - Niti Sharma
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, NH-58, Haridwar, 249405, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar, 249 405, Uttarakhand, India.
| |
Collapse
|
14
|
Eugenol as a Promising Molecule for the Treatment of Dermatitis: Antioxidant and Anti-inflammatory Activities and Its Nanoformulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8194849. [PMID: 30647816 PMCID: PMC6311755 DOI: 10.1155/2018/8194849] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
Contact dermatitis produces an inflammatory reaction primarily via stimulation of keratinocytes and cells of the immune system, which promote the release of cytokines, reactive oxygen species (ROS), and other chemical mediators. Eugenol (EUG, phenylpropanoid of essential oils) has attracted attention due to its anti-inflammatory properties, as well as antioxidant effect. On the other hand, it is volatile and insoluble and is a skin irritant. In this case, nanostructured systems have been successfully employed as a drug carrier for skin diseases since they improve both biological and pharmaceutical properties of active compounds. The cytotoxic, antioxidant, and anti-inflammatory effects of EUG were assessed in human neutrophils and keratinocytes. Additionally, polymeric nanocarries (NCEUG) were prepared to improve the chemical and irritant characteristics of EUG. EUG presented apparent safety and antioxidant and anti-inflammatory effects on human neutrophils, but presented cytotoxic effects on keratinocytes. However, the nanocapsules were able to reduce its cytotoxicity. An in vivo experiment of irritant contact dermatitis (ICD) in mice induced by TPA showed that NCEUG reduced significantly the ear edema in mice when compared to the EUG solution, as well as the leukocyte infiltration and IL-6 level, possibly due to better skin permeation and irritancy blockage. These findings suggest that EUG is a promising bioactive molecule, and its nanoencapsulation seems to be an interesting approach for the treatment of ICD.
Collapse
|
15
|
Kelly RS, McGeachie MJ, Lee-Sarwar KA, Kachroo P, Chu SH, Virkud YV, Huang M, Litonjua AA, Weiss ST, Lasky-Su J. Partial Least Squares Discriminant Analysis and Bayesian Networks for Metabolomic Prediction of Childhood Asthma. Metabolites 2018; 8:metabo8040068. [PMID: 30360514 PMCID: PMC6316795 DOI: 10.3390/metabo8040068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 01/07/2023] Open
Abstract
To explore novel methods for the analysis of metabolomics data, we compared the ability of Partial Least Squares Discriminant Analysis (PLS-DA) and Bayesian networks (BN) to build predictive plasma metabolite models of age three asthma status in 411 three year olds (n = 59 cases and 352 controls) from the Vitamin D Antenatal Asthma Reduction Trial (VDAART) study. The standard PLS-DA approach had impressive accuracy for the prediction of age three asthma with an Area Under the Curve Convex Hull (AUCCH) of 81%. However, a permutation test indicated the possibility of overfitting. In contrast, a predictive Bayesian network including 42 metabolites had a significantly higher AUCCH of 92.1% (p for difference < 0.001), with no evidence that this accuracy was due to overfitting. Both models provided biologically informative insights into asthma; in particular, a role for dysregulated arginine metabolism and several exogenous metabolites that deserve further investigation as potential causative agents. As the BN model outperformed the PLS-DA model in both accuracy and decreased risk of overfitting, it may therefore represent a viable alternative to typical analytical approaches for the investigation of metabolomics data.
Collapse
Affiliation(s)
- Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Kathleen A Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Su H Chu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Yamini V Virkud
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA 02114, USA.
| | - Mengna Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
An Overview on the Anti-inflammatory Potential and Antioxidant Profile of Eugenol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3957262. [PMID: 30425782 PMCID: PMC6217746 DOI: 10.1155/2018/3957262] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022]
Abstract
The bioactive compounds found in foods and medicinal plants are attractive molecules for the development of new drugs with action against several diseases, such as those associated with inflammatory processes, which are commonly related to oxidative stress. Many of these compounds have an appreciable inhibitory effect on oxidative stress and inflammatory response, and may contribute in a preventive way to improve the quality of life through the use of a diet rich in these compounds. Eugenol is a natural compound that has several pharmacological activities, action on the redox status, and applications in the food and pharmaceutical industry. Considering the importance of this compound, the present review discusses its anti-inflammatory and antioxidant properties, demonstrating its mechanisms of action and therapeutic potential for the treatment of inflammatory diseases.
