1
|
Xiong J, Sun C, Wen X, Hou Y, Liang M, Liu J, Wei Q, Yuan F, Peng C, Chen Y, Chang Y, Wang C, Zhang J. miR-548ag promotes DPP4 expression in hepatocytes through activation of TLR(7/8)/NF-κB pathway. Int J Obes (Lond) 2024; 48:941-953. [PMID: 38424257 PMCID: PMC11217002 DOI: 10.1038/s41366-024-01504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE In our previous study, we identified a notable increase in miR-548ag content after obesity, which contributes to the progression of Type 2 diabetes Mellitus(T2DM) through the up-regulation of Dipeptidyl Peptidase-4(DPP4) expression within the liver. However, the precise molecular mechanisms underlying the upregulation of DPP4 by miR-548ag remain elusive. Mature miRNAs rich in GU sequences can activate the TLR(7/8)/NF-κB signalling pathway, which transcriptionally activates DPP4 expression. Notably, the proportion of GU sequences in hsa-miR-548ag was found to be 47.6%. The study proposes a hypothesis suggesting that miR-548ag could potentially increase DPP4 expression in hepatocytes by activating the TLR(7/8)/NF-κB signalling pathway. METHODS Male C57BL/6J mice were fed normal chow diet (NCD, n = 16) or high-fat diet (HFD, n = 16) for 12 weeks. For a duration of 6 weeks, NCD mice received intraperitoneal injections of a miR-548ag mimic, while HFD mice and db/db mice (n = 16) were administered intraperitoneal injections of a miR-548ag inhibitor. qRT-PCR and Western Blot were used to detect the expression level of miR-548ag, DPP4 and the activation of TLR(7/8)/NF-κB signalling pathway. HepG2 and L02 cells were transfected with miR-548ag mimic, miR-548ag inhibitor, TLR7/8 interfering fragment, and overexpression of miR-548ag while inhibiting TLR7/8, respectively. RESULTS (1) We observed elevated levels of miR-548ag in the serum, adipose tissue, and liver of obese mice, accompanied by an upregulation of TLR7/8, pivotal protein in the NF-κB pathway, and DPP4 expression in the liver. (2) miR-548ag promotes DPP4 expression in hepatocytes via the TLR(7/8)/NF-κB signalling pathway, resulting in a reduction in the glucose consumption capacity of hepatocytes. (3) The administration of a miR-548ag inhibitor enhanced glucose tolerance and insulin sensitivity in db/db mice. CONCLUSIONS MiR-548ag promotes the expression of DPP4 in hepatocytes by activating the TLR(7/8)/NF-κB signalling pathway. MiR-548ag may be a potential target for the treatment of T2DM.
Collapse
Affiliation(s)
- Jianyu Xiong
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Chaoyue Sun
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xin Wen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Jie Liu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Qianqian Wei
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Fangyuan Yuan
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Chaoling Peng
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yongsheng Chang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300000, China.
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
2
|
Jia Z, Jin Z, Li M, Zhang X, Peng M, Zhang S, Tan M, Yang Q, Wang W, Sun Y. E2F transcription factor 5, a new regulator in adipogenesis to mediate the role of Krüppel-like factor 7 in chicken preadipocyte differentiation and proliferation. Poult Sci 2024; 103:103728. [PMID: 38688194 PMCID: PMC11077033 DOI: 10.1016/j.psj.2024.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 05/02/2024] Open
Abstract
E2F transcription factor 5 (E2F5) gene is a transcription factor, plays an important role in the development of a variety of cells. E2F5 is expressed in human and mouse adipocytes, but its specific function in adipogenesis is unclear. Krüppel-like factor 7 (KLF7) facilitates proliferation and inhibits differentiation in chicken preadipocytes. Our previous KLF7 chromatin immunoprecipitation-sequencing analysis revealed a KLF7-binding peak in the 3' flanking region of the E2F5, indicating a regulatory role of KLF7 in this region. In the present study, we investigated E2F5 potential role, the overexpression and knockdown analyses revealed that E2F5 inhibited the differentiation and promoted the proliferation of chicken preadipocytes. Moreover, we identified enhancer activity in the 3' flanking region (nucleotides +22661/+22900) of E2F5 and found that KLF7 overexpression increased E2F5 expression and luciferase activity in this region. Deleting the putative KLF7-binding site eliminated the promoting effect of KLF7 overexpression on E2F5 expression. Further, E2F5 reversed the KLF7-induced decrease in preadipocyte differentiation and increase in preadipocyte proliferation. Taken together, our findings demonstrate that KLF7 inhibits differentiation and promotes proliferation in preadipocytes by enhancing E2F5 transcription.
Collapse
Affiliation(s)
- Ziqiu Jia
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Zhao Jin
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Meiqi Li
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Xin Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Min Peng
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Shanshan Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Ming Tan
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Qingzhu Yang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Weiyu Wang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Yingning Sun
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China.
| |
Collapse
|
3
|
Wang J, Liu J, Yuan C, Yang B, Pang H, Chen K, Feng J, Deng Y, Zhang X, Li W, Wang C, Xie J, Zhang J. Palmitic acid-activated GPRs/KLF7/CCL2 pathway is involved in the crosstalk between bone marrow adipocytes and prostate cancer. BMC Cancer 2024; 24:75. [PMID: 38221626 PMCID: PMC10789002 DOI: 10.1186/s12885-024-11826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Obesity-induced abnormal bone marrow microenvironment is one of the important risk element for bone metastasis in prostate cancer (PCa). The present study aimed to determine whether obesity-induced elevation in palmitic acid (PA), which is the most abundant of the free fatty acids (FFAs), increased CCL2 via the GPRs/KLF7 pathway in bone marrow adipocytes (BMA) to facilitate PCa growth and metastasis. METHODS We constructed a bone-tumor bearing mouse model with obesity through high-fat diet, and observed the tumor formation ability of PCa cells. In vitro, observe the effect of PA on the expression level of CCL2 in BMA through GPRs/KLF7 signaling pathway. After co-culture of BMA and PCa cells, CCK8 assay and transwell experiment were used to detect the changes in biological behavior of PCa cells stimulated by BMA. RESULTS The BMA distribution in the bone marrow cavity of BALB/c nude mice fed with the high-fat diet (HFD) was evidently higher than that in the mice fed with the normal diet (ND). Moreover, HFD-induced obesity promoted KLF7/CCL2 expression in BMA and PCa cell growth in the bone marrow cavity of the mice. In the vitro experiment, a conditioned medium with increased CCL2 obtained from the BMA cultured with PA (CM-BMA-PA) was used for culturing the PCa cell lines, which evidently enhanced the proliferation, invasion, and migration ability. KLF7 significantly increased the CCL2 expression and secretion levels in BMA by targeting the promoter region of the CCL2 gene. In addition, GPR40/120 engaged in the PA-induced high KLF7/CCL2 levels in BMA to facilitate the malignant progression of PC-3 cells. CONCLUSIONS PA-activated GPRs/KLF7/CCL2 pathway in BMA facilitates prostate cancer growth and metastasis.
