1
|
Shan Y, Zhao J, Wei K, Jiang P, Shi Y, Chang C, Zheng Y, Zhao F, Li Y, He B, Zhou M, Liu J, Li L, Guo S, He D. Multi-target RNA interference: A disruptive next-generation strategy for precision treatment of rheumatoid arthritis. Int Immunopharmacol 2025; 159:114890. [PMID: 40394795 DOI: 10.1016/j.intimp.2025.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic joint inflammation. Existing therapeutic regimens, including disease-modifying anti-rheumatic drugs (DMARDs) and biologics, exhibit incomplete efficacy and pronounced limitations. RNA interference (RNAi) utilizing small interfering RNA (siRNA) facilitates the precise silencing of key pathological drivers in rheumatoid arthritis (RA), such as tumor necrosis factor-alpha (TNF-α), interleukins IL-1 and IL-6, as well as pivotal inflammatory pathways including NF-κB. This comprehensive systematic review meticulously analyzes 140 studies focusing on therapeutic siRNA for RA. The utilization of siRNA in RA involves the profound inhibition of macrophage and fibroblast-like synoviocyte (FLS) activation through the strategic targeting of TNF, RELA, and MAPK/JAK signaling pathways. In addition, siRNA diminishes inflammatory responses by suppressing critical inflammasome constituents like NLRP3 and fosters the reestablishment of immune equilibrium via downregulation of Th17 differentiation factors and augmentation of regulatory T cell (Treg) functions. It also directly reduces the aggressiveness of FLS by inhibiting pathological signaling components such as CCN1, KHDRBS1 and E2F2. Experimental studies in rodent models have demonstrated that targeted delivery of siRNA via nanoparticles against pathogenic mediators significantly suppresses paw inflammation and mitigates joint destruction. Although challenges such as stability, off-target effects, and efficient delivery remain, advancements in molecular modifications and nanoparticle technology offer promising solutions to these obstacles. In conclusion, unlike the traditional single-target DMARDs or biologics, multi-target RNA interference presents a highly precise mechanism to inhibit intracellular inflammatory cascade and joint damage progression in RA, offering a potential deterrent to disease advancement.
Collapse
Affiliation(s)
- Yu Shan
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Fuyu Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yunshen Li
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bingheng He
- Department of rehabilitation, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Zhou
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jia Liu
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; The Research Institute for Joint Diseases, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zhang C, Wang J, Jia L, Wen Q, Gao N, Qiao H. Identification of Hepatocellular Carcinoma Subtypes Based on Global Gene Expression Profiling to Predict the Prognosis and Potential Therapeutic Drugs. Biomedicines 2025; 13:236. [PMID: 39857819 PMCID: PMC11761595 DOI: 10.3390/biomedicines13010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor, and distinguishing its subtypes holds significant value for diagnosis, treatment, and the prognosis. Methods: Unsupervised clustering analysis was conducted to classify HCC subtypes. Subtype signature genes were identified using LASSO, SVM, and logistic regression. Survival-related genes were identified using Cox regression, and their expression and function were validated via qPCR and gene interference. GO, KEGG, GSVA, and GSEA were used to determine enriched signaling pathways. ESTIMATE and CIBERSORT were used to calculate the stromal score, tumor purity, and immune cell infiltration. TIDE was employed to predict the patient response to immunotherapy. Finally, drug sensitivity was analyzed using the oncoPredict algorithm. Results: Two HCC subtypes with different gene expression profiles were identified, where subtype S1 exhibited a significantly shorter survival time. A subtype scoring formula and a nomogram were constructed, both of which showed an excellent predictive performance. COL11A1 and ACTL8 were identified as survival-related genes among the signature genes, and the downregulation of COL11A1 could suppress the invasion and migration of HepG2 cells. Subtype S1 was characterized by the upregulation of pathways related to collagen and the extracellular matrix, as well as downregulation associated with the xenobiotic metabolic process and fatty acid degradation. Subtype S1 showed higher stromal scores, immune scores, and ESTIMATE scores and infiltration of macrophages M0 and plasma cells, as well as lower tumor purity and infiltration of NK cells (resting/activated) and resting mast cells. Subtype S2 was more likely to benefit from immunotherapy. Subtype S1 appeared to be more sensitive to BMS-754807, JQ1, and Axitinib, while subtype S2 was more sensitive to SB505124, Pevonedistat, and Tamoxifen. Conclusions: HCC patients can be classified into two subtypes based on their gene expression profiles, which exhibit distinctions in terms of signaling pathways, the immune microenvironment, and drug sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Yao Q, He L, Bao C, Yan X, Ao J. The role of TNF-α in osteoporosis, bone repair and inflammatory bone diseases: A review. Tissue Cell 2024; 89:102422. [PMID: 39003912 DOI: 10.1016/j.tice.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Tumour necrosis factor alpha (TNF-α) is a pleiotropic cytokine synthesised primarily by mononuclear cells; it has a potent pro-inflammatory effect, playing a crucial role in metabolic, immune, and inflammatory diseases. This cytokine has been studied in various biological systems. In bone tissue, TNF-α plays an integral role in skeletal disorders such as osteoporosis, fracture repair and rheumatoid arthritis through its involvement in regulating the balance between osteoblasts and osteoclasts, mediating inflammatory responses, promoting angiogenesis and exacerbating synovial proliferation. The biological effect TNF-α exerts in this context is determined by a combination of the signalling pathway it activates, the type of receptor it binds, and the concentration and duration of exposure. This review summarises the participation and pathophysiological role of TNF-α in osteoporosis, bone damage repair, chronic immunoinflammatory bone disease and spinal cord injury, and discusses its main mechanisms.
Collapse
Affiliation(s)
| | - Li He
- Affiliated Hospital of Zunyi Medical University, China.
| | | | - Xuhang Yan
- Affiliated Hospital of Zunyi Medical University, China.
| | - Jun Ao
- Affiliated Hospital of Zunyi Medical University, China.
| |
Collapse
|
4
|
Farooq HMU, Yang L, Cao M, Chen Z, Qian A, Dang K. Recent Progress in the Research on RNA-Binding Proteins in Bone Development and Diseases. Int J Mol Sci 2024; 25:7735. [PMID: 39062974 PMCID: PMC11276800 DOI: 10.3390/ijms25147735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
RNA-binding proteins (RBPs), which regulate gene expression through post-transcriptional modifications of RNAs, play a role in diverse biological processes that include bone cell development and bone tissue formation. RBP dysregulation may result in aberrant bone homeostasis and contribute to various bone diseases. The function of RBPs in bone physiology and pathophysiology and the underlying molecular mechanisms have been extensively studied in recent years. This article provides a review of such studies, highlighting the potential of RBPs as pivotal targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | - Airong Qian
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (H.M.U.F.); (L.Y.); (Z.C.)
