1
|
Carrara GMP, Souza-Silva GA, Reis TCBD, Alencar BCD, Boscardin SB, Kima PE, Stolf BS. Macrophage Protein Disulfide Isomerase Increases Infection by Leishmania amazonensis. Cell Biol Int 2025. [PMID: 40178024 DOI: 10.1002/cbin.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Leishmania spp. are protozoans with a digenetic life cycle responsible for causing tegumentary and visceral leishmaniasis. Leishmania (L.) amazonensis is the second most prevalent dermotropic species in Brazil. Infection in humans and other mammals takes place when phagocytes, mainly macrophages, uptake the parasite. Many proteins on the phagocytic cell surface participate in Leishmania phagocytosis. In this study, we evaluated the role of surface protein disulfide isomerase (PDI) in phagocytosis and infection of macrophages by L. amazonensis. PDI is the second most abundant chaperone in the endoplasmic reticulum. A unique study in the literature associated the presence of PDI on the macrophage surface with increased phagocytosis by Leishmania (L.) infantum (syn L. chagasi), the species most frequently associated with visceral leishmaniasis in the Americas. In the present work we evaluated L. amazonensis infections in transgenic FVB/NJ mice overexpressing PDI (TgPDIA1). We validated the presence of PDI on their macrophages surface by flow cytometry. We demonstrated that infection of macrophages pretreated with anti-PDI antibodies was lower compared to control cells. Accordingly, we showed that the overexpression of PDI increased the adhesion of parasites and infection of macrophages. We also demonstrated that macrophages overexpressing PDI internalize more zymosan particles. In vivo imaging of infections with luciferase-expressing parasites in wild-type and TgPDIA1 mice indicated that the overexpression of PDI was not associated with significant differences in footpad lesions and parasite burden, probably due to the ubiquitous overexpression of PDI and the roles of this molecule in other immune system functions.
Collapse
Affiliation(s)
- Guilherme M P Carrara
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme A Souza-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Tania C B D Reis
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Bruna C D Alencar
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Silvia B Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Peter E Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Beatriz S Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Kim JE, Wang SH, Lee DS, Kim TH. Protein disulfide isomerase integrates toll-like receptor 4 and P2X7 receptor signaling pathways during lipopolysaccharide-induced neuroinflammation. Sci Rep 2025; 15:7906. [PMID: 40050375 PMCID: PMC11885452 DOI: 10.1038/s41598-025-92780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/03/2025] [Indexed: 03/09/2025] Open
Abstract
P2X7 receptor (P2X7R) augments lipopolysaccharide (LPS)-toll-like receptor 4 (TLR4)-mediated neuroinflammation. These roles of P2X7R in neuroinflammation are relevant to nitrosative stress through nuclear factor-κB (NF-κB)-inducible nitric oxide synthase (iNOS) pathway, while the underlying mechanisms are largely unknown. In the present study, we investigated whether protein disulfide isomerase (PDI) is involved in the integration of TLR4-P2X7R functions in response to LPS in vivo. The present study showed that LPS elicited NF-κB-mediated PDI upregulation, iNOS induction and S-nitrosylated PDI (SNO-PDI) level, independent of S-nitrosylation of NF-κB p65 subunit, in P2X7R+/+ mice more than P2X7R-/- mice. SN50 (an NF-κB inhibitor) effectively diminished LPS-induced PDI upregulation in both P2X7R+/+ and P2X7R-/- mice. PDI knockdown attenuated LPS-induced p65 S276 phosphorylation and iNOS induction in both strains. Of interest, S-nitroso-N-acetyl-DL-penicillamine (SNAP, a NO donor) increased SNO-PDI level, surface P2X7R expression and p65 S276 phosphorylation in P2X7R+/+ mice under physiological condition. In P2X7R-/- mice, SNAP was less effective on NF-κB S276 phosphorylation, although SNO-PDI level was similar to that in P2X7R+/+ mice. Taken together, the present data demonstrate that PDI may be an intermediator to integrate TLR4- and P2X7R-mediated signaling pathways in a positive feedback loop, which would exert NF-κB-iNOS-mediated nitrosative stress during LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, 24252, Korea.