Collapse
|
17
|
Genomic and transcriptomic comparison of allergen and silver nanoparticle-induced mast cell degranulation reveals novel non-immunoglobulin E mediated mechanisms. PLoS One 2018; 13:e0193499. [PMID: 29566008 PMCID: PMC5863960 DOI: 10.1371/journal.pone.0193499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.
Collapse
|
18
|
Meher G, Chakraborty H. Influence of Eugenol on the Organization and Dynamics of Lipid Membranes: A Phase-Dependent Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2344-2351. [PMID: 29323916 DOI: 10.1021/acs.langmuir.7b03595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Eugenol is known for its antimicrobial effects against microorganisms responsible for infectious diseases in humans, food-borne pathogens, and oral pathogens. In spite of several reports on the antimicrobial function of eugenol by modulating the structural properties of cell membranes, there is limited information on the influence of eugenol in the lipid membrane. In this work, we explored the effect of eugenol on the organization and dynamics of large unilamellar vesicles (LUVs) of DMPC using the intrinsic fluorescence of eugenol and an extrinsic hydrophobic probe, DPH, in varying phases. The organization and dynamics of the bilayers of DMPC vesicles were monitored by utilizing varieties of steady-state and time-resolved fluorescence measurements. Our results show that eugenol stabilizes the gel phase and elevates the phase-transition temperature of DMPC in a concentration-dependent fashion. Fluorescence lifetime measurements demonstrate that higher eugenol-induced water penetration was observed in fluid-phase membranes. Time-resolved anisotropy measurements demonstrate that eugenol reduces the semiangle of DPH wobbling-in-a-cone in gel-phase membranes, whereas the semiangle remains unaffected in fluid-phase membrane. This implies that the eugenol further orders the gel-phase membrane, and this could be a plausible reason for the eugenol-dependent elevation of the phase-transition temperature of DMPC. We envisage that these results will contribute important information to understand the interaction of eugenol with biological membranes.
Collapse
Affiliation(s)
- Geetanjali Meher
- School of Chemistry, Sambalpur University , Jyoti Vihar, Burla, Odisha 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University , Jyoti Vihar, Burla, Odisha 768 019, India
| |
Collapse
|
19
|
Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16:14. [PMID: 29370858 PMCID: PMC5785894 DOI: 10.1186/s12967-018-1381-2] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Bethsebie L Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahdeo Prasad
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | | |
Collapse
|
20
|
Liu M, Zhang J, Liu C. Clinical efficacy of recombinant human latrophilin 3 antibody in the treatment of pediatric asthma. Exp Ther Med 2017; 15:539-547. [PMID: 29375702 DOI: 10.3892/etm.2017.5376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/19/2017] [Indexed: 11/06/2022] Open
Abstract
Pediatric asthma is a chronic pulmonary inflammatory disease featuring hypersecretion of mucus and inflammation in the airway, resulting in dysfunction of the airway smooth muscle. Previous evidence demonstrated that latrophilins, a novel family of receptors, present a beneficial effect on airway smooth muscle cells. In the present study, the therapeutic effects of recombinant human latrophilin 3 (rhLPHN3) antibody (Ab) in patients with pediatric asthma were investigated, and the molecular mechanism underlying the function of LPHN3 in the treatment of asthma in clinical practice was examined. A total of 342 pediatric asthma cases were recruited and randomly divided into three groups, receiving treatment with rhLPHN3 Ab (n=134), salbutamol (n=108) or montelukast (n=100) by nasal aerosolization. Each group received the respective clinically tested dose for 16 weeks. Inflammatory factors interleukin (IL)-10, IL-17, IL-4, matrix metallopeptidase-9 (MMP-9), interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) levels in peripheral blood mononuclear cells were analyzed prior to and post treatment. The clinical outcomes revealed that pathological alterations were significantly improved following treatment with rhLPHN3 Ab for patients with pediatric asthma when compared with those receiving salbutamol and montelukast. It was also observed that rhLPHN3 Ab downregulated the plasma concentration levels of IL-10, IL-17, IL-4 and MMP-9, and upregulated IFN-γ and TGF-β levels in the three groups. In addition, clinical data demonstrated that rhLPHN3 Ab significantly promoted E-selectin and mucin 5AC expression, as well as improved the activation of nuclear factor (NF)-κB p65 DNA binding activity and the phosphorylation levels of protein kinase A. Furthermore, rhLPHN3 Ab markedly improved adhesion and proliferation of airway smooth muscle cells, which led to promotion of the contraction of these cells. In conclusion, these clinical data suggest that rhLPHN3 Ab serves an important role in the inhibition of inflammatory mediators through downregulation of NF-κB signaling pathway, which contributes to airway remodeling and bronchodilation in patients with pediatric asthma.