| | - Kai Dang
- Laboratory for Bone Metabolism, Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (H.M.U.F.); (L.Y.); (Z.C.)
| |
Collapse
|
5
|
Fan R, Liu F, Gong Q, Liu D, Tang S, Shen D. KHDRBS1 as a novel prognostic signaling biomarker influencing hepatocellular carcinoma cell proliferation, migration, immune microenvironment, and drug sensitivity. Front Immunol 2024; 15:1393801. [PMID: 38660302 PMCID: PMC11041018 DOI: 10.3389/fimmu.2024.1393801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Background Human tumors pose significant challenges, with targeted therapy against specific molecular targets or signaling pathways being a mainstay alongside surgical resection. Previous studies have implicated KHDRBS1 in the oncogenesis of certain human tumors such as colorectal and prostate cancers, underscoring its potential as a therapeutic target. However, the comprehensive expression pattern of KHDRBS1 in hepatocellular carcinoma (HCC) warrants further exploration. Methods Integrating and analyzing multi-omics, multi-cohort data from public databases, coupled with clinical samples and molecular biology validation, we elucidate the oncogenic role of KHDRBS1 in HCC progression. Additionally, leveraging HCC single-cell sequencing data, we segregate malignant cells into KHDRBS1-positive and negative subsets, uncovering significant differences in their expression profiles and functional roles. Results Our study identifies KHDRBS1 as a tumor-promoting factor in HCC, with its positivity correlating with tumor progression. Furthermore, we highlight the clinical significance of KHDRBS1-positive malignant cells, aiming to further propel its clinical utility. Conclusion KHDRBS1 plays a key role in HCC development. This study provides crucial insights for further investigation into KHDRBS1 as a therapeutic target in HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Tumor Microenvironment/immunology
- Cell Proliferation
- Biomarkers, Tumor
- Cell Movement
- Prognosis
- Signal Transduction
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Male
Collapse
Affiliation(s)
- Rui Fan
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fahui Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiming Gong
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Baise Key Laboratory for Metabolic Diseases (Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, China
| | - Donghua Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shihang Tang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Dongyan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Gowd V, Kass JD, Sarkar N, Ramakrishnan P. Role of Sam68 as an adaptor protein in inflammatory signaling. Cell Mol Life Sci 2024; 81:89. [PMID: 38351330 PMCID: PMC10864426 DOI: 10.1007/s00018-023-05108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/25/2023] [Accepted: 12/25/2023] [Indexed: 02/16/2024]
Abstract
Sam68 is a ubiquitously expressed KH-domain containing RNA-binding protein highly studied for its involvement in regulating multiple steps of RNA metabolism. Sam68 also contains multiple protein-protein interaction regions such as proline-rich regions, tyrosine phosphorylation sites, and arginine methylation sites, all of which facilitate its participation as an adaptor protein in multiple signaling pathways, likely independent of its RNA-binding role. This review focuses on providing a comprehensive report on the adaptor roles of Sam68 in inflammatory signaling and inflammatory diseases. The insights presented here have the potential to open new avenues in inflammation research and justify targeting Sam68 to control aberrant inflammatory responses.
Collapse
Affiliation(s)
- Vemana Gowd
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Joseph D'Amato Kass
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Nandini Sarkar
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA.
- The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Baito QN, Jaafar HM, Mohammad TAM. Piperine suppresses inflammatory fibroblast-like synoviocytes derived from rheumatoid arthritis patients Via NF-κB inhibition. Cell Immunol 2023; 391-392:104752. [PMID: 37536000 DOI: 10.1016/j.cellimm.2023.104752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Rheumatoid Arthritis (RA) is a common autoimmune disease recognized by hyperplasia of synoviocytes and chronic joint inflammation. Activation of fibroblast-like synoviocytes (FLSs) is one of the main features of RA which can trigger inflammation leading to articular cartilage and joint destruction. Aberrant activation of NF-κB signaling cascade was found to be responsible for the high proliferation and defective apoptosis of FLSs and subsequent inflammation in RA. Piperine is a principal constituent of piper species frequently used as antitumor and anti-inflammatory natural compound. In this study we aimed to assess the anti-inflammatory effect of piperine on RA-FLS through NF-κB inhibition. FLSs were isolated from 68 RA patients and 30 healthy controls and were exposed to piperine. The main assays were MTT assay, flow cytometric analysis, PI staining, reverse transcription-PCR (RT-PCR), and ELISA. Results showed that piperine can induce the apoptosis and reduce the proliferation of RA-FLSs in vitro. Moreover, piperine directly reduced the phosphorylation of NF-kB and the expression of NF-κB target genes related to RA-FLSs proliferation (c-Myc and Cycline D1), apoptosis inhibition (Bcl2 and Bcl-xl) and inflammation (COX2, IL-1β, TNF-α,IL-6, CCL5 and CXCL10) while increasing the expression of apoptosis related ones (Bax) in vitro. Piperine also reduced the protein levels of cytokines and chemokines secreted by FLSs as a result of NF-κB inhibition. In conclusion, our results provide evidence for the anti-inflammatory capacity of piperine through inhibition of NF-κB pathway in FLSs proposing this compound as a suitable alternative for chemical treatment of RA.
Collapse
Affiliation(s)
- Qoyama Noel Baito
- Hawler Medical University, College of Pharmacy, Department of Clinical Pharmacy, Kurdistan Region-Erbil, Iraq
| | - Halmat M Jaafar
- Hawler Medical University, College of Pharmacy, Department of Clinical Pharmacy, Kurdistan Region-Erbil, Iraq
| | - Talar Ahmad Merza Mohammad
- Hawler Medical University, College of Pharmacy, Department of Clinical Pharmacy, Kurdistan Region-Erbil, Iraq.
| |
Collapse
|
8
|
Rekad Z, Ruff M, Radwanska A, Grall D, Ciais D, Van Obberghen-Schilling E. Coalescent RNA-localizing and transcriptional activities of SAM68 modulate adhesion and subendothelial basement membrane assembly. eLife 2023; 12:e85165. [PMID: 37585334 PMCID: PMC10431919 DOI: 10.7554/elife.85165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
Endothelial cell interactions with their extracellular matrix are essential for vascular homeostasis and expansion. Large-scale proteomic analyses aimed at identifying components of integrin adhesion complexes have revealed the presence of several RNA binding proteins (RBPs) of which the functions at these sites remain poorly understood. Here, we explored the role of the RBP SAM68 (Src associated in mitosis, of 68 kDa) in endothelial cells. We found that SAM68 is transiently localized at the edge of spreading cells where it participates in membrane protrusive activity and the conversion of nascent adhesions to mechanically loaded focal adhesions by modulation of integrin signaling and local delivery of β-actin mRNA. Furthermore, SAM68 depletion impacts cell-matrix interactions and motility through induction of key matrix genes involved in vascular matrix assembly. In a 3D environment SAM68-dependent functions in both tip and stalk cells contribute to the process of sprouting angiogenesis. Altogether, our results identify the RBP SAM68 as a novel actor in the dynamic regulation of blood vessel networks.