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, Korea.
| | - Su Hyeon Wang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, 24252, Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| |
Collapse
|
3
|
Tang X, Cui Y, Namarra U, Tian X, Rivas-Giorgi F, Fikrig E. Dual roles for a tick protein disulfide isomerase during the life cycle of the Lyme disease agent. mBio 2024; 15:e0175424. [PMID: 39470213 PMCID: PMC11633212 DOI: 10.1128/mbio.01754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The protein disulfide isomerase (PDI) family is a group of enzymes that have thiol-disulfide oxidoreductase, disulfide isomerase, and redox-dependent chaperone activities. PDIs facilitate diverse infections in mammalian hosts by directly binding to pathogens, immunomodulation, or enabling microbial invasion of host cells. PDI homologs within pathogens are also potential virulence factors. However, whether PDIs within blood-feeding ticks influence microbial infection remains unknown. In this study, we investigated the role of Ixodes scapularis PDIs, on the Lyme disease agent, Borrelia burgdorferi. I. scapularis has five PDIs (IsPDIs), and IsPDIA6 gene expression is reduced upon B. burgdorferi infection in the tick. IsPDIA6-mediated trypsin inhibitor gene expression contributes to B. burgdorferi colonization within the tick midgut. IsPDIA6 is also secreted into the host during tick feeding, alters cytokine/chemokine expression at the tick bite site, and influences the initial stage of bacterial infection in mice. These data demonstrate that a PDI from a blood-feeding vector plays a role in the life cycle of an extracellular pathogen. IMPORTANCE Vector-borne diseases are a leading cause of death and illness worldwide, and more than 80% of the global population live in areas at risk from at least one major vector-borne disease. In this study, we demonstrate a dual role of a specific Ixodes tick protein disulfide isomerase (PDI) in inhibiting the ability of the Lyme disease agent to colonize ticks and also in enhancing the initial stage of spirochete infection of mice. This study represents a novel conceptual advancement that a PDI from a blood-feeding vector plays important roles in the life cycle of an extracellular pathogen.
Collapse
Affiliation(s)
- Xiaotian Tang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Ushuu Namarra
- History of Science, Medicine, and Public Health Program, Yale College, New Haven, Connecticut, USA
| | - Xiuqi Tian
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Freddie Rivas-Giorgi
- Molecular Biochemistry and Biophysics Program, Yale College, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Zhang X, Feng C, Yuan T, Wang Y, Wang H, Lu Q, Lv Y, Li Z, Fu C, Sun S. Inhibition of protein disulfide isomerase mitigates steroid-induced osteonecrosis of the femoral head by suppressing osteoclast activity through the reduction of cellular oxidative stress. Chem Biol Interact 2024; 404:111263. [PMID: 39393751 DOI: 10.1016/j.cbi.2024.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/21/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Osteonecrosis of the femoral head (ONFH) is a devastating and irreversible hip disease usually associated with increased oxidative stress due to the clinical application of high-dose or long-term glucocorticoids (GCs). Previous publications have demonstrated protein disulfide isomerase (PDI) plays a critical role in regulating cellular production of reactive oxygen species (ROS). We therefore ask whether interfering PDI could affect GCs-stimulated osteoclastogenesis. To test the hypothesis, we conducted bioinformatics and network analysis based on potential gene targets of steroid-induced osteonecrosis of the femoral head (SIONFH) in light of multiple databases and concomitantly verified the associated biological effect via the in vitro model of dexamethasone (DEX)-stimulated osteoclastogenesis. The results revealed 70 potential gene targets for SIONFH intervention, including the P4HB gene that encodes PDI. Further analysis based on network topology-based analysis techniques (NTA), protein-protein interaction (PPI) networks, and mouse cell atlas database identified the importance of PDI in regulating the cellular redox state of osteoclast during ONFH. Western blotting (WB) validations also indicated that PDI may be a positive regulator in the process of DEX-stimulated osteoclastogenesis. Hence, various PDI inhibitors were subjected to molecular docking with PDI and their performances were analyzed, including 3-Methyltoxoflavin (3 M) which inhibits PDI expression, and ribostamycin sulfate (RS) which represses PDI chaperone activity. The binding energies of DEX, 3 M, and RS to PDI were -5.3547, -4.2324, and -5.9917 kcal/mol, respectively. The Protein-Ligand Interaction Profiler (PLIP) analysis demonstrated that both hydrogen bonds and hydrophobic interactions were the key contributions to the DEX-PDI and 3M-PDI complexes, while only hydrogen bonds were identified as the predominant driving forces in the RS-PDI complex. Subsequent experiments showed that both 3 M and RS reduced osteoclast differentiation and bone resorption activity by stifling the expression of osteoclastic markers. This reduction was primarily due to the PDI inhibitors boosting the antioxidant system, thereby reducing the production of intracellular ROS. In conclusion, our results supported PDI's involvement in SIONFH progression by regulating ROS in osteoclasts and highlighted PDI inhibitors may serve as potential options for SIONFH treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Changgong Feng