Collapse
Affiliation(s)
- Jingzhou Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Jie Liu
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Chenggang Yuan
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Bingqi Yang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Huai Pang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Keru Chen
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Jiale Feng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Yuchun Deng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Xueting Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Wei Li
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Cuizhe Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jianxin Xie
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jun Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
4
|
Xia W, Li S, Li L, Zhang S, Wang X, Ding W, Ding L, Zhang X, Wang Z. Role of anthraquinones in combating insulin resistance. Front Pharmacol 2023; 14:1275430. [PMID: 38053837 PMCID: PMC10694622 DOI: 10.3389/fphar.2023.1275430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Insulin resistance presents a formidable public health challenge that is intricately linked to the onset and progression of various chronic ailments, including diabetes, cardiovascular disease, hypertension, metabolic syndrome, nonalcoholic fatty liver disease, and cancer. Effectively addressing insulin resistance is paramount in preventing and managing these metabolic disorders. Natural herbal remedies show promise in combating insulin resistance, with anthraquinone extracts garnering attention for their role in enhancing insulin sensitivity and treating diabetes. Anthraquinones are believed to ameliorate insulin resistance through diverse pathways, encompassing activation of the AMP-activated protein kinase (AMPK) signaling pathway, restoration of insulin signal transduction, attenuation of inflammatory pathways, and modulation of gut microbiota. This comprehensive review aims to consolidate the potential anthraquinone compounds that exert beneficial effects on insulin resistance, elucidating the underlying mechanisms responsible for their therapeutic impact. The evidence discussed in this review points toward the potential utilization of anthraquinones as a promising therapeutic strategy to combat insulin resistance and its associated metabolic diseases.
Collapse
Affiliation(s)
- Wanru Xia
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuqian Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - LinZehao Li
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shibo Zhang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiandang Zhang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhibin Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
5
|
Zeng F, Li Y, Zhang X, Feng J, Gu W, Shen L, Huang W. Arctium lappa L. roots inhibit the intestinal inflammation of dietary obese rats through TLR4/NF-κB pathway. Heliyon 2023; 9:e21562. [PMID: 38027866 PMCID: PMC10663856 DOI: 10.1016/j.heliyon.2023.e21562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Long-term consumption of Arctium lappa L. roots can lead to weight loss. To explore the relationship between anti-obesity and anti-inflammation, the effects and mechanism of A. lappa L. root powder (ARP) on intestinal inflammation in obese rats were investigated. Dietary obese rats were successfully established by feeding a high-fat and high-sugar diet. The control group (n = 6) consumed a normal diet. The intestines were compared among the groups (each n = 6) with and without the administration of ARP (intragastric 7.5 g/kg·bw/d). Real-time quantitative reverse transcription-polymerase chain reaction and western blotting analysis revealed that ARP effectively inhibited the expression of pro-inflammatory and inflammatory cytokines in the colons of obese rats. These cytokines included interleukin (IL)-1β, IL-8, IL-6, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1. The inhibition rates for all these cytokines exceeded 88 %. Moreover, ARP demonstrated the ability to down-regulate key genes involved in Toll-like receptor 4 (TLR4) complexes, namely Tlr4, myeloid differentiation protein-2 (Md2), and myeloid differentiation factor 88 (Myd88), along with downstream signaling molecules such as tumor necrosis factor receptor associated factor 6 (TRAF6) and nuclear factor-κB (NF-κB), with inhibition rates over 81 %. Additionally, ARP was observed to inhibit protein levels of TLR4, NF-κB, IL-1β, and TNF-α in the colons of obese rats, with inhibition rates of 65.6 ± 10.9 %, 84.4 ± 19.9 %, 80.8 ± 14.4 %, and 68.4 ± 17.5 %, respectively. This study confirmed the effectiveness of ARP in inhibiting intestinal inflammation through the blockade of the TLR4/NF-κB signaling pathway. It also suggested that ARP holds potential in improving intestinal health in the context of obesity, implying its possible application in the prevention and treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Feng Zeng
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225000, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Xiaoxiao Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Jin Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Li Shen
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225000, PR China
| | - Wuyang Huang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College, Yangzhou University, Yangzhou, 225000, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
- School of Food and Bioengineering, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
6
|
Hong W, Gong P, Pan X, Liu Y, Qi G, Qi C, Qin S. Krüppel-like factor 7 deficiency disrupts corpus callosum development and neuronal migration in the developing mouse cerebral cortex. Brain Pathol 2023; 33:e13186. [PMID: 37401095 PMCID: PMC10467035 DOI: 10.1111/bpa.13186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/16/2023] [Indexed: 07/05/2023] Open
Abstract
Krüppel-like Factor 7 (KLF7) is a zinc finger transcription factor that has a critical role in cellular differentiation, tumorigenesis, and regeneration. Mutations in Klf7 are associated with autism spectrum disorder, which is characterized by neurodevelopmental delay and intellectual disability. Here we show that KLF7 regulates neurogenesis and neuronal migration during mouse cortical development. Conditional depletion of KLF7 in neural progenitor cells resulted in agenesis of the corpus callosum, defects in neurogenesis, and impaired neuronal migration in the neocortex. Transcriptomic profiling analysis indicated that KLF7 regulates a cohort of genes involved in neuronal differentiation and migration, including p21 and Rac3. These findings provide insights into our understanding of the potential mechanisms underlying neurological defects associated with Klf7 mutations.
Collapse
Affiliation(s)
- Wentong Hong
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Xinjie Pan
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Congcong Qi
- Department of Laboratory Animal ScienceFudan UniversityShanghaiChina
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Yang X, Liang M, Tang Y, Ma D, Li M, Yuan C, Hou Y, Sun C, Liu J, Wei Q, Chang Y, Wang C, Zhang J. KLF7 promotes adipocyte inflammation and glucose metabolism disorder by activating the PKCζ/NF-κB pathway. FASEB J 2023; 37:e23033. [PMID: 37342904 DOI: 10.1096/fj.202300005r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
In the obesity context, inflammatory cytokines secreted by adipocytes lead to insulin resistance and are key to metabolic syndrome development. In our previous study, we found that the transcription factor KLF7 promoted the expression of p-p65 and IL-6 in adipocytes. However, the specific molecular mechanism remained unclear. In the present study, we found that the expression of KLF7, PKCζ, p-IκB, p-p65, and IL-6 in epididymal white adipose tissue (Epi WAT) in mice fed a high-fat diet (HFD) was significantly increased. In contrast, the expression of PKCζ, p-IκB, p-p65, and IL-6 was significantly decreased in Epi WAT of KLF7 fat conditional knockout mice. In 3T3-L1 adipocytes, KLF7 promoted the expression of IL-6 via the PKCζ/NF-κB pathway. In addition, we performed luciferase reporter and chromatin immunoprecipitation assays, which confirmed that KLF7 upregulated the expression of PKCζ transcripts in HEK-293T cells. Collectively, our results show that KLF7 promotes the expression of IL-6 by upregulating PKCζ expression and activating the NF-κB signaling pathway in adipocytes.
Collapse
Affiliation(s)
- Xin Yang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Maodi Liang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Yihan Tang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Dingling Ma
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Menghuan Li
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Chenggang Yuan
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Yanting Hou
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Chaoyue Sun
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Jie Liu
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Qianqian Wei
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Yongsheng Chang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Cuizhe Wang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| | - Jun Zhang
- Department of Medical Genetics, Medical College of Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Mahmood A, Faisal MN, Khan JA, Muzaffar H, Muhammad F, Hussain J, Aslam J, Anwar H. Association of a high-fat diet with I-FABP as a biomarker of intestinal barrier dysfunction driven by metabolic changes in Wistar rats. Lipids Health Dis 2023; 22:68. [PMID: 37237272 DOI: 10.1186/s12944-023-01837-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The epithelial lining of the gut expresses intestinal fatty-acid binding proteins (I-FABPs), which increase in circulation and in plasma concentration during intestinal damage. From the perspective of obesity, the consumption of a diet rich in fat causes a disruption in the integrity of the gut barrier and an increase in its permeability. HYPOTHESIS There is an association between the expression of I-FABP in the gut and various metabolic changes induced by a high-fat (HF) diet. METHODS Wistar albino rats (n = 90) were divided into three groups (n = 30 per group), viz. One control and two HF diet groups (15 and 30%, respectively) were maintained for 6 weeks. Blood samples were thus collected to evaluate the lipid profile, blood glucose level and other biochemical tests. Tissue sampling was conducted to perform fat staining and immunohistochemistry. RESULTS HF diet-fed rats developed adiposity, insulin resistance, leptin resistance, dyslipidemia, and increased expression of I-FABP in the small intestine compared to the control group. Increased I-FABP expression in the ileal region of the intestine is correlated significantly with higher fat contents in the diet, indicating that higher I-FABP expression occurs due to increased demand of enterocytes to transport lipids, leading to metabolic alterations. CONCLUSION In summary, there is an association between the expression of I-FABP and HF diet-induced metabolic alterations, indicating that I-FABP can be used as a biomarker for intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Aisha Mahmood
- Department of Physiology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Junaid Ali Khan
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Humaira Muzaffar
- Department of Physiology, Government College University, Faisalabad, 38040, Pakistan
| | - Faqir Muhammad
- Faculty of Veterinary Science, Bahaudin Zakariya University, Multan, Pakistan
| | - Jazib Hussain
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jawad Aslam
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, 38040, Pakistan.