Collapse
Affiliation(s)
- Zeinab Rekad
- Université Côte d'Azur, CNRS, INSERM, iBVNiceFrance
| | - Michaël Ruff
- Université Côte d'Azur, CNRS, INSERM, iBVNiceFrance
| | | | | | | | | |
Collapse
|
9
|
Lodde V, Floris M, Zoroddu E, Zarbo IR, Idda ML. RNA-binding proteins in autoimmunity: From genetics to molecular biology. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1772. [PMID: 36658783 DOI: 10.1002/wrna.1772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/21/2023]
Abstract
Autoimmune diseases (ADs) are chronic pathologies generated by the loss of immune tolerance to the body's own cells and tissues. There is growing recognition that RNA-binding proteins (RBPs) critically govern immunity in healthy and pathological conditions by modulating gene expression post-transcriptionally at all levels: nuclear mRNA splicing and modification, export to the cytoplasm, as well as cytoplasmic mRNA transport, storage, editing, stability, and translation. Despite enormous efforts to identify new therapies for ADs, definitive solutions are not yet available in many instances. Recognizing that many ADs have a strong genetic component, we have explored connections between the molecular biology and the genetics of RBPs in ADs. Here, we review the genetics and molecular biology of RBPs in four major ADs, multiple sclerosis (MS), type 1 diabetes mellitus (T1D), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We anticipate that gaining insights into the genetics and biology of ADs can facilitate the discovery of new therapies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Enrico Zoroddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ignazio Roberto Zarbo
- Department of Medical, Surgical and Experimental Sciences, University of Sassari - Neurology Unit Azienza Ospedaliera Universitaria (AOU), Sassari, Italy
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research - National Research Council (IRGB-CNR), Sassari, Italy
| |
Collapse
|
10
|
Lopez-Pedrera C, Patiño-Trives AM, Cerdó T, Ortega-Castro R, Sanchez-Pareja I, Ibañez-Costa A, Muñoz-Barrera L, Ábalos-Aguilera MC, Ruiz-Vilchez D, Seguí Azpilcueta P, Espinosa M, Barbarroja N, Escudero-Contreras A, Castaño JP, Luque RM, Ortega R, Aguirre MA, Perez-Sanchez C. Splicing machinery is profoundly altered in systemic lupus erythematosus and antiphospholipid syndrome and directly linked to key clinical features. J Autoimmun 2023; 135:102990. [PMID: 36621176 DOI: 10.1016/j.jaut.2022.102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To characterize the splicing machinery (SM) of leukocytes from primary antiphospholipid syndrome (APS), systemic lupus erythematosus (SLE) and antiphospholipid syndrome with lupus (APS + SLE) patients, and to assess its clinical involvement. METHODS Monocytes, lymphocytes and neutrophils from 80 patients (22 APS, 35 SLE and 23 APS + SLE) and 50 HD were purified, and 45 selected SM components were evaluated by qPCR-microfluidic array. Relationship with clinical features and underlying regulatory mechanisms were assessed. RESULTS APS, SLE and APS + SLE leukocytes displayed significant and specific alterations in SM-components (SMC), associated with clinical features [autoimmune profiles, disease activity, lupus nephritis (LN), and CV-risk markers]. A remarkable relationship among dysregulated SMC in monocytes and the presence of LN in SLE was highlighted, revealing a novel pathological mechanism, which was further explored. Immunohistology analysis of renal biopsies highlighted the pathological role of the myeloid compartment in LN. Transcriptomic analysis of monocytes from SLE-LN(+) vs SLE-LN(-) identified 271 genes differentially expressed, mainly involved in inflammation and IFN-signaling. Levels of IFN-related genes correlated with those of SMC in SLE-LN(+). These results were validated in two external SLE-LN(+) datasets of whole-blood and kidney biopsies. In vitro, SLE-LN(+)-serum promoted a concomitant dysregulation of both, the IFN signature and several SMC, further reversed by JAKinibs treatment. Interestingly, IFNs, key inflammatory cytokines in SLE pathology, also altered SMC. Lastly, the over/down-expression of selected SMC in SLE-monocytes reduced the release of inflammatory cytokines and their adhesion capacity. CONCLUSION Overall, we have identified, for the first time, a specific alteration of SMC in leukocytes from APS, SLE and APS + SLE patients that would be responsible for the development of distinctive clinical profiles.
Collapse
Affiliation(s)
- Ch Lopez-Pedrera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain.