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qizhen Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - YongShuang Lv
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Chuanyun Fu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Fliri A, Kajiji S. Effects of vitamin D signaling in cardiovascular disease: centrality of macrophage polarization. Front Cardiovasc Med 2024; 11:1388025. [PMID: 38984353 PMCID: PMC11232491 DOI: 10.3389/fcvm.2024.1388025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Among the leading causes of natural death are cardiovascular diseases, cancer, and respiratory diseases. Factors causing illness include genetic predisposition, aging, stress, chronic inflammation, environmental factors, declining autophagy, and endocrine abnormalities including insufficient vitamin D levels. Inconclusive clinical outcomes of vitamin D supplements in cardiovascular diseases demonstrate the need to identify cause-effect relationships without bias. We employed a spectral clustering methodology capable of analyzing large diverse datasets for examining the role of vitamin D's genomic and non-genomic signaling in disease in this study. The results of this investigation showed the following: (1) vitamin D regulates multiple reciprocal feedback loops including p53, macrophage autophagy, nitric oxide, and redox-signaling; (2) these regulatory schemes are involved in over 2,000 diseases. Furthermore, the balance between genomic and non-genomic signaling by vitamin D affects autophagy regulation of macrophage polarization in tissue homeostasis. These findings provide a deeper understanding of how interactions between genomic and non-genomic signaling affect vitamin D pharmacology and offer opportunities for increasing the efficacy of vitamin D-centered treatment of cardiovascular disease and healthy lifespans.
Collapse
Affiliation(s)
- Anton Fliri
- Emergent System Analytics LLC, Clinton, CT, United States
| | - Shama Kajiji
- Emergent System Analytics LLC, Clinton, CT, United States
| |
Collapse
|
6
|
Wang Y, Yuan T, Wang H, Meng Q, Li H, Feng C, Li Z, Sun S. Inhibition of Protein Disulfide Isomerase Attenuates Osteoclast Differentiation and Function via the Readjustment of Cellular Redox State in Postmenopausal Osteoporosis. Inflammation 2024; 47:626-648. [PMID: 38055120 DOI: 10.1007/s10753-023-01933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Due to the accumulation of reactive oxygen species (ROS) and heightened activity of osteoclasts, postmenopausal osteoporosis could cause severe pathological bone destruction. Protein disulfide isomerase (PDI), an endoplasmic prototypic thiol isomerase, plays a central role in affecting cellular redox state. To test whether suppression of PDI could inhibit osteoclastogenesis through cellular redox regulation, bioinformatics network analysis was performed on the causative genes, followed by biological validation on the osteoclastogenesis in vitro and ovariectomy (OVX) mice model in vivo. The analysis identified PDI as one of gene targets for postmenopausal osteoporosis, which was positively expressed during osteoclastogenesis. Therefore, PDI expression inhibitor and chaperone activity inhibitor were used to verify the effects of PDI inhibitors on osteoclastogenesis. Results demonstrated that PDI inhibitors could reduce osteoclast number and inhibit resorption function via suppression on osteoclast marker genes. The mechanisms behind the scenes were the PDI inhibitors-caused intracellular ROS reduction via enhancement of the antioxidant system. Micro-CT and histological results indicated PDI inhibitors could effectively alleviate or even prevent bone loss in OVX mice. In conclusion, our findings unveiled the suppressive effects of PDI inhibitors on osteoclastogenesis by reducing intracellular ROS, providing new therapeutic options for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Qi Meng
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Haoyang Li
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Changgong Feng
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| |
Collapse
|
7
|
Sandor LF, Huh JB, Benko P, Hiraga T, Poliska S, Dobo-Nagy C, Simpson JP, Homer NZM, Mahata B, Gyori DS. De novo steroidogenesis in tumor cells drives bone metastasis and osteoclastogenesis. Cell Rep 2024; 43:113936. [PMID: 38489269 PMCID: PMC10995766 DOI: 10.1016/j.celrep.2024.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/08/2023] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Osteoclasts play a central role in cancer-cell-induced osteolysis, but the molecular mechanisms of osteoclast activation during bone metastasis formation are incompletely understood. By performing RNA sequencing on a mouse breast carcinoma cell line with higher bone-metastatic potential, here we identify the enzyme CYP11A1 strongly upregulated in osteotropic tumor cells. Genetic deletion of Cyp11a1 in tumor cells leads to a decreased number of bone metastases but does not alter primary tumor growth and lung metastasis formation in mice. The product of CYP11A1 activity, pregnenolone, increases the number and function of mouse and human osteoclasts in vitro but does not alter osteoclast-specific gene expression. Instead, tumor-derived pregnenolone strongly enhances the fusion of pre-osteoclasts via prolyl 4-hydroxylase subunit beta (P4HB), identified as a potential interaction partner of pregnenolone. Taken together, our results demonstrate that Cyp11a1-expressing tumor cells produce pregnenolone, which is capable of promoting bone metastasis formation and osteoclast development via P4HB.