| |
Collapse
|
9
|
Tang Y, Ma D, Liang M, Hou Y, Zhang M, Wang J, Yuan C, Li M, Sun C, Xie J, Wang C, Zhang J. Stress-inducible IL-6 is regulated by KLF7 in brown adipocytes. Heliyon 2023; 9:e14931. [PMID: 37025783 PMCID: PMC10070148 DOI: 10.1016/j.heliyon.2023.e14931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Stress-inducible interleukin 6 (IL-6) is generated in brown adipocytes via beta-3 adrenergic receptor (ADRB3) signaling, which is necessary in stress hyperglycemia, the kind of metabolic adaptation enabling "fight or flight" response by means of liver gluconeogenesis. Nevertheless, the mechanism of ADRB3 signaling mediates IL-6 in brown adipocytes remains unclear. As a result, it is critical to understand how brown adipocytes produce IL-6 via ADRB3 signaling. We found that the ADRB3 agonist and cold stimulation promoted the expression of KLF7 and IL-6 in brown adipocytes of mice. In parallel to these results in vivo, treatment with ADRB3 agonist promoted the expression of KLF7 and the release of IL-6 in primary brown adipocytes of mice. Notably, we discovered that KLF7 positively controls the expression of IL-6 and downregulated KLF7 largely blunted ADRB3 agonist induced IL-6 expressions in brown adipocytes. Our findings suggest that KLF7 is required for the generation of IL-6 when ADRB3 signaling is activated in brown adipocytes.
Collapse
|
10
|
Yoon HJ, Yoon DS, Baek HJ, Kang B, Jung UJ. Dietary Sinapic Acid Alleviates Adiposity and Inflammation in Diet-Induced Obese Mice. Prev Nutr Food Sci 2022; 27:407-413. [PMID: 36721747 PMCID: PMC9843723 DOI: 10.3746/pnf.2022.27.4.407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 01/03/2023] Open
Abstract
Sinapic acid (SA), a hydroxycinnamic acid, is known to confer protection against oxidative stress, inflammation, diabetes, and liver disease. However, the effectiveness of SA in improving obesity remains obscure. Therefore, this study evaluated anti-obesity efficacy of SA and to elucidate its mechanism of action. Male mice were maintained for 16 weeks on high-fat diet (HFD) alone or with SA (0.004%, w/w) and bodyweight, fat mass, adipocyte size, food intake, and biochemical and molecular markers were evaluated. SA-supplemented mice demonstrated markedly decreased fat mass and adipocyte size compared to unsupplemented group, without any changes in bodyweight and food intake between the two groups. Plasma adipocytokines levels including leptin, resistin, monocyte chemoattractant protein (MCP)-1 and interleukin-6 were also markedly reduced by SA supplementation. SA tended to lower plasma insulin level and improved homeostatic index of insulin resistance and intraperitoneal glucose tolerance test in HFD-induced obese mice. The anti-adiposity effect of SA was maybe owing to down-regulation of the mRNA expression of lipogenic genes, including acetyl coenzyme A (CoA) carboxylase, fatty acid synthesis, stearoyl-CoA desaturase 1, and phosphatidate phosphatase, and peroxisome proliferator-activated receptor γ, a transcription factor responsible for governing lipid metabolism, in adipose tissues. SA significantly down-regulated pro-inflammatory nuclear factor kappa B, MCP-1, tumor necrosis factor-α, and Toll-like receptor 4 mRNA expression in adipose tissue. Thus, SA could be beneficial for the development of functional foods or herbal medications to combat obesity.
Collapse
Affiliation(s)
- Hye Jin Yoon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Dae Seong Yoon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Hea Ja Baek
- Department of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Beodeul Kang
- Department of Marine Fisheries Education, Pukyong National University, Busan 48513, Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea,
Correspondence to Un Ju Jung, E-mail:
| |
Collapse
|
11
|
Lu J, Zhu D, Lu J, Liu J, Wu Z, Liu L. Dietary supplementation with low and high polymerization inulin ameliorates adipose tissue inflammation via the TLR4/NF-κB pathway mediated by gut microbiota disturbance in obese dogs. Res Vet Sci 2022; 152:624-632. [DOI: 10.1016/j.rvsc.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
|
12
|
Obesity-induced elevated palmitic acid promotes inflammation and glucose metabolism disorders through GPRs/NF-κB/KLF7 pathway. Nutr Diabetes 2022; 12:23. [PMID: 35443706 PMCID: PMC9021212 DOI: 10.1038/s41387-022-00202-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Our previous results have shown that obesity-induced excessive palmitic acid (PA) can promote the expression of KLF7, which plays a vital role in regulation of inflammation, glucose metabolism. But the exact mechanism of PA up-regulating the expression of KLF7 is not clear yet. This study is intend to explore whether PA promoting KLF7 expression through GPRs/NF-κB signaling pathway, causing inflammation and glucose metabolism disorders. Methods Cells were blocked GPRs/NF-κB under PA stimulation in vitro to demonstrate the molecular mechanism of PA up-regulates KLF7 expression. The regulatory effect of p65 on KLF7 was detected by luciferase reporter gene assay. Blocking GPRs/NF-κB in diet-induced obesity mice to detect the expression of KLF7, inflammatory cytokines and glucose metabolism related factors, clarifying the effects of GPRs/NF-κB on KLF7 in vivo. Results In 3T3-L1 adipocytes and HepG2 cells, PA could up-regulate the expression of KLF7 by promoting the GPR40/120-NF-κB signaling pathway, leading to inflammation and reduced glucose consumption (p < 0.05 for both). Luciferase reporter gene assay and ChIP assay showed that p65 could transcriptionally up-regulates the expression of KLF7. In high-fat diet (HFD) mice, after intraperitoneal injection of GPR40 or GPR120 blocker, the levels of p-p65 and KLF7 in epididymal white adipose tissue and liver were significantly decreased (p < 0.05 for both). Pharmacological inhibition of p-p65 significantly attenuated KLF7 expression and improved glucose tolerant and insulin sensitive (p < 0.05 for both). Conclusions Our results indicate that obesity-induced elevated palmitic acid promotes inflammation and glucose metabolism disorders through GPRs/NF-κB/KLF7 signaling pathway.