Collapse
Affiliation(s)
- Maohua Liu
- Department of Pediatric Internal Medicine Ward 1, Yishui Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Jingxiu Zhang
- Department of Pediatric Internal Medicine Ward 3, Yishui Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| | - Chengjun Liu
- Department of Pediatric Internal Medicine Ward 1, Yishui Central Hospital of Linyi, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
21
|
Dubey K, Anand BG, Shekhawat DS, Kar K. Eugenol prevents amyloid formation of proteins and inhibits amyloid-induced hemolysis. Sci Rep 2017; 7:40744. [PMID: 28145454 PMCID: PMC5286398 DOI: 10.1038/srep40744] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023] Open
Abstract
Eugenol has attracted considerable attention because of its potential for many pharmaceutical applications including anti-inflammatory, anti-tumorigenic and anti-oxidant properties. Here, we have investigated the effect of eugenol on amyloid formation of selected globular proteins. We find that both spontaneous and seed-induced aggregation processes of insulin and serum albumin (BSA) are significantly suppressed in the presence of eugenol. Isothermal titration calorimetric data predict a single binding site for eugenol-insulin complex confirming the affinity of eugenol for native soluble insulin species. We also find that eugenol suppresses amyloid-induced hemolysis. Our findings reveal the inherent ability of eugenol to stabilize native proteins and to delay the conversion of protein species of native conformation into β-sheet assembled mature fibrils, which seems to be crucial for its inhibitory effect.
Collapse
Affiliation(s)
- Kriti Dubey
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India
| | - Bibin G Anand
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India
| | - Dolat Singh Shekhawat
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India
| | - Karunakar Kar
- Department of Biology, Indian Institute of Technology Jodhpur, Rajasthan, 342011 India.,School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
22
|
Grecco SS, Lorenzi H, Tempone AG, Lago JHG. Update: biological and chemical aspects of Nectandra genus (Lauraceae). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Cai Z, Liu J, Bian H, Cai J. Astragaloside IV ameliorates necrotizing enterocolitis by attenuating oxidative stress and suppressing inflammation via the vitamin D3-upregulated protein 1/NF-κB signaling pathway. Exp Ther Med 2016; 12:2702-2708. [PMID: 27698775 DOI: 10.3892/etm.2016.3629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/26/2016] [Indexed: 12/28/2022] Open
Abstract
Astragaloside IV (AS-IV) is a flavonoid from the plant Astragalus membranaceus (Fisch) Bge that has a wide range of therapeutic effects. The aim of the present study was to examine the effect of AS-IV on rats with necrotizing enterocolitis (NEC) under oxidative stress and inflammation. Newborn Sprague-Dawley rats were induced with NEC by asphyxia and hypothermia applied on 3 consecutive days. The rats were orally administered AS-IV at 25, 50 and 75 mg/kg for 4 days. The results revealed that AS-IV administration prevented NEC-induced decrease in the concentration of malondialdehyde and myeloperoxidase, and increase in the activity of glutathione (GSH) and superoxide dismutase in murine models. AS-IV also inhibited NEC-induced elevation in the levels of interleukin (IL)-6, IL-1β, tumor necrosis factor-α and nuclear factor (NF)-κB. The effects of AS-IV were achieved under inflammation and oxidative stress. Western blotting demonstrated that AS-IV substantially inhibited the phosphorylated (p)-IκBα, NF-κBp65, p-NF-κBp65 protein levels and increased vitamin D3 upregulated protein 1 (VDUP1) and IκBα protein levels. These data indicate that AS-IV may be effective in the protection of NEC-induced ileum degeneration by inhibiting the levels of inflammatory markers and oxidative stress via the regulation of the VDUP1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhiyong Cai
- Newborn Department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Jindi Liu
- Newborn Department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Hongliang Bian
- Newborn Department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Jinlan Cai
- Newborn Department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|