Collapse
Affiliation(s)
- Luca F Sandor
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Joon B Huh
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Peter Benko
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Szilard Poliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Dobo-Nagy
- Department of Oral Diagnostics, Semmelweis University School of Dentistry, 1088 Budapest, Hungary
| | - Joanna P Simpson
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; University of Edinburgh/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Bidesh Mahata
- Department of Pathology, University of Cambridge, Cambridge CB21QP Cambridgeshire, UK
| | - David S Gyori
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.
| |
Collapse
|
8
|
Meng Q, Wang Y, Yuan T, Su Y, Li Z, Sun S. Osteoclast: The novel whistleblower in osteonecrosis of the femoral head. GENE REPORTS 2023; 33:101833. [DOI: 10.1016/j.genrep.2023.101833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Lee DS, Kim TH, Park H, Kim JE. CDDO-Me Abrogates Aberrant Mitochondrial Elongation in Clasmatodendritic Degeneration by Regulating NF-κB-PDI-Mediated S-Nitrosylation of DRP1. Int J Mol Sci 2023; 24:ijms24065875. [PMID: 36982949 PMCID: PMC10053800 DOI: 10.3390/ijms24065875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Clasmatodendrosis is a kind of astroglial degeneration pattern which facilitates excessive autophagy. Although abnormal mitochondrial elongation is relevant to this astroglial degeneration, the underlying mechanisms of aberrant mitochondrial dynamics are still incompletely understood. Protein disulfide isomerase (PDI) is an oxidoreductase in the endoplasmic reticulum (ER). Since PDI expression is downregulated in clasmatodendritic astrocytes, PDI may be involved in aberrant mitochondrial elongation in clasmatodendritic astrocytes. In the present study, 26% of CA1 astrocytes showed clasmatodendritic degeneration in chronic epilepsy rats. 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; bardoxolone methyl or RTA 402) and SN50 (a nuclear factor-κB (NF-κB) inhibitor) ameliorated the fraction of clasmatodendritic astrocytes to 6.8 and 8.1% in CA1 astrocytes, accompanied by the decreases in lysosomal-associated membrane protein 1 (LAMP1) expression and microtubule-associated protein 1A/1B light-chain 3 (LC3)-II/LC3-I ratio, indicating the reduced autophagy flux. Furthermore, CDDO-Me and SN50 reduced NF-κB S529 fluorescent intensity to 0.6- and 0.57-fold of vehicle-treated animal level, respectively. CDDO-Me and SN50 facilitated mitochondrial fission in CA1 astrocytes, independent of dynamin-related protein 1 (DRP1) S616 phosphorylation. In chronic epilepsy rats, total PDI protein, S-nitrosylated PDI (SNO-PDI), and SNO-DRP1 levels were 0.35-, 0.34- and 0.45-fold of control level, respectively, in the CA1 region and increased CDDO-Me and SN50. Furthermore, PDI knockdown resulted in mitochondrial elongation in intact CA1 astrocytes under physiological condition, while it did not evoke clasmatodendrosis. Therefore, our findings suggest that NF-κB-mediated PDI inhibition may play an important role in clasmatodendrosis via aberrant mitochondrial elongation.