Collapse
|
13
|
Chen C, Hu F, Miao S, Sun L, Jiao Y, Xu M, Huang X, Yang Y, Zhou R. Transcription Factor KLF7 Promotes Osteoclast Differentiation by Suppressing HO-1. Front Genet 2022; 13:798433. [PMID: 35419025 PMCID: PMC8995880 DOI: 10.3389/fgene.2022.798433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Osteoporosis is a common orthopedic disease with high prevalence in patients older than 50 years. Osteoporosis is often detected only after the fracture and is hard to treat. Therefore, it is of great significance to explore the molecular mechanism of the occurrence of osteoporosis. Methods: The expression of Heme oxygenase-1 (HO-1) in people with different bone mineral density (BMD) was analyzed based on public databases. GenHacncer and JASPAR databases were adopted to search and verify the upstream transcription factor of HO-1. qRT-PCR, western blot and tartrate-resistant acid phosphatase assays were performed to explore the impact of HO-1 and Kruppel-like factor 7 (KLF7) on osteoclast differentiation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding relationship between KLF7 and HO-1. Finally, Hemin, the agonist of HO-1, was applied in rescue assays, thereby verifying the mechanism of KLF7 modulating osteoclast differentiation by HO-1. Results: Bioinformatics analysis revealed that HO-1 was highly-expressed while KLF7 lowly-expressed in people with high BMD. Besides, a potential binding site of KLF7 was found on the promoter region of HO-1. ChIP assay further manifested the targeting relationship between HO-1 and KLF7. Western blot and TRAP staining unveiled that osteoclast differentiation was suppressed by HO-1, while facilitated by KLF7. Rescue experiments indicated that over-expressed HO-1 could reverse of the promoting effect of KLF7 on osteoclast differentiation. Conclusion: The study confirmed that osteoclast differentiation was promoted by KLF7 constraining HO-1, thereby facilitating osteoporosis. The cognation of the pathogenesis of osteoporosis was further enriched. New treatment could be developed on this basis.
Collapse
Affiliation(s)
- Changhong Chen
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Fei Hu
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Shichang Miao
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Liping Sun
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Yajun Jiao
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Mingwei Xu
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Xin Huang
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Ying Yang
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Rongkui Zhou
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| |
Collapse
|
14
|
Cao J, Ni Y, Zhang H, Ning X, Qi X. Inhibition of Kruppel-like factor 7 attenuates cell proliferation and inflammation of fibroblast-like synoviocytes in rheumatoid arthritis through NF-κB and MAPK signaling pathway. Exp Anim 2022; 71:356-367. [PMID: 35321971 PMCID: PMC9388335 DOI: 10.1538/expanim.21-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease, which can lead to joint inflammation and progressive joint destruction. Kruppel-like factor 7 (KLF7) is the member of KLF family and
plays an important role in multiple biological progresses. However, its precise roles in RA have not been described. Present study aimed to investigate the role of KLF7 in RA-fibroblast-like
synoviocytes (FLSs). Data showed that KLF7 expression was obviously upregulated in synovial tissues of rats with adjuvant-induced arthritis. Functional studies demonstrated that the loss of
KLF7 may suppress cell proliferation and the expression of pro-inflammatory factors (IL-6, IL-1β, IL-17A) and matrix metalloproteinase (MMP-1, MMP-3, MMP-13) in FLSs through the inhibition
of phosphorylation of nuclear factor κB (NF-κB) p65 and JNK. We further showed that miR-9a-5p specifically interacts with KLF7 to negatively regulate the expression of KLF7 in RA-FLSs. Taken
together, our results demonstrated that KLF7 which targeted by miR-9a-5p might participate in the pathogenesis of RA by promoting cell proliferation, pro-inflammatory cytokine release and
MMP expression through the activation of NF-κB and JNK pathways in RA-FLSs. Hence, KLF7 could be a novel target for RA therapy.
Collapse
Affiliation(s)
- Jingjing Cao
- Teaching and Research Section of Internal Medicine, Hebei Medical University.,Department of Rheumatology and Immunology, Hebei General Hospital
| | - Yanhui Ni
- Department of Cardiology, Hebei General Hospital
| | | | - Xiaoran Ning
- Department of Rheumatology and Immunology, Hebei General Hospital
| | - Xiaoyong Qi
- Teaching and Research Section of Internal Medicine, Hebei Medical University.,Department of Cardiology Center, Hebei General Hospital
| |
Collapse
|
15
|
Le Moli R, Vella V, Tumino D, Piticchio T, Naselli A, Belfiore A, Frasca F. Inflammasome activation as a link between obesity and thyroid disorders: Implications for an integrated clinical management. Front Endocrinol (Lausanne) 2022; 13:959276. [PMID: 36060941 PMCID: PMC9437482 DOI: 10.3389/fendo.2022.959276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Obesity is strongly associated with chronic low-grade inflammation. Obese patients have an increased risk to develop thyroid autoimmunity and to became hypothyroid, suggesting a pathogenetic link between obesity, inflammation and autoimmunity. Moreover, type 2 diabetes and dyslipidemia, also characterized by low-grade inflammation, were recently associated with more aggressive forms of Graves' ophthalmopathy. The association between obesity and autoimmune thyroid disorders may also go in the opposite direction, as treating autoimmune hyper and hypothyroidism can lead to weight gain. In addition, restoration of euthyroidism by L-T4 replacement therapy is more challenging in obese athyreotic patients, as it is difficult to maintain thyrotropin stimulation hormone (TSH) values within the normal range. Intriguingly, pro-inflammatory cytokines decrease in obese patients after bariatric surgery along with TSH levels. Moreover, the risk of thyroid cancer is increased in patients with thyroid autoimmune disorders, and is also related to the degree of obesity and inflammation. Molecular studies have shown a relationship between the low-grade inflammation of obesity and the activity of intracellular multiprotein complexes typical of immune cells (inflammasomes). We will now highlight some clinical implications of inflammasome activation in the relationship between obesity and thyroid disease.
Collapse
|
16
|
Poledne R, Kralova Lesna I. Adipose tissue macrophages and atherogenesis – a synergy with cholesterolaemia. Physiol Res 2021. [DOI: 10.33549//physiolres.934745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Excessive LDL cholesterol concentration together with subclinical inflammation, in which macrophages play a central role, are linked pathologies. The process starts with the accumulation of macrophages in white adipose tissue and the switch of their polarization toward a pro-inflammatory phenotype. The proportion of pro-inflammatory macrophages in adipose tissue is related to the main risk predictors of cardiovascular disease. The cholesterol content of phospholipids of cell membranes seems to possess a crucial role in the regulation of membrane signal transduction and macrophage polarization. Also, different fatty acids of membrane phospholipids influence phenotypes of adipose tissue macrophages with saturated fatty acids stimulating pro-inflammatory whereas ω3 fatty acids anti-inflammatory changes. The inflammatory status of white adipose tissue, therefore, reflects not only adipose tissue volume but also adipose tissue macrophages feature. The beneficial dietary change leading to an atherogenic lipoprotein decrease may therefore synergically reduce adipose tissue driven inflammation.
Collapse
Affiliation(s)
- R Poledne
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | |
Collapse
|
17
|
Xu Q, Li Y, Lin S, Wang Y, Zhu J, Lin Y. KLF4 Inhibits the Differentiation of Goat Intramuscular Preadipocytes Through Targeting C/EBPβ Directly. Front Genet 2021; 12:663759. [PMID: 34421986 PMCID: PMC8373462 DOI: 10.3389/fgene.2021.663759] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Intramuscular fat (IMF) deposition is a complicated process, and most of the underlying regulators of this biological process are unknown. Here, we cloned the intact CDS of KLF4 gene, investigated the role of KLF4 by gaining or losing function in vitro and further explored the pathways of KLF4 regulating differentiation of intramuscular preadipocytes in goat. Our results show that goat KLF4 gene consists of 1,536 bp encoding a protein of 486 amino acids. The expression of KLF4 is higher in the lung while lower in the heart and muscle in goat. Knockdown of KLF4 mediated by siRNA technique significantly promotes intramuscular preadipocyte lipid accumulation and upregulates mRNA expression of adipogenic related genes including C/EBPα, C/EBPβ, and PPARγ in vivo cultured cells. Consistently, overexpression of KLF4 inhibits intramuscular adipocyte lipid accumulation and significantly downregulation gene expression of C/EBPβ, PPARγ, aP2, and Pref-1. Further, we found that other members of KLFs were upregulated or downregulated after interference or overexpression of KLF4, including KLF2 and KLF5-7. We also found that C/EBPβ was a potential target of KLF4, because it had an opposite expression pattern with KLF4 during the differentiation of intramuscular preadipocytes and had putative binding sites of KLF4. The dual-luciferase reporter assay indicated that overexpression of KLF4 inhibited the transcriptional activity of C/EBPβ. These results demonstrate that KLF4 inhibits the differentiation of intramuscular preadipocytes in goat by targeting C/EBPβ.