| | - A M Patiño-Trives
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - T Cerdó
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - R Ortega-Castro
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - I Sanchez-Pareja
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - A Ibañez-Costa
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004, Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, 14004, Córdoba, Spain; Reina Sofia University Hospital, 14004, Córdoba, Spain; CIBER Fisiopatología de La Obesidad y Nutrición (CIBERobn), 14004, Córdoba, Spain
| | - L Muñoz-Barrera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - M C Ábalos-Aguilera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - D Ruiz-Vilchez
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - P Seguí Azpilcueta
- Radiology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - M Espinosa
- Nephrology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - N Barbarroja
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - A Escudero-Contreras
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - J P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004, Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, 14004, Córdoba, Spain; Reina Sofia University Hospital, 14004, Córdoba, Spain; CIBER Fisiopatología de La Obesidad y Nutrición (CIBERobn), 14004, Córdoba, Spain
| | - R M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), 14004, Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, 14004, Córdoba, Spain; Reina Sofia University Hospital, 14004, Córdoba, Spain; CIBER Fisiopatología de La Obesidad y Nutrición (CIBERobn), 14004, Córdoba, Spain
| | - R Ortega
- Pathology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - M A Aguirre
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| | - C Perez-Sanchez
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004, Córdoba, Spain
| |
Collapse
|
11
|
Ibáñez-Costa A, Perez-Sanchez C, Patiño-Trives AM, Luque-Tevar M, Font P, Arias de la Rosa I, Roman-Rodriguez C, Abalos-Aguilera MC, Conde C, Gonzalez A, Pedraza-Arevalo S, Del Rio-Moreno M, Blazquez-Encinas R, Segui P, Calvo J, Ortega Castro R, Escudero-Contreras A, Barbarroja N, Aguirre MA, Castaño JP, Luque RM, Collantes-Estevez E, Lopez-Pedrera C. Splicing machinery is impaired in rheumatoid arthritis, associated with disease activity and modulated by anti-TNF therapy. Ann Rheum Dis 2022; 81:56-67. [PMID: 34625402 PMCID: PMC8762032 DOI: 10.1136/annrheumdis-2021-220308] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/18/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To characterise splicing machinery (SM) alterations in leucocytes of patients with rheumatoid arthritis (RA), and to assess its influence on their clinical profile and therapeutic response. METHODS Leucocyte subtypes from 129 patients with RA and 29 healthy donors (HD) were purified, and 45 selected SM elements (SME) were evaluated by quantitative PCR-array based on microfluidic technology (Fluidigm). Modulation by anti-tumour necrosis factor (TNF) therapy and underlying regulatory mechanisms were assessed. RESULTS An altered expression of several SME was found in RA leucocytes. Eight elements (SNRNP70, SNRNP200, U2AF2, RNU4ATAC, RBM3, RBM17, KHDRBS1 and SRSF10) were equally altered in all leucocytes subtypes. Logistic regressions revealed that this signature might: discriminate RA and HD, and anti-citrullinated protein antibodies (ACPAs) positivity; classify high-disease activity (disease activity score-28 (DAS28) >5.1); recognise radiological involvement; and identify patients showing atheroma plaques. Furthermore, this signature was altered in RA synovial fluid and ankle joints of K/BxN-arthritic mice. An available RNA-seq data set enabled to validate data and identified distinctive splicing events and splicing variants among patients with RA expressing high and low SME levels. 3 and 6 months anti-TNF therapy reversed their expression in parallel to the reduction of the inflammatory profile. In vitro, ACPAs modulated SME, at least partially, by Fc Receptor (FcR)-dependent mechanisms. Key inflammatory cytokines further altered SME. Lastly, induced SNRNP70-overexpression and KHDRBS1-overexpression reversed inflammation in lymphocytes, NETosis in neutrophils and adhesion in RA monocytes and influenced activity of RA synovial fibroblasts. CONCLUSIONS Overall, we have characterised for the first time a signature comprising eight dysregulated SME in RA leucocytes from both peripheral blood and synovial fluid, linked to disease pathophysiology, modulated by ACPAs and reversed by anti-TNF therapy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adult
- Alternative Splicing/drug effects
- Animals
- Anti-Citrullinated Protein Antibodies/pharmacology
- Antirheumatic Agents/pharmacology
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Case-Control Studies
- Cell Cycle Proteins/genetics
- Cells, Cultured
- Citrullination
- Cytokines/pharmacology
- DNA-Binding Proteins/genetics
- Female
- Gene Expression/drug effects
- Humans
- Lymphocytes
- Male
- Mice
- Middle Aged
- Monocytes
- Neutrophils
- RNA/blood
- RNA/metabolism
- RNA Splicing Factors/genetics
- RNA, Small Nuclear/genetics
- RNA-Binding Proteins/genetics
- Repressor Proteins/genetics
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/genetics
- Sequence Analysis, RNA
- Serine-Arginine Splicing Factors/genetics
- Spliceosomes
- Splicing Factor U2AF/genetics
- Synovial Fluid/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Carlos Perez-Sanchez
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Alejandra María Patiño-Trives
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Maria Luque-Tevar
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Pilar Font
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Ivan Arias de la Rosa
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Cristobal Roman-Rodriguez
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Mª Carmen Abalos-Aguilera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Carmen Conde
- Laboratorio de Investigación 8, Instituto de Investigación Sanitaria (IDIS), Hospital Clinico de Santiago (CHUS), Santiago de Compostela, Spain
| | - Antonio Gonzalez
- Experimental and Observational Rheumatology, Hospital Clinico Universitario de Santiago, Santiago de Compostela, Spain
| | - Sergio Pedraza-Arevalo
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Cordoba, Spain
| | - Mercedes Del Rio-Moreno
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Cordoba, Spain
| | - Ricardo Blazquez-Encinas
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Cordoba, Spain
| | - Pedro Segui
- Radiology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Jerusalem Calvo
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Rafaela Ortega Castro
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Alejandro Escudero-Contreras
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Mª Angeles Aguirre
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Cordoba, Spain
| | - Raul M Luque
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba and CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Cordoba, Spain
| | - Eduardo Collantes-Estevez
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| | - Chary Lopez-Pedrera
- Rheumatology Service, Maimonides Institute of Biomedical Research of Cordoba (IMIBIC),Reina Sofia University Hospital, University of Córdoba, Cordoba, Spain
| |
Collapse
|
12
|
Goodman WA, Basavarajappa SC, Liu AR, Rodriguez FDS, Mathes T, Ramakrishnan P. Sam68 contributes to intestinal inflammation in experimental and human colitis. Cell Mol Life Sci 2021; 78:7635-7648. [PMID: 34693458 PMCID: PMC8817240 DOI: 10.1007/s00018-021-03976-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022]
Abstract
Sam68 is an RNA-binding protein with an adaptor role in signal transduction. Our previous work identified critical proinflammatory and apoptotic functions for Sam68, downstream of the TNF/TNFR1 and TLR2/3/4 pathways. Recent studies have shown elevated Sam68 in inflamed tissues from rheumatoid arthritis and ulcerative colitis (UC) patients, suggesting that Sam68 contributes to chronic inflammatory diseases. Here, we hypothesized that deletion of Sam68 is protective against experimental colitis in vivo, via reductions in TNF-associated inflammatory signaling. We used Sam68 knockout (KO) mice to study the role of Sam68 in experimental colitis, including its contributions to TNF-induced inflammatory gene expression in three-dimensional intestinal organoid cultures. We also studied the expression of Sam68 and inflammatory genes in colon tissues of UC patients. Sam68 KO mice treated with an acute course of DSS exhibited significantly less weight loss and histopathological inflammation compared to wild-type controls, suggesting that Sam68 contributes to experimental colitis. Bone marrow transplants showed no pathologic role for hematopoietic cell-specific Sam68, suggesting that non-hematopoietic Sam68 drives intestinal inflammation. Gene expression analyses showed that Sam68 deficiency reduced the expression of proinflammatory genes in colon tissues from DSS-treated mice, as well as TNF-treated three-dimensional colonic organoids. We also found that inflammatory genes, such as TNF, CCR2, CSF2, IL33 and CXCL10, as well as Sam68 protein, were upregulated in inflamed colon tissues of UC patients. This report identifies Sam68 as an important inflammatory driver in response to intestinal epithelial damage, suggesting that targeting Sam68 may hold promise to treat UC patients.