Collapse
Affiliation(s)
- Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
10
|
Inhibition of protein disulfide isomerase with PACMA-31 regulates monocyte tissue factor through transcriptional and posttranscriptional mechanisms. Thromb Res 2022; 220:48-59. [DOI: 10.1016/j.thromres.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
11
|
Cui Z, Feng C, Chen J, Wang Y, Meng Q, Zhao S, Zhang Y, Feng D, Li Z, Sun S. Network Pharmacology Deciphers the Action of Bioactive Polypeptide in Attenuating Inflammatory Osteolysis via the Suppression of Oxidative Stress and Restoration of Bone Remodeling Balance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4913534. [PMID: 35578727 PMCID: PMC9107052 DOI: 10.1155/2022/4913534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022]
Abstract
Oxidative stress involves enormously in the development of chronic inflammatory bone disease, wherein the overproduction of reactive oxygen species (ROS) negatively impacts the bone remodeling via promoting osteoclastogenesis and inhibiting osteogenesis. Lacking effective therapies highlights the importance of finding novel treatments. Our previous study screened a novel bioactive peptide D7 and demonstrated it could enhance the cell behaviors and protect bone marrow mesenchymal stem cells (BMSCs). Since BMSCs are progenitor cells of osteoblast (OB), we therefore ask whether D7 could also protect against the progress of inflammatory osteolysis. To validate our hypothesis and elucidate the underlying mechanisms, we first performed network pharmacology-based analysis according to the molecule structure of D7, and then followed by pharmacological evaluation on D7 by in vitro lipopolysaccharide(LPS)-induced models. The result from network pharmacology identified 20 candidate targets of D7 for inflammatory osteolysis intervention. The further analysis of Gene Ontology (GO)/KEGG pathway enrichment suggested the therapeutic effect of D7 may primarily affect osteoclast (OC) differentiation and function during the inflammatory osteolysis. Through validating the real effects of D7 on OC and OB as postulated, results demonstrated suppressive effects of D7 on LPS-stimulated OC differentiation and resorption, via the inhibition on OC marker genes. Contrarily, by improving the expression of OB marker genes, D7 displayed promotive effects on OB differentiation and alleviated LPS-induced osteogenic damage. Further mechanism study revealed that D7 could reduce LPS-induced ROS formation and strengthen antioxidants expressions in both OC and OB precursors, ameliorating LPS-triggered redox imbalance in bone remodeling. Taken together, our findings unveiled therapeutic effects of D7 against LPS-induced inflammatory osteolysis through the suppression of oxidative stress and the restoration of the bone remodeling process, providing a new therapeutic candidate for chronic inflammatory bone diseases.
Collapse
Affiliation(s)
- Zichen Cui
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Changgong Feng
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jiazheng Chen
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Qi Meng
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Shihao Zhao
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yuanji Zhang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Dianjie Feng
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
12
|
Bakker EY, Fujii M, Krstic-Demonacos M, Demonacos C, Alhammad R. Protein disulfide isomerase A1‑associated pathways in the development of stratified breast cancer therapies. Int J Oncol 2022; 60:16. [PMID: 35014681 PMCID: PMC8776328 DOI: 10.3892/ijo.2022.5306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
The oxidoreductase protein disulfide isomerase A1 (PDIA1) functions as a cofactor for many transcription factors including estrogen receptor α (ERα), nuclear factor (NF)-κB, nuclear factor erythroid 2-like 2 (NRF2) and regulates the protein stability of the tumor suppressor p53. Taking this into account we hypothesized that PDIA1, by differentially modulating the gene expression of a diverse subset of genes in the ERα-positive vs. the ERα-negative breast cancer cells, might modify dissimilar pathways in the two types of breast cancer. This hypothesis was investigated using RNA-seq data from PDIA1-silenced MCF-7 (ERα-positive) and MDA-MB-231 (ERα-negative) breast cancer cells treated with either interferon γ (IFN-γ) or etoposide (ETO), and the obtained data were further analyzed using a variety of bioinformatic tools alongside clinical relevance assessment via Kaplan-Meier patient survival curves. The results highlighted the dual role of PDIA1 in suppressing carcinogenesis in the ERα(+) breast cancer patients by negatively regulating the response to reactive oxygen species (ROS) and promoting carcinogenesis by inducing cell cycle progression. In the ERα(−) breast cancer patients, PDIA1 prevented tumor development by modulating NF-κB and p53 activity and cell migration and induced breast cancer progression through control of cytokine signaling and the immune response. The findings reported in this study shed light on the differential pathways regulating carcinogenesis in ERα(+) and ERα(−) breast cancer patients and could help identify therapeutic targets selectively effective in ERα(+) vs. ERα(−) patients.