Collapse
Affiliation(s)
- Qing Xu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Sen Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|
18
|
Li Y, Gan M, Tang T, Shao J, Lai T, Ma Y, Elzo MA, Jia X, Hu S, Wang J, Lai S. Intramuscular adipocyte and fatty acid differences between high-fat and control rabbit groups subject to a restricted diet. Vet Med Sci 2021; 7:2051-2060. [PMID: 34273256 PMCID: PMC8464271 DOI: 10.1002/vms3.576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fatty acids of intramuscular fat (IMF) in rabbits can influence meat quality, but it is unclear which fatty acids benefit to human health. A rabbit model of weight gain and weight loss was constructed using two rabbit groups and two growth stages. Stage 1 included control group1 fed a commercial diet(CG1) and experimental group1 fed a high fat diet (EG1). Stage 2 include control group2(CG2) and experimental group2 (EG2) both fed a restricted commercial diet. We detected differences in blood biochemical indicators as well as changes in intramuscular adipose cells and intramuscular fatty acid content in control and experiment groups at two stages. High fat induction can make rabbits become obese, have higher concentrations of glucose (GLU), total cholesterol (TC), triglyceride (TG), low density lipoprotein-cholesterol (LDL-C) and free fatty acid (FFA), and lower concentrations of insulin (INS). In addition, a high-fat diet promotes hypertrophy of precursor adipocytes in femoral muscles. Conversely, a restricted diet causes weight loss, decreases the concentration of TG, FFA, and INS in CG2 and EG2, and increases the deposition of unsaturated fatty acids in the femoral muscle. The content of monounsaturated trans oleic acid (C18:1n-9T) in EG2 was significantly higher than in CG2, whereas oleic acid (C18:1n-9C) was significantly lower in EG2 than in CG2. The polyunsaturated fatty acids Linolenate (C18:3 n-3) and cis-5,8,11,14,17-Eicosapentaenoate (C20:5 n-3) increased in CG2 and EG2. The content of Linoleate (C18:2 n-6) and γ-Linolenic acid (C18:3 n-6) significantly increased in CG2. The content of cis-11,14-Eicosatrienoic acid (C20:2) decreased significantly in CG2, but increased significantly in EG2.Thus, a high-fat diet can increase the formation of unhealthy fatty acids. Conversely, weight loss due to a restricted diet leads to an increase in unsaturated fatty acids in the femoral muscle, indicating that it reduces obesity symptoms and it may improve meat quality in rabbit.
Collapse
Affiliation(s)
- YanHong Li
- College of Animal Science and Technology, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan, P. R. China
| | - Mingchuan Gan
- College of Animal Science and Technology, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan, P. R. China
| | - Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan, P. R. China
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan, P. R. China
| | - Tianfu Lai
- College of Animal Science and Technology, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan, P. R. China
| | - Yuan Ma
- College of Animal Science and Technology, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan, P. R. China
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Xianbo Jia
- College of Animal Science and Technology, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan, P. R. China
| | - Shenqiang Hu
- College of Animal Science and Technology, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan, P. R. China
| | - Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan, P. R. China
| | - SongJia Lai
- College of Animal Science and Technology, Sichuan Agricultural University-Chengdu Campus, Chengdu, Sichuan, P. R. China
| |
Collapse
|
19
|
García-Niño WR, Zazueta C. New insights of Krüppel-like transcription factors in adipogenesis and the role of their regulatory neighbors. Life Sci 2020; 265:118763. [PMID: 33189819 DOI: 10.1016/j.lfs.2020.118763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
Obesity is a serious public health problem associated with predisposition to develop metabolic diseases. Over the past decade, several studies in vitro and in vivo have shown that the activity of Krüppel-like factors (KLFs) regulates adipogenesis, adipose tissue function and metabolism. Comprehension of both the origin and development of adipocytes and of adipose tissue could provide new insights into therapeutic strategies to contend against obesity and related metabolic diseases. This review focus on the transcriptional role that KLF family members play during adipocyte differentiation, describes their main interactions and the mechanisms involved in this fine-tuned developmental process. We also summarize new findings of the involvement of several effectors that modulate KLFs expression during adipogenesis, including growth factors, circadian clock proteins, interleukins, nuclear receptors, protein kinases and importantly, microRNAs. Thus, KLFs regulation by these factors and emerging molecules might constitute a potential therapeutic target for anti-obesity intervention.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| |
Collapse
|
20
|
Wong SK, Chin KY, Ima-Nirwana S. Toll-like Receptor as a Molecular Link between Metabolic Syndrome and Inflammation: A Review. Curr Drug Targets 2020; 20:1264-1280. [PMID: 30961493 DOI: 10.2174/1389450120666190405172524] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Metabolic Syndrome (MetS) involves a cluster of five conditions, i.e. obesity, hyperglycaemia, hypertension, hypertriglyceridemia and low High-Density Lipoprotein (HDL) cholesterol. All components of MetS share an underlying chronic inflammatory aetiology, manifested by increased levels of pro-inflammatory cytokines. The pathogenic role of inflammation in the development of MetS suggested that toll-like receptor (TLR) activation may trigger MetS. This review summarises the supporting evidence on the interactions between MetS and TLR activation, bridged by the elevation of TLR ligands during MetS. The regulatory circuits mediated by TLR activation, which modulates signal propagation, leading to the state of chronic inflammation, are also discussed. Taken together, TLR activation could be the molecular basis in the development of MetS-induced inflammation.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Lin HY, Weng SW, Shen FC, Chang YH, Lian WS, Hsieh CH, Chuang JH, Lin TK, Liou CW, Chang CS, Lin CY, Su YJ, Wang PW. Abrogation of Toll-Like Receptor 4 Mitigates Obesity-Induced Oxidative Stress, Proinflammation, and Insulin Resistance Through Metabolic Reprogramming of Mitochondria in Adipose Tissue. Antioxid Redox Signal 2020; 33:66-86. [PMID: 31950846 DOI: 10.1089/ars.2019.7737] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Obesity-induced excessive visceral fat (VF) accumulation is associated with insulin resistance (IR), systemic oxidative stress, and chronic inflammation. As toll-like receptor 4 (TLR4) plays an important role in innate immunity, we herein investigate the effect of TLR4 knockout (T4KO) in a high-fat high-sucrose diet (HFD)-induced obesity mouse model. Results: C57BL6 wild-type (WT) and T4KO mice were fed with either control diet (CD) or HFD for 12 months, rendering four experimental groups: WT+CD, WT+HFD, T4KO+CD, and T4KO+HFD. Compared with WT+CD, WT+HFD demonstrated significant increase in VF accumulation, oxidative damage, M1/M2 macrophage ratio, chronic inflammation, and development of IR. Compared with WT+HFD, T4KO+HFD presented increased BW and body fat with higher subcutaneous fat (SF)/VF ratio, but lower body temperature, as well as decreased oxidative damage, M1/M2 macrophage ratio, chronic inflammation, and IR. Unlike WT+HFD, T4KO+HFD exhibited an increase in mitochondrial electron transport chain activity but a decrease of uncoupling protein 2 (UCP2) level. While T4KO hindered HFD-induced increasing mitochondrial oxygen consumption rate, a shift toward a higher extracellular acidification rate in VF was observed. Notably, T4KO inhibits HFD-induced mitochondrial translocation of nuclear factor of activated T cells 2 (NFATC2), which contributed to mitochondrial metabolic reprogramming. Both fat distribution shifting from VF to SF and mitochondrial metabolic reprogramming may alleviate systemic oxidative stress and chronic inflammation. Innovation and Conclusion: Abrogation of TLR4 contributes to reduction of oxidative stress through metabolic reprogramming of mitochondria in VF, mitigating obesity-induced IR. The study provides critical insight into associating innate immunity-mitochondria interplay with prevention of diabetes.