Collapse
Affiliation(s)
- Wendy A Goodman
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Shrikanth C Basavarajappa
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Angela R Liu
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Franklin D Staback Rodriguez
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Tailor Mathes
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
13
|
Cai L, Mu YR, Liu MM, Zhou MY, Meng B, Liu FY, Li R. Penta-acetyl Geniposide Suppresses Migration, Invasion, and Inflammation of TNF-α-Stimulated Rheumatoid Arthritis Fibroblast-Like Synoviocytes Involving Wnt/β-Catenin Signaling Pathway. Inflammation 2021; 44:2232-2245. [PMID: 34101073 DOI: 10.1007/s10753-021-01495-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/09/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
We previously reported that penta-acetyl geniposide ((Ac)5GP, an active derivative of geniposide) showed anti-arthritic effect on adjuvant-induced arthritis (AIA) rats by promoting the apoptosis of AIA fibroblast-like synoviocyte (FLS). This study aimed to demonstrate the effects of (Ac)5GP on migration, invasion, and inflammation of TNF-α-stimulated rheumatoid arthritis (RA) FLS (MH7A cell) and to explore the involved mechanisms. MTT assay was used to determine the applied non-cytotoxic doses of (Ac)5GP (12.5, 25, 50 μM) in vitro. Results of wound-healing, transwell, and phalloidin staining assays indicated that (Ac)5GP reduced the migration, invasion, and F-actin cytoskeletal reorganization of TNF-α-stimulated MH7A. Results of ELISA and western blot assays confirmed that (Ac)5GP reduced TNF-α-induced production of pro-inflammatory cytokines (like IL-1β, IL-6, IL-8) and matrix metalloproteinases (MMPs, such as MMP-2 and MMP-9). Moreover, (Ac)5GP inhibited TNF-α-induced activation of Wnt/β-catenin pathway, evidenced by reducing the protein levels of Wnt1, p-GSK-3β (Ser9), and β-catenin and preventing β-catenin nuclear translocation. Importantly, the combination of XAV939 (an inhibitor of Wnt/β-catenin) promoted the actions of (Ac)5GP on TNF-α-induced migration, invasion, and inflammation, further revealing the involvement of Wnt/β-catenin pathway underlying the therapeutic effects of (Ac)5GP on TNF-α-stimulated MH7A. In vivo, (Ac)5GP relieved the progression and severity of rat collagen-induced arthritis, related to reducing the levels of IL-1β, IL-6, IL-8, MMP-2, and MMP-9 as well as inhibiting Wnt/β-catenin pathway in synovial tissues. Collectively, (Ac)5GP could suppress TNF-α-induced migration, invasion, and inflammation in RA FLS involving Wnt/β-catenin pathway and (Ac)5GP might be as a candidate agent for RA treatment.
Collapse
Affiliation(s)
- Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
- Department of Pathology, School of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Yu-Rong Mu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Bo Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Fang-Yuan Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui Province, People's Republic of China.
| |
Collapse
|
14
|
Zheng C, Lu T, Fan Z. miR-200b-3p alleviates TNF-α-induced apoptosis and inflammation of intestinal epithelial cells and ulcerative colitis progression in rats via negatively regulating KHDRBS1. Cytotechnology 2021; 73:727-743. [PMID: 34629748 DOI: 10.1007/s10616-021-00490-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC) is difficult to be treated. miRNAs are a group of gene regulators. Study demonstrated that miR-200b-3p is involved in the development of UC, but the specific molecular mechanism is still unclear. A UC model was established by injecting acetic acid into rectum of rats, which were then treated with miR-200b-3p antagonists and agonists. Weight change, fecal viscosity and fecal bleeding were measured to determine disease activity index. The ratio of colon length to weight was measured. Colon lesions were detected by H&E staining. ELISA was used to detect the expression of TGF-β in colon tissues and IL-10/CRP in serum. Intestinal epithelial cells (NCM460) were treated by TNF-α to create an inflammatory environment. MRNA and protein levels of miR-200b-3p, KHDRBS1, IL-10, IL-6, IL-1β, TGF-β, Bcl-2, Bax and C-capase-3 were detected by qRT-PCR and Western blot, respectively. TargetScan database and dual-luciferase reporter assay were conducted to predict the targeting relationship between miR-200b-3p and KHDRBS1. MTT and flow cytometry were respectively performed to detect cell proliferation and apoptosis. MiR-200b-3p expression was inhibited, leading to increased disease activity index and colonic length-weight ratio, and aggravation of lesions of the UC rat model. Up-regulation of miR-200b-3p can relieve inflammation and apoptosis of immune cells in UC rats. MiR-200b-3p targeted KHDRBS1 and inhibited its expression. Moreover, KHDRBS1 reversed the effects of miR-200b-3p on apoptosis, proliferation and inflammation of intestinal epithelial cells. MiR-200b-3p alleviates UC by negatively regulating KHDRBS1.