Collapse
Affiliation(s)
- Emyr Yosef Bakker
- School of Medicine, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK
| | - Masayuki Fujii
- Department of Biological and Environmental Chemistry, Faculty of Humanity Oriented Science and Engineering, Kindai University, Iizuka, Fukuoka 820‑8555, Japan
| | | | - Constantinos Demonacos
- Faculty of Biology Medicine and Health, School of Health Science, Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Rashed Alhammad
- Faculty of Biology Medicine and Health, School of Health Science, Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
13
|
Chen W, Xian G, Gu M, Pan B, Wu X, Ye Y, Zheng L, Zhang Z, Sheng P. Autophagy inhibitors 3-MA and LY294002 repress osteoclastogenesis and titanium particle-stimulated osteolysis. Biomater Sci 2021; 9:4922-4935. [PMID: 34052845 DOI: 10.1039/d1bm00691f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Aseptic loosening caused by peri-implant osteolysis (PIO) is a common complication after joint replacement, and there is still no better treatment than revision surgery. The wear particle-induced inflammation response, especially subsequent osteoclastic bone resorption, is responsible for PIO. As the importance of wear particles in inducing autophagy in cells around the prosthesis in PIO has been discovered, this might be a central process underlying aseptic loosening. However, the role of autophagy induced by wear particles in osteoclastogenesis during PIO remains unclear. In this study, we investigated the role of autophagy in osteoclastogenesis and verified it in a mouse calvarial osteolysis model. We found that osteoclasts were increased in the interface membranes of patients with aseptic loosening. In vitro, knocking down the Atg5 gene or using autophagy inhibitors (3-MA, LY294002) to inhibit autophagy was found to repress osteoclastogenesis and decrease expression of the osteoclast-related genes TRAP, cathepsin K, and matrix metalloprotein 9 (MMP-9) with or without titanium (Ti) particles. In vivo, 3-MA and LY294002 repressed Ti particle-stimulated osteolysis and osteoclastogenesis and reduced expression of the pro-inflammatory factors TNF-α, IL-1β, and IL-6. Our results suggest that 3-MA and LY294002 might be the potential medicines to prevent and treat PIO and aseptic loosening.
Collapse
Affiliation(s)
- Weishen Chen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Guoyan Xian
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Minghui Gu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongyu Ye
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Linli Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China. and Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
14
|
Yan G, Guo Y, Guo J, Wang Q, Wang C, Wang X. N-Acetylcysteine Attenuates Lipopolysaccharide-Induced Osteolysis by Restoring Bone Remodeling Balance via Reduction of Reactive Oxygen Species Formation During Osteoclastogenesis. Inflammation 2021; 43:1279-1292. [PMID: 32103436 DOI: 10.1007/s10753-020-01207-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic inflammatory diseases affect bone and teeth health tremendously. Characterized by osteolytic lesion and hyperactive osteoclastogenesis, inflammatory bone diseases are short of effective therapeutics and therefore highlight the importance of understanding pathogenesis and developing ideal medications. Reactive oxygen species (ROS) play a prominent role in the innate immune response of activated macrophages, as well as in the physiological signaling of osteoclasts (OCs) differentiation. N-acetylcysteine (NAC) is a potent ROS scavenger and a potential option for treating diseases characterized by excessive ROS generation. However, whether NAC can protect physiological bone remodeling from in vivo inflammatory conditions is largely undefined. We applied NAC treatment on lipopolysaccharide (LPS)-induced inflammatory osteolysis mice model and found that NAC could attenuate bone erosion and protect mice against LPS-induced osteolysis, due to the suppressive effect on osteoclastogenesis and stimulated effect on osteogenesis. Moreover, in vitro study demonstrated that, in OC precursors (pre-OCs), LPS-stimulated expressions of OC marker genes, such as tartrate-resistant acid phosphatase type 5 (Acp5), cathepsin K (Ctsk), OC stimulatory transmembrane protein (Oc-stamp), dendritic cell-specific transmembrane protein (Dc-stamp), and nuclear factor of activated T cells 1 (NFATc1), were all reduced because of the NAC pretreatment, thereby adversely affecting OC function including F-actin ring formation and bone resorption. Further mechanism study showed that NAC blocked LPS-induced ROS formation in both macrophages and pre-OCs, cutting off the LPS-stimulated autocrine/paracrine mechanism during inflammatory osteolysis. Our findings reveal that NAC attenuates inflammatory osteolysis via the elimination of ROS formation during LPS-stimulated osteoclastogenesis, and provide a potential therapeutic approach to treat inflammatory bone disease.