Collapse
Affiliation(s)
- Hung-Yu Lin
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Mitochondrial Research and Medicine; Departments of Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Chih Shen
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Hsiang Chang
- Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Shiung Lian
- Medical Research and Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Hua Hsieh
- Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiin-Haur Chuang
- Center for Mitochondrial Research and Medicine; Departments of Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Pediatric Surgery, and Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine; Departments of Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Center for Mitochondrial Research and Medicine; Departments of Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Shiang Chang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Mitochondrial Research and Medicine; Departments of Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Yi Lin
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Mitochondrial Research and Medicine; Departments of Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Jih Su
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Wen Wang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Mitochondrial Research and Medicine; Departments of Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
22
|
Korakas E, Ikonomidis I, Kousathana F, Balampanis K, Kountouri A, Raptis A, Palaiodimou L, Kokkinos A, Lambadiari V. Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes. Am J Physiol Endocrinol Metab 2020; 319:E105-E109. [PMID: 32459524 PMCID: PMC7322508 DOI: 10.1152/ajpendo.00198.2020] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 01/05/2023]
Abstract
Recent reports have shown a strong association between obesity and the severity of COVID-19 infection, even in the absence of other comorbidities. After infecting the host cells, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause a hyperinflammatory reaction through the excessive release of cytokines, a condition known as "cytokine storm," while inducing lymphopenia and a disrupted immune response. Obesity is associated with chronic low-grade inflammation and immune dysregulation, but the exact mechanisms through which it exacerbates COVID-19 infection are not fully clarified. The production of increased amounts of cytokines such as TNFα, IL-1, IL-6, and monocyte chemoattractant protein (MCP-1) lead to oxidative stress and defective function of innate and adaptive immunity, whereas the activation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome seems to play a crucial role in the pathogenesis of the infection. Endothelial dysfunction and arterial stiffness could favor the recently discovered infection of the endothelium by SARS-CoV-2, whereas alterations in cardiac structure and function and the prothrombotic microenvironment in obesity could provide a link for the increased cardiovascular events in these patients. The successful use of anti-inflammatory agents such as IL-1 and IL-6 blockers in similar hyperinflammatory settings, like that of rheumatoid arthritis, has triggered the discussion of whether such agents could be administrated in selected patients with COVID-19 disease.
Collapse
Affiliation(s)
- Emmanouil Korakas
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ignatios Ikonomidis
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Kousathana
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Balampanis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Kountouri
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Raptis
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Palaiodimou
- Second Department of Neurology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Niu R, Tang Y, Xi Y, Jiang D. High Expression of Krüppel-like Factor 7 Indicates Unfavorable Clinical Outcomes in Patients with Lung Adenocarcinoma. J Surg Res 2020; 250:216-223. [PMID: 32092599 DOI: 10.1016/j.jss.2019.12.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/08/2019] [Accepted: 12/29/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Krüppel-like factor 7 (KLF7), which belongs to the KLF family of zinc finger transcription factors, plays a critical role in regulating gene expression. It was reported that KLF7 overexpression was closely related to the progression of gastric cancer. However, the role of KLF7 in lung adenocarcinoma (LAC) has not been elucidated. The aim of our study is to investigate the expression pattern of KLF7 and explore whether the KLF7 expression is correlated with unfavorable clinical outcome of patients with LAC. MATERIALS AND METHODS The protein and mRNA levels of KLF7 were examined in LAC tissues by using immunohistochemistry staining and quantitative reverse transcription polymerase chain reaction, respectively. The prognostic role of KLF7 in patients with LAC was assessed using univariate and multivariate analyses. Clinical outcomes were evaluated by Kaplan-Meier analysis and logrank test. The effects of KLF7 on lung cancer cells were investigated through cellular experiments. RESULTS KLF7 expression was elevated in LAC tissues compared with adjacent normal tissues. High protein level of KLF7 was correlated with larger tumor size, positive lymph node metastasis, and advanced TNM stage. Moreover, patients with LAC with higher expression level of KLF7 had poorer overall survival, and KLF7 was identified as an unfavorable independent prognosis factor. Knockdown of KLF7 can suppress the proliferation and invasion abilities of cancer cells. CONCLUSIONS Our studies revealed that high KLF7 expression level was significantly associated with the poorer clinical outcomes of patients with LAC, indicating the potential role of KLF7 as a novel prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Rungui Niu
- Department of Geratology, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Yanlei Tang
- Department of Chest Surgery, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, China.
| | - Daowen Jiang
- Department of Chest Surgery, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Lew KN, Starkweather A, Cong X, Judge M. A Mechanistic Model of Gut-Brain Axis Perturbation and High-Fat Diet Pathways to Gut Microbiome Homeostatic Disruption, Systemic Inflammation, and Type 2 Diabetes. Biol Res Nurs 2019; 21:384-399. [PMID: 31113222 DOI: 10.1177/1099800419849109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is a highly prevalent metabolic disease, affecting nearly 10% of the American population. Although the etiopathogenesis of T2D remains poorly understood, advances in DNA sequencing technologies have allowed for sophisticated interrogation of the human microbiome, providing insight into the role of the gut microbiome in the development and progression of T2D. An emerging body of research reveals that gut-brain axis (GBA) perturbations and a high-fat diet (HFD), along with other modifiable and nonmodifiable risk factors, contribute to gut microbiome homeostatic imbalance. Homeostatic imbalance or disruption increases gut wall permeability and facilitates translocation of endotoxins (lipopolysaccharides) into the circulation with resultant systemic inflammation. Chronic, low-grade systemic inflammation ensues with pro-inflammatory pathways activated, contributing to obesity, insulin resistance (IR), pancreatic β-cell decline, and, thereby, T2D. While GBA perturbations and HFD are implicated in provoking these conditions, prior mechanistic models have tended to examine HFD and GBA pathways exclusively without considering their shared pathways to T2D. Addressing this gap, this article proposes a mechanistic model informed by animal and human studies to advance scientific understanding of (1) modifiable and nonmodifiable risk factors for gut microbiome homeostatic disruption, (2) HFD and GBA pathways contributing to homeostatic disruption, and (3) shared GBA and HFD pro-inflammatory pathways to obesity, IR, β-cell decline, and T2D. The proposed mechanistic model, based on the extant literature, proposes a framework for studying the complex relationships of the gut microbiome to T2D to advance study in this promising area of research.