Collapse
Affiliation(s)
- Chunju Zheng
- Department of Anorectal, Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an, China
| | - Ting Lu
- Department of Anorectal, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Qinhuai District, Nanjing, 210001 Jiangsu China
| | - Zhimin Fan
- Department of Anorectal, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Qinhuai District, Nanjing, 210001 Jiangsu China
| |
Collapse
|
15
|
Shi W, Zheng Y, Luo S, Li X, Zhang Y, Meng X, Huang C, Li J. METTL3 Promotes Activation and Inflammation of FLSs Through the NF-κB Signaling Pathway in Rheumatoid Arthritis. Front Med (Lausanne) 2021; 8:607585. [PMID: 34295905 PMCID: PMC8290917 DOI: 10.3389/fmed.2021.607585] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
Rheumatoid arthritis (RA), a common autoimmune disease, is extremely damaging to human health. Fibroblast-like synoviocytes (FLSs) have a vital role in the occurrence and development of RA. Methyltransferase-like 3 (METTL3), which is a crucial component of the N6-methyladenosine (m6A) methyltransferase complex, is involved in the progression of many diseases. In this study, we explored the role of METTL3 in the inflammatory response and proliferation, invasion, and migration of FLSs. We used human RA synovial tissues and the adjuvant-induced arthritis (AIA) animal model of RA. Experimental results revealed that METTL3 expression was significantly upregulated in human RA synovial tissues and in the rat AIA model. METTL3 knockdown suppressed interleukin (IL)-6, matrix metalloproteinase (MMP)-3, and MMP-9 levels in human RA-FLSs and rat AIA-FLSs. In contrast, they were increased by METTL3 overexpression. Additionally, we found that, in FLSs, METTL3 may activate the nuclear factor (NF)-κB signaling pathway. The experimental results showed that METTL3 may promote FLS activation and inflammatory response via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wen Shi
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yan Zheng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuai Luo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yilong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.,Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
16
|
Fan W, Xu Z, Liang S, Zuo S, Bian C, Gao X, Qin Y, Wu J. MLL3 Inhibits Apoptosis of Rheumatoid Arthritis Fibroblast-Like Synoviocytes and Promotes Secretion of Inflammatory Factors by Activating CCL2 and the NF-κB Pathway. Inflammation 2021; 44:1803-1814. [PMID: 33914205 DOI: 10.1007/s10753-021-01459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) remains the most common inflammatory arthritis and a major cause of disability. This study investigated the mechanism of MLL3 in fibroblast-like synoviocyte (FLS) apoptosis and inflammatory factor secretion in RA. Expression of MLL3 in synovial tissue of RA patients and patients with bone trauma was detected. FLS was isolated and identified by flow cytometry. Expressions of TNF-α, IL-1β, IL-8, and IL-10 and apoptosis were measured by MTT, flow cytometry, and ELISA. Western blot and qRT-PCR were performed to detect MLL3 and CCL2 expressions, H3K4me3 level, and NF-κB pathway-related proteins in rat joints. MLL3 was highly expressed in the synovial tissue of RA patients, and silencing MLL3 in FLS-RA promoted apoptosis, inhibited pro-inflammatory factors TNF-α, IL-1β, and IL-8 secretion, and promoted anti-inflammatory factor IL-10 secretion. Inhibition of MLL3 suppressed intracellular H3K4me3 and CCL2 expressions. CCL2 activated the NF-κB pathway to promote pro-inflammatory factors TNF-α, IL-1β, and IL-8, inhibit anti-inflammatory factor IL-10, and inhibit apoptosis in FLS-RA. Inhibition of MLL3 expression in RA rats reduced joint redness, swelling, and intra-articular inflammation, but increasing H3K4me3 level reversed the ameliorative effects of sh-MLL3 on RA rats. Collectively, MLL3 activated the NF-κB pathway by increasing H3K4me3 modification in the CCL2 promoter region in FLS-RA, thereby inhibiting apoptosis and promoting pro-inflammatory factors of FLS-RA.
Collapse
Affiliation(s)
- Wenqiang Fan
- Department of Rheumatology and Immunology, Xinxiang Central Hospital, NO.56 Jinsui Avenue, Xinxiang, 453000, Henan, China
| | - Zhendan Xu
- Department of Rheumatology and Immunology, Xinxiang Central Hospital, NO.56 Jinsui Avenue, Xinxiang, 453000, Henan, China
| | - Shu Liang
- Department of Rheumatology and Immunology, Xinxiang Central Hospital, NO.56 Jinsui Avenue, Xinxiang, 453000, Henan, China
| | - Shufei Zuo
- Department of Rheumatology and Immunology, Xinxiang Central Hospital, NO.56 Jinsui Avenue, Xinxiang, 453000, Henan, China
| | - Caiyue Bian
- Department of Rheumatology and Immunology, Xinxiang Central Hospital, NO.56 Jinsui Avenue, Xinxiang, 453000, Henan, China
| | - Xiao Gao
- Department of Rheumatology and Immunology, Xinxiang Central Hospital, NO.56 Jinsui Avenue, Xinxiang, 453000, Henan, China
| | - Yilu Qin
- Department of Rheumatology and Immunology, Xinxiang Central Hospital, NO.56 Jinsui Avenue, Xinxiang, 453000, Henan, China
| | - Jie Wu
- Department of Rheumatology and Immunology, Xinxiang Central Hospital, NO.56 Jinsui Avenue, Xinxiang, 453000, Henan, China.
| |
Collapse
|
17
|
Xing H, Li R, Qing Y, Ying B, Qin Y. Biomaterial-based osteoimmunomodulatory strategies via the TLR4-NF-κB signaling pathway: A review. APPLIED MATERIALS TODAY 2021; 22:100969. [DOI: 10.1016/j.apmt.2021.100969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Abdel-Dayem SIA, Khalil MNA, Abdelrahman EH, El-Gohary HM, Kamel AS. Sesquiterpene lactones; Damsin and neoambrosin suppress cytokine-mediated inflammation in complete Freund's adjuvant rat model via shutting Akt/ERK1/2/STAT3 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113407. [PMID: 32979413 DOI: 10.1016/j.jep.2020.113407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGIAL RELEVANCE Although Damsissa (Ambrosia maritima) is traditionally used as anti-inflammatory and diuretic, the biological activity and mechanism of action of its major constituents are to be elucidated. AIM to decipher the anti-arthritic potential of damsin (DMS) and neoambrosin (NMS) and to unfold their molecular signaling in complete Freund's adjuvant (CFA)-induced arthritis model. MATERIALS AND METHODS the right hind paw was inoculated with CFA (0.1 ml) at day 0 and 7 while treatments were started from the 14th day and continued for 2 weeks. Rats were randomly assigned into 4 groups; normal group (NRML), CFA-induced arthritis group, CFA-induced arthritis treated with DMS and NMS (10 mg/kg/day) as 3rd and 4th group; respectively. RESULTS Throughout experimental period, treatments ameliorated the increase of paw volume, knee joint diameter and nociception tests as reflected in open field arena. Also, DSM and NMS suppressed phosphorylation of Akt, STAT-3, ERK1/2 which was further mirrored by inactivation of GSK3β and downregulation of MCP-1 together with CCN1 and NF-kβ in hind paw tissue. Concomitantly, inflammation markers; TNF-α, IL-6, -12 were lowered as confirmed microscopically during examination of hind paw tissue. CONCLUSION DSM and NMS-induced suppression of NF-kβ subdues clinical features of RA most probably through repression of Akt/ERK1/2/STAT3 pathway. Therefore, DMS and NMS can serve as safe and effective treatment for rheumatoid arthritis, one of the most disabling chronic, inflammatory and painful autoimmune disease.