Collapse
Affiliation(s)
- Guangqi Yan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, 110002, Liaoning, China
| | - Yan Guo
- Key Laboratory of Oral Disease Liaoning Province, Shenyang, 110002, Liaoning, China
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, 110002, Liaoning, China
| | - Jingwen Guo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, 110016, Liaoning, China
| | - Qiang Wang
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, 110002, Liaoning, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, and Key Laboratory of Medical Cell Biology, School of Life Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Xue Wang
- Department of Orthodontics, School of Stomatology, China Medical University, 117# Nanjingbei Street, Shenyang, 110002, Liaoning, China.
| |
Collapse
|
15
|
Zhang H, He J, Dai Z, Wang Z, Liang X, He F, Xia Z, Feng S, Cao H, Zhang L, Cheng Q. PDIA5 is Correlated With Immune Infiltration and Predicts Poor Prognosis in Gliomas. Front Immunol 2021; 12:628966. [PMID: 33664747 PMCID: PMC7921737 DOI: 10.3389/fimmu.2021.628966] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common and lethal primary malignant tumor of the brain. Routine treatment including surgical resection, chemotherapy, and radiotherapy produced limited therapeutic effect, while immunotherapy targeting the glioma microenvironment has offered a novel therapeutic option. PDIA5 protein is the member of PDI family, which is highly expressed in glioma and participates in glioma progression. Based on large-scale bioinformatics analysis, we discovered that PDIA5 expression level is upregulated in aggressive gliomas, with high PDIA5 expression predicting poor clinical outcomes. We also observed positive correlation between PDIA5 and immune infiltrating cells, immune related pathways, inflammatory activities, and other immune checkpoint members. Patients with high PDIA5 high-expression benefited from immunotherapies. Additionally, immunohistochemistry revealed that PDIA5 and macrophage biomarker CD68 were upregulated in high-grade gliomas, and patients with low PDIA5 level experienced favorable outcomes among 33 glioma patients. Single cell RNA sequencing exhibited that PDIA5 was in high level presenting in neoplastic cells and macrophages. Cell transfection and co-culture of glioma cells and macrophages revealed that PDIA5 in tumor cells mediated macrophages exhausting. Altogether, our findings indicate that PDIA5 overexpression is associated with immune infiltration in gliomas, and may be a promising therapeutic target for glioma immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fengqiong He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People’s Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Xian G, Chen W, Gu M, Ye Y, Yang G, Lai W, Xiao Y, Zhao X, Zheng L, Pan B, Kang Y, Zhang Z, Sheng P. Titanium particles induce apoptosis by promoting autophagy in macrophages via the PI3K/Akt signaling pathway. J Biomed Mater Res A 2020; 108:1792-1805. [PMID: 32198815 DOI: 10.1002/jbm.a.36938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022]
Abstract
Chronic inflammation and infection in the tissue surrounding implants after total joint replacement is closely associated with the innate immune response to surgical implants. Wear particles are known to increase apoptosis and impair the innate immunity in macrophages, which can cause immunosuppression around the implants. Excessive autophagy can induce apoptosis. However, the link between autophagy and apoptosis in macrophages during chronic inflammation and infection remains unknown. In this study, we investigated the autophagy and apoptosis induced by titanium particles in RAW264.7 macrophages, and in the interface membrane of patients with late-onset periprosthetic joint infection (PJI). We found that titanium particles stimulated autophagy and apoptosis in macrophages. Inhibition of autophagy significantly reduced titanium particle-induced apoptosis in macrophages, which may be related to the PI3K/Akt signaling pathway. The secretion of inflammatory factors, such as IL-1β, IL-6, and TNF-α, decreased after inhibition of autophagy in titanium particle-stimulated macrophages, which may be caused by immune dysfunction due to titanium particle-induced autophagy and apoptosis in macrophages. Furthermore, our in vivo mouse calvarial model also showed that autophagy inhibitors lowered the rate of cell apoptosis. Our findings indicate that wear particle-induced apoptosis may be caused by enhanced autophagy in macrophages, which could potentially impair the local innate immunity in periprosthetic tissues and could be a risk factor for PJI. Based on these results, autophagy modulators may act as a new therapeutic option for PJI.