Collapse
Affiliation(s)
| | | | - Xiaomei Cong
- 1 School of Nursing, University of Connecticut, Storrs, CT, USA
| | - Michelle Judge
- 1 School of Nursing, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
25
|
Sanghera DK, Bejar C, Sharma S, Gupta R, Blackett PR. Obesity genetics and cardiometabolic health: Potential for risk prediction. Diabetes Obes Metab 2019; 21:1088-1100. [PMID: 30667137 PMCID: PMC6530772 DOI: 10.1111/dom.13641] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
Abstract
The increasing burden of obesity worldwide and its effect on cardiovascular disease (CVD) risk is an opportunity for evaluation of preventive approaches. Both obesity and CVD have a genetic background and polymorphisms within genes which enhance expression of variant proteins that influence CVD in obesity. Genome-based prediction may therefore be a feasible strategy, but the identification of genetically driven risk factors for CVD manifesting as clinically recognized phenotypes is a major challenge. Clusters of such risk factors include hyperglycaemia, hypertension, ectopic liver fat, and inflammation. All involve multiple genetic pathways having complex interactions with variable environmental influences. The factors that make significant contributions to CVD risk include altered carbohydrate homeostasis, ectopic deposition of fat in muscle and liver, and inflammation, with contributions from the gut microbiome. A futuristic model depends on harnessing the predictive power of plausible genetic variants, phenotype reversibility, and effective therapeutic choices based on genotype-phenotype interactions. Inverting disease phenotypes into ideal cardiovascular health metrics could improve genetic and epigenetic assessment, and form the basis of a future model for risk detection and early intervention.
Collapse
Affiliation(s)
- Dharambir K. Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cynthia Bejar
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sonali Sharma
- Department of Biochemistry, College of Medical Sciences, Rajasthan University of Health Sciences, Kumbha Marg, Pratap Nagar, Jaipur 302033, India
| | - Rajeev Gupta
- Academic Research Development Unit, College of Medical Sciences, Rajasthan University of Health Sciences, Kumbha Marg, Pratap Nagar, Jaipur 302033, India
| | - Piers R. Blackett
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
26
|
Abdelsadik A. High-fat diet modifies cytokine gene expression and exacerbates the effects of acute pancreatitis in the liver of rats. J Basic Clin Physiol Pharmacol 2018; 29:651-658. [PMID: 29995631 DOI: 10.1515/jbcpp-2018-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/14/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Obese patients have a higher risk of developing different metabolic syndromes (MeS), including acute pancreatitis (AP). Although obese individuals are more prone to MeS and more susceptible to local and systemic inflammation in response to AP, thus causing long-lasting hospitalization, higher morbidity and mortality, their underlying mechanisms remain unclear. This study aimed to investigate the relationship between obesity and the outcomes of AP in the rat model of AP. METHODS To assess the link between obesity and AP, 40 male albino rats were divided into two groups: control and those given a high-fat diet for 12 weeks. This was followed by the injection of a single dose of L-arginine (250 mg/100 gm) in half of each group to induce AP. RESULTS Data evaluation was done using 2-way ANOVA. Values were considered significant when p≤0.05. Markers of AP were evaluated in the serum and ascitic fluid. Moreover, the systemic inflammatory markers, such as IL-6, TNF-α, HMGB1 and TLR4, were quantified in the liver of all groups. Results showed that the OAP group had the highest levels of liver enzymes and amylase aside from several signs of liver damage, such as fat necrosis and steatosis. CONCLUSIONS The inflammatory cytokine levels are synchronized, creating an early responsive stage and late inflammatory stage to realize the best defense mechanism. Results also indicate that obesity is a main determinant of the severity of AP at the late stage.
Collapse
Affiliation(s)
- Ahmed Abdelsadik
- Department of Zoology, Faculty of Science, Aswan University, 81528 Aswan, Egypt, Phone: +20 103 3336 675
| |
Collapse
|
27
|
The Effect and Mechanism of KLF7 in the TLR4/NF- κB/IL-6 Inflammatory Signal Pathway of Adipocytes. Mediators Inflamm 2018; 2018:1756494. [PMID: 30598636 PMCID: PMC6287150 DOI: 10.1155/2018/1756494] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/20/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023] Open
Abstract
Objective To investigate the role and possible molecular mechanism of Krüppel-like factor 7 (KLF7) in the TLR4/NF-κB/IL-6 inflammatory signaling pathway activated by free fatty acids (FFA). Methods The mRNA and protein expression levels of KLF7 and the factors of TLR4/NF-κB/IL-6 inflammatory signal pathways were detected by qRT-PCR and Western blotting after cell culture with different concentrations of palmitic acid (PA). The expression of KLF7 or TLR4 in adipocytes was upregulated or downregulated; after that, the mRNA and protein expression levels of these key factors were detected. KLF7 expression was downregulated while PA stimulated adipocytes, and then the mRNA and protein expressions of KLF7/p65 and downstream inflammatory cytokine IL-6 were detected. The luciferase reporter assay was used to determine whether KLF7 had a transcriptional activation effect on IL-6. Results (1) High concentration of PA can promote the expression of TLR4, KLF7, and IL-6 in adipocytes. (2) TLR4 positively regulates KLF7 expression in adipocytes. (3) KLF7 positively regulates IL-6 expression in adipocytes. (4) PA promotes IL-6 expression via KLF7 in adipocytes. (5) KLF7 has a transcriptional activation on IL-6. Conclusion PA promotes the expression of the inflammatory cytokine IL-6 by activating the TLR4/KLF7/NF-κB inflammatory signaling pathway. In addition, KLF7 may directly bind to the IL-6 promoter region and thus activate IL-6.
Collapse
|
28
|
Nien HC, Sheu JC, Chi YC, Chen CL, Kao JH, Yang WS. One-year weight management lowers lipopolysaccharide-binding protein and its implication in metainflammation and liver fibrosis. PLoS One 2018; 13:e0207882. [PMID: 30458048 PMCID: PMC6245791 DOI: 10.1371/journal.pone.0207882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Studies showed that the endotoxemia-related biomarker, lipopolysaccharide-binding protein (LBP), is associated with obesity and fatty liver. The level of LBP is reduced after surgical weight loss. This study aimed to verify the change of serum LBP levels after one-year medical weight management in subjects with obesity. Methods and findings A total of 62 subjects with obesity, 39 subjects with overweight, and 21 subjects with normal body mass index were enrolled for a one-year weight management program. Basic information, body composition analysis, clinical data, serum LBP level, and abdominal ultrasonography findings were collected. At baseline, the serum LBP levels of the obese and overweight subjects were significantly higher than that of the normal group (30.9±7.4 and 29.6±6.3 versus 23.1±5.6 μg/mL, respectively, p<0.001). Serum LBP in subjects with obesity was significantly reduced to 26.5±7.1 μg/mL (p-value < 0.001) after one year. In the multivariate analyses, LBP was associated with high sensitive C-reactive protein (hs-CRP) and non-alcoholic fatty liver disease (NAFLD) fibrosis score (NFS) before weight management in the obese group. Moreover, the change of LBP in response to weight management was significantly related to the changes of hs-CRP, leukocyte count and NFS by multivariate linear regression analysis also in the obese group. Conclusion The serum level of the endotoxemia-related biomarker, LBP, decreases after one-year weight management in the obese subjects. In addition to serving as a metainflammatroy biomarker like hs-CRP, LBP may also be a potential biomarker as a non-invasive biomarker for the evaluation of liver fibrosis in NAFLD.