Collapse
Affiliation(s)
- Shymaa I A Abdel-Dayem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Mohammed N A Khalil
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt; Pharmacognosy Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11361, Egypt.
| | - Enas H Abdelrahman
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Hamida M El-Gohary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Ahmed S Kamel
- Pharmacology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| |
Collapse
|
19
|
Yang S, Zhang X, Chen J, Dang J, Liang R, Zeng D, Zhang H, Xue Y, Liu Y, Wu W, Zhao J, Wang J, Pan Y, Xu H, Sun B, Huang F, Lu Y, Hsueh W, Olsen N, Zheng SG. Induced, but not natural, regulatory T cells retain phenotype and function following exposure to inflamed synovial fibroblasts. SCIENCE ADVANCES 2020; 6:6/44/eabb0606. [PMID: 33115734 PMCID: PMC7608803 DOI: 10.1126/sciadv.abb0606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/10/2020] [Indexed: 05/25/2023]
Abstract
Aberrant number and/or dysfunction of CD4+Foxp3+ Regulatory T cells (Tregs) are associated with the pathogenesis of rheumatoid arthritis (RA). A previous study has demonstrated that thymus-derived, natural Tregs (nTregs) prefer to accumulate in inflamed joints and transdifferentiate to TH17 cells under the stimulation of inflamed synovial fibroblasts (SFs). In this study, we made a head-to-head comparison of both Treg subsets and demonstrated that induced Tregs (iTregs), but not nTregs, retained Foxp3 expression and regulatory function on T effector cells (Teffs) after being primed with inflamed SFs. In addition, iTregs inhibited proliferation, inflammatory cytokine production, migration, and invasion ability of collagen-induced arthritis (CIA)-SFs in vitro and in vivo. Moreover, we noted that iTregs directly targeted inflamed SFs to treat autoimmune arthritis, while nTregs failed to do this. Thus, manipulation of the iTreg subset may have a greater potential for prevention or treatment of patients with RA.
Collapse
Affiliation(s)
- Sujuan Yang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Department of Medicine, The Penn State University Hershey Medical Center, Hershey, PA 17033, USA
| | - Ximei Zhang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jingrong Chen
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Department of Medicine, The Penn State University Hershey Medical Center, Hershey, PA 17033, USA
| | - Rongzhen Liang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Donglan Zeng
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Huan Zhang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Youqiu Xue
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yan Liu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wenbin Wu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jun Zhao
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Julie Wang
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yunfeng Pan
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Hanshi Xu
- Department of Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Bing Sun
- Department of Immunology, Institute of Biochemistry at Chinese Academy of Science, Shanghai 200031, China
| | - Feng Huang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yan Lu
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Willa Hsueh
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nancy Olsen
- Department of Medicine, The Penn State University Hershey Medical Center, Hershey, PA 17033, USA
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Geng M, Xu K, Meng L, Xu J, Jiang C, Guo Y, Ren X, Li X, Peng Y, Wang S, Huang F, Zhang J, Wang X, Zhu W, Lu S. Up-regulated DERL3 in fibroblast-like synoviocytes exacerbates inflammation of rheumatoid arthritis. Clin Immunol 2020; 220:108579. [PMID: 32866644 DOI: 10.1016/j.clim.2020.108579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022]
Abstract
Endoplasmic reticulum (ER) stress associated proteins contribute to the pathogenesis of rheumatoid arthritis (RA) through affecting synoviocyte proliferation and proinflammatory cytokine production. The role of DERL3, an ER-associated degradation component, in joint inflammation of RA was explored. Synovial tissues from RA and osteoarthritis (OA) patients were collected, and in RA synovial tissue, DERL3 showed up-regulation and significantly positive correlation with the expression of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6 and matrix metalloproteinase (MMP)-1. Immunofluorescence result suggested DERL3 was located in fibroblast-like synoviocytes (FLS). Among different inflammatory stimuli, DERL3 could be up-regulated by TNF-α stimulation in FLS. Under TNF-α stimulation, knocking down DERL3, the expression of IL-6, IL-8, MMP-1, MMP-13 was reduced and the activation of nuclear factor kappa B (NF-κB) signaling pathway was inhibited. In pristane-induced arthritis (PIA) rat model, Derl3 was up-regulated in synovial tissue and disease was attenuated after intraarticular injection of siDerl3. Overall, we conclude that TNF-α inducing DERL3 expression promotes the inflammation of FLS through activation of NF-κB signaling pathway, suggesting DERL3 plays important roles in the pathogenesis of RA and is a promising therapeutic target.
Collapse
Affiliation(s)
- Manman Geng
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Ke Xu
- Xi'an Hong Hui Hospital, the Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China
| | - Jing Xu
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Congshan Jiang
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuanxu Guo
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoyu Ren
- Xi'an Hong Hui Hospital, the Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaowei Li
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yizhao Peng
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Si Wang
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Fumeng Huang
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Zhang
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xipeng Wang
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China.
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China.
| |
Collapse
|
21
|
Song B, Li X, Xu Q, Yin S, Wu S, Meng X, Huang C, Li J. Inhibition of BMP3 increases the inflammatory response of fibroblast-like synoviocytes in rheumatoid arthritis. Aging (Albany NY) 2020; 12:12305-12323. [PMID: 32568738 PMCID: PMC7343483 DOI: 10.18632/aging.103422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune disease. Fibroblast-like synoviocytes (FLS) are a key component of invasive pannus and a pathogenetic mechanism in RA. Expression of bone morphogenetic protein 3 (BMP3) mRNA is reportedly decreased in the arthritic synovium. We previously showed that BMP3 expression is significantly downregulated in the synovial tissues of RA patients and models of adjuvant-induced arthritis (AIA). In the present study, we explored the association between BMP3 and FLS migration and secretion of proinflammatory factors in RA. We found that inhibition of BMP3 expression using BMP3 siRNA increased the proinflammatory chemokines and migration of FLS stimulated with TNF-α. Inhibition of BMP3 expression also increased expression of IL-6, IL-1β, IL-17A, CCL-2, CCL-3, VCAM-1, MMP-3, and MMP-9, but not TIMP-1, in AIA and RA FLS. Correspondingly, induction of BMP3 overexpression through intra-articular injection of ad-BMP3 diminished arthritis severity in AIA rats. We also found that BMP3 may inhibit activation of TGF-β1/Smad signaling. These data indicate that BMP3 may suppress the proliferation and migration of FLS via the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Biao Song
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Qingqing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Suqin Yin
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Sha Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| |
Collapse
|
22
|
Zhang Y, Ji T, Ma S, Wu W. RETRACTED: MLL1 promotes migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis by activating the TRIF/NF-κB signaling pathway via H3K4me3 enrichment in the TLR4 promoter region. Int Immunopharmacol 2020; 82:106220. [PMID: 32151962 DOI: 10.1016/j.intimp.2020.106220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 01/18/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. A corrigendum for this article was previously published which corrected issues within Figure 1, as detailed here: https://www.sciencedirect.com/science/article/pii/S1567576920337887?via%3Dihub. The journal was subsequently alerted to additional issues, including an associated PubPeer comment concerning the provenance of the flow cytometry data in Figure 1B, as detailed here: https://pubpeer.com/publications/AD39B667B4ACD09C930F532D0BD985; and here https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. As part of a journal investigation, the editorial team noticed that many of the Western blots contained within the article were pixelated. In addition, the published email address of the corresponding author (zhangyd78@126.com), differed from the version submitted to the journal (weiwu_drww@163.com). The journal asked the authors to provide a detailed explanation to these concerns and the associated raw data. The Authors did not respond to this request. The Editor-in-Chief assessed the case and decided to retract the article.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Tiefeng Ji
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Shu Ma
- Department of Rheumatology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
23
|
Xu C, Ke D, Zou L, Li N, Wang Y, Fan X, Zhu C, Xia W. Cold-induced RNA-binding protein (CIRBP) regulates the expression of Src-associated during mitosis of 68 kDa (Sam68) and extracellular signal-regulated kinases (ERK) during heat stress-induced testicular injury. Reprod Fertil Dev 2020; 32:1357-1364. [DOI: 10.1071/rd20253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
In this study, the ability of cold-induced RNA-binding protein (CIRBP) to regulate the expression of Src-associated during mitosis of 68 kDa (Sam68) and extracellular signal-regulated kinases (ERK) in the mouse testis and mouse primary spermatocytes (GC-2spd cell line) before and after heat stress was examined to explore the molecular mechanism by which CIRBP decreases testicular injury. A mouse testicular hyperthermia model, a mouse primary spermatocyte hyperthermia model and a low CIRBP gene-expression cell model were constructed and their relevant parameters were analysed. The mRNA and protein levels of CIRBP and Sam68 were significantly decreased in the 3-h and 12-h testicular heat-stress groups, extracellular signal-regulated kinase 1/2 (ERK1/2) protein expression was not significantly affected but phospho-ERK1/2 protein levels were significantly decreased. GC-2spd cellular heat-stress results showed that the mRNA and protein concentrations of CIRBP and Sam68 were reduced 48h after heat stress. In the low CIRBP gene-expression cell model, CIRBP protein expression was significantly decreased. Sam68 mRNA expression was significantly decreased only at the maximum transfection concentration of 50nM and Sam68 protein expression was not significantly affected. These findings suggest that CIRBP may regulate the expression of Sam68 at the transcriptional level and the expression of phospho-ERK1/2 protein, both of which protect against heat-stress-induced testicular injury in mice.