Collapse
Affiliation(s)
- Guoyan Xian
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weishen Chen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Minghui Gu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yongyu Ye
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guangpu Yang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weiming Lai
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yinbo Xiao
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Xiaoyi Zhao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Linli Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yunze Kang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Involvement of Cathepsins in Innate and Adaptive Immune Responses in Periodontitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4517587. [PMID: 32328131 PMCID: PMC7150685 DOI: 10.1155/2020/4517587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infectious disease whereby the chronic inflammatory process of the periodontium stimulated by bacterial products induces specific host cell responses. The activation of the host cell immune system upregulates the production of inflammatory mediators, comprising cytokines and proteolytic enzymes, which contribute to inflammation and bone destruction. It has been well known that periodontitis is related to systemic inflammation which links to numerous systemic diseases, including diabetes and arteriosclerosis. Furthermore, periodontitis has been reported in association with neurodegenerative diseases such as Alzheimer's disease (AD) in the brain. Regarding immune responses and inflammation, cathepsin B (CatB) plays pivotal role for the induction of IL-1β, cathepsin K- (CatK-) dependent active toll-like receptor 9 (TLR9) signaling, and cathepsin S (CatS) which involves in regulating both TLR signaling and maturation of the MHC class II complex. Notably, both the production and proteolytic activities of cathepsins are upregulated in chronic inflammatory diseases, including periodontitis. In the present review, we focus on the roles of cathepsins in the innate and adaptive immune responses within periodontitis. We believe that understanding the roles of cathepsins in the immune responses in periodontitis would help to elucidate the therapeutic strategies of periodontitis, thus benefit for reduction of systemic diseases as well as neurodegenerative diseases in the global aging society.
Collapse
|
18
|
Shergalis AG, Hu S, Bankhead A, Neamati N. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacol Ther 2020; 210:107525. [PMID: 32201313 DOI: 10.1016/j.pharmthera.2020.107525] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Protein folding in the endoplasmic reticulum is an oxidative process that relies on protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase 1 (ERO1). Over 30% of proteins require the chaperone PDI to promote disulfide bond formation. PDI oxidizes cysteines in nascent polypeptides to form disulfide bonds and can also reduce and isomerize disulfide bonds. ERO1 recycles reduced PDI family member PDIA1 using a FAD cofactor to transfer electrons to oxygen. ERO1 dysfunction critically affects several diseases states. Both ERO1 and PDIA1 are overexpressed in cancers and implicated in diabetes and neurodegenerative diseases. Cancer-associated ERO1 promotes cell migration and invasion. Furthermore, the ERO1-PDIA1 interaction is critical for epithelial-to-mesenchymal transition. Co-expression analysis of ERO1A gene expression in cancer patients demonstrated that ERO1A is significantly upregulated in lung adenocarcinoma (LUAD), glioblastoma and low-grade glioma (GBMLGG), pancreatic ductal adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP) cancers. ERO1Α knockdown gene signature correlates with knockdown of cancer signaling proteins including IGF1R, supporting the search for novel, selective ERO1 inhibitors for the treatment of cancer. In this review, we explore the functions of ERO1 and PDI to support inhibition of this interaction in cancer and other diseases.
Collapse
Affiliation(s)
- Andrea G Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States
| | - Shuai Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States.
| |
Collapse
|
19
|
PTEN Inhibits Inflammatory Bone Loss in Ligature-Induced Periodontitis via IL1 and TNF- α. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6712591. [PMID: 31886238 PMCID: PMC6914910 DOI: 10.1155/2019/6712591] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a critical regulator of tumorigenesis and bone remodeling, which is also found expressed in the periodontal tissues. Periodontitis is one of the most common oral diseases and associated with alveolar bone resorption and tooth loosening in adults. However, the functional relevance of PTEN in periodontitis remains unclear. Here, we report that PTEN plays an essential role in periodontitis. The in vivo results of our study showed a significant decrease of PTEN in the ligature-induced mouse periodontitis model. The function of PTEN in the macrophages was shown to be associated with inflammatory factors interleukin 1 (IL1) and tumor necrosis factor (TNF-α) by using overexpression and silence methods. Further mechanistic studies indicated lack of PTEN-activated IL1 and TNF-α, which increased the number of osteoclasts and led to alveolar bone erosion and loss. Moreover, PTEN nanoparticles could directly inhibit the inflammatory process and bone erosion, suggesting a controlling role of PTEN during bone remodeling. All these data identified the novel function of PTEN as a key factor in periodontitis and bone remodeling.
Collapse
|