Collapse
Affiliation(s)
- Hsiao-Ching Nien
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
- Department of Family Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chiao Chi
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Coqueiro RDS, Soares TDJ, Pereira R, Correia TML, Coqueiro DSO, Oliveira MV, Marques LM, de Sá CKC, de Magalhães ACM. Therapeutic and preventive effects of exercise on cardiometabolic parameters in aging and obese rats. Clin Nutr ESPEN 2018; 29:203-212. [PMID: 30661688 DOI: 10.1016/j.clnesp.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/13/2018] [Accepted: 10/06/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Aging, obesity and sedentarism are among the most important predictors of cardiometabolic diseases. Aiming to reduce the impact of the combination of these three factors, we tested the therapeutic and preventive effects of exercise in aging and obese rats on the following cardiometabolic disease risk parameters: body fat, blood pressure, blood lipids, and glycemic homeostasis. METHODS Eighteen male Wistar rats (initial age = 4 months, and final age = 14 months) were randomly distributed into three aging and obese groups: sedentary, therapeutic exercise and preventive exercise. Food and caloric intake, body adiposity, muscle mass, cardiovascular parameters, biochemical markers, glycemic homeostasis, and gene expression of insulin-dependent, insulin-independent and insulin resistance pathways in skeletal muscle were evaluated. RESULTS Therapeutic and preventive exercises were associated with higher food and caloric intake, and expression of TBC1D1 in the soleus muscle, as well as lower total cholesterol/HDL and LDL/HDL ratios, glucose levels at the end (90 min) of the glucose tolerance test and IKBKB expression in the gastrocnemius and soleus muscles. Only the preventive exercise improved the cardiovascular and body composition parameters, glucose tolerance, insulin resistance and insulin sensitivity, besides reducing total cholesterol, triglycerides, triglycerides/HDL ratio, plasmatic insulin and MAPK8 expression in soleus. The preventive exercise group also presented greater expression of INRS, IRS1, IRS2, PIK3CA, AKT1, and SLC2A4 in gastrocnemius and soleus, TBC1D1 in gastrocnemius, and AKT2 and PRKAA1 in soleus. CONCLUSIONS Therapeutic exercise promoted some improvements on cardiometabolic parameters in aging and obese rats, however, the best benefits were achieved through the preventive exercise.
Collapse
Affiliation(s)
- Raildo da Silva Coqueiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Vitória da Conquista, Brazil; Universidade Estadual do Sudoeste da Bahia, Departamento de Saúde, Jequié, Brazil.
| | - Telma de Jesus Soares
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Vitória da Conquista, Brazil
| | - Rafael Pereira
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Jequié, Brazil
| | - Thiago Macêdo Lopes Correia
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Vitória da Conquista, Brazil
| | | | | | - Lucas Miranda Marques
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Vitória da Conquista, Brazil
| | | | - Amélia Cristina Mendes de Magalhães
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Vitória da Conquista, Brazil
| |
Collapse
|
30
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Teixeira D, Cecconello AL, Partata WA, de Fraga LS, Ribeiro MFM, Guedes RP. The metabolic and neuroinflammatory changes induced by consuming a cafeteria diet are age-dependent. Nutr Neurosci 2017; 22:284-294. [PMID: 28958196 DOI: 10.1080/1028415x.2017.1380892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To compare the effects of a palatable cafeteria diet on serum parameters and neuroinflammatory markers of young and aged female Wistar rats. METHODS Three-month-old (young) and 18-month-old (aged) female Wistar rats had access to a cafeteria diet (Caf-Young, Caf-Aged) or a standard chow diet (Std-Young, Std-Aged). RESULTS The Caf-Young group showed a higher food consumption, weight gain, visceral fat depot, serum insulin and leptin levels, and the insulin resistance index (HOMA-IR) than the Std-Young group. The Caf-Aged group exhibited an increase in interleukin-1 levels in the cerebral cortex and hippocampus. The number of GFAP-positive cells did not differ between the groups, but there was a diet effect in the cerebral cortex and an age effect in the hippocampus. Phospho-tau expression did not differ between the groups. DISCUSSION The 3- and 18-month-old rats responded differently to a cafeteria diet. Insulin and leptin levels are elevated in young animals fed a cafeteria diet, whereas aged animals are prone to neuroinflammation (indicated by an increase in interleukin-1β levels). A combination of hypercaloric diet and senescence have detrimental effects on the inflammatory response in the brain, which may predispose to neurological diseases.
Collapse
Affiliation(s)
- Deborah Teixeira
- a Department of Physiology , Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil
| | - Ana Lucia Cecconello
- a Department of Physiology , Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil
| | - Wania Aparecida Partata
- a Department of Physiology , Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil
| | - Luciano Stürmer de Fraga
- a Department of Physiology , Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil
| | | | - Renata Padilha Guedes
- b Departament of Basic Health Sciences , Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| |
Collapse
|
32
|
Maurizi G, Della Guardia L, Maurizi A, Poloni A. Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J Cell Physiol 2017; 233:88-97. [PMID: 28181253 DOI: 10.1002/jcp.25855] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/11/2022]
Abstract
Obesity is a condition likely associated with several dysmetabolic conditions or worsening of cardiovascular and other chronic disturbances. A key role in this mechanism seem to be played by the onset of low-grade systemic inflammation, highlighting the importance of the interplay between adipocytes and immune system cells. Adipocytes express a complex and highly adaptive biological profile being capable to selectively activate different metabolic pathways in order to respond to environmental stimuli. It has been demonstrated how adipocytes, under appropriate stimulation, can easily differentiate and de-differentiate thereby converting themselves into different phenotypes according to metabolic necessities. Although underlying mechanisms are not fully understood, growing in adipocyte size and the inability of storing triglycerides under overfeeding conditions seem to be crucial for the switching to a dysfunctional metabolic profile, which is characterized by inflammatory and apoptotic pathways activation, and by the shifting to pro-inflammatory adipokines secretion. In obesity, changes in adipokines secretion along with adipocyte deregulation and fatty acids release into circulation contribute to maintain immune cells activation as well as their infiltration into regulatory organs. Over the well-established role of macrophages, recent findings suggest the involvement of new classes of immune cells such as T regulatory lymphocytes and neutrophils in the development inflammation and multi systemic worsening. Deeply understanding the pathways of adipocyte regulation and the de-differentiation process could be extremely useful for developing novel strategies aimed at curbing obesity-related inflammation and related metabolic disorders.
Collapse
Affiliation(s)
- Giulia Maurizi
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| | - Lucio Della Guardia
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Unità di Scienza dell'Alimentazione, Università degli studi di Pavia, Pavia, Italy
| | - Angela Maurizi
- Chirurgia d'Urgenza e del Trauma, Azienda Ospedaliera Universitaria-Ospedali Riuniti di Ancona, Ancona, Italy
| | - Antonella Poloni
- Clinica di Ematologia, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
33
|
KLF15 protects against isoproterenol-induced cardiac hypertrophy via regulation of cell death and inhibition of Akt/mTOR signaling. Biochem Biophys Res Commun 2017; 487:22-27. [PMID: 28336438 DOI: 10.1016/j.bbrc.2017.03.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 01/28/2023]
Abstract
Increasing evidence indicate that the Krüppel-like factor KLF15, a member of Cys2/His2 zinc-finger DNA-binding proteins, attenuates cardiac hypertrophy. However, the role of KLF15 in cardiovascular system is largely unknown and the exact molecular mechanism of its protective function is not fully elucidated. In the present study, we established a mouse model of cardiac hypertrophy and found that KLF15 expression was down-regulated in hypertrophic hearts. To evaluate the roles of KLF15 in cardiac hypertrophy, we generated transgenic mice overexpressing KLF15 of KLF15 knockdown mice and subsequently induced cardiac hypertrophy. The results indicated that KLF15 overexpression protects mice from ISO-induced cardiac hypertrophy, with reduced ratios of heart weight (HW)/body weight (BW) and cross-sectional area. We also observed that KLF15 overexpression attenuated cardiac fibrosis, inhibited apoptosis and induced autophagy in cardiomyocytes compared with KLF15 knockdown mice. More importantly, we found that the KLF15 overexpression inhibited the Akt/mTOR signaling pathway. Taken together, our findings imply that KLF15 possesses potential anti-hypertrophic and anti-fibrotic functions, possibly via regulation of cell death pathways and the inhibition of Akt/mTOR axis. KLF15 may constitute an efficient candidate drug for the treatment of heart failure and other cardiovascular diseases.
Collapse
|