Collapse
|
24
|
Han S, Xu S, Zhou J, Qiao A, Boriboun C, Ma W, Li H, Biyashev D, Yang L, Zhang E, Liu Q, Jiang S, Zhao TC, Krishnamurthy P, Zhang C, Richard S, Qiu H, Zhang J, Qin G. Sam68 impedes the recovery of arterial injury by augmenting inflammatory response. J Mol Cell Cardiol 2019; 137:82-92. [PMID: 31639388 DOI: 10.1016/j.yjmcc.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The role of Src-associated-in-mitosis-68-kDa (Sam68) in cardiovascular biology has not been studied. A recent report suggests that Sam68 promotes TNF-α-induced NF-κB activation in fibroblasts. Here we sought to dissect the molecular mechanism by which Sam68 regulates NF-κB signaling and its functional significance in vascular injury. APPROACH AND RESULTS The endothelial denudation injury was induced in the carotid artery of Sam68-null (Sam68-/-) and WT mice. Sam68-/- mice displayed an accelerated re-endothelialization and attenuated neointima hyperplasia, which was associated with a reduced macrophage infiltration and lowered expression of pro-inflammatory cytokines in the injured vessels. Remarkably, the ameliorated vascular remodeling was recapitulated in WT mice after receiving transplantation of bone marrow (BM) from Sam68-/- mice, suggesting the effect was attributable to BM-derived inflammatory cells. In cultured Raw264.7 macrophages, knockdown of Sam68 resulted in a significant reduction in the TNF-α-induced expression of TNF-α, IL-1β, and IL-6 and in the level of nuclear phospho-p65, indicating attenuated NF-κB activation; and these results were confirmed in peritoneal and BM-derived macrophages of Sam68-/- vs. WT mice. Furthermore, co-immunoprecipitation and mass-spectrometry identified Filamin A (FLNA) as a novel Sam68-interacting protein upon TNF-α treatment. Loss- and gain-of-function experiments suggest that Sam68 and FLNA are mutually dependent for NF-κB activation and pro-inflammatory cytokine expression, and that the N-terminus of Sam68 is required for TRAF2-FLNA interaction. CONCLUSIONS Sam68 promotes pro-inflammatory response in injured arteries and impedes recovery by interacting with FLNA to stabilize TRAF2 on the cytoskeleton and consequently potentiate NF-κB signaling.
Collapse
Affiliation(s)
- Shuling Han
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shiyue Xu
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aijun Qiao
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chan Boriboun
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wenxia Ma
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huadong Li
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dauren Biyashev
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Liu Yang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qinghua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, Hubei, China
| | - Shayi Jiang
- Department of Hematology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 20062, China
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, RI 02908, USA
| | - Prasanna Krishnamurthy
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chunxiang Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stéphane Richard
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Hongyu Qiu
- Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA
| | - Jianyi Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Chen Y, Zhang L, Liu S, Yao B, Zhang H, Liang S, Ma J, Liang X, Shi W. Sam68 mediates high glucose‑induced podocyte apoptosis through modulation of Bax/Bcl‑2. Mol Med Rep 2019; 20:3728-3734. [PMID: 31485651 PMCID: PMC6755155 DOI: 10.3892/mmr.2019.10601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia promotes podocyte apoptosis and contributes to the pathogenesis of diabetic nephropathy (DN). However, the mechanisms of hyperglycemia-induced podocyte apoptosis remain unknown. Recent studies have implicated Src-associated substrate during mitosis of 68 kDa (Sam68) in various cellular processes including RNA metabolism, apoptosis, signal transduction. This study sought to examine the effect of Sam68 on high glucose (HG)-induced podocytes apoptosis, and the mechanism underlying this effect. Immortalized mouse podocytes were exposed to medium containing normal glucose, or HG and Sam68 siRNA, respectively. The expression of Sam68 in podocytes was determined by fluorescence quantitative PCR (qPCR), immunofluorescence and immunoblotting. The role of Sam68 in HG-induced podocyte apoptosis was further evaluated by inhibiting Sam68 expression by Sam68 siRNA and performing flow cytometry. The mRNA and protein expression of pro-apoptosis gene Bax and anti-apoptotic gene Bcl-2 were assessed by qRCR and immunoblotting. In the present study, it was first demonstrated that Sam68 was upregulated in a time and dose-dependent manner in in vitro HG-treated podocytes. Pretreatment with Sam68 siRNA markedly decreased nuclear Sam68 expression. Moreover, the effects of HG-induced apoptosis were also abrogated by Sam68 knockdown in cultured podocytes. Furthermore, HG increased Bax and decreased Bcl-2 protein expression in cultured podocytes, and this effect was blocked by Sam68 knockdown. The results of the present study revealed that Sam68 mediated HG-induced podocyte apoptosis, probably through the Bax/Bcl-2 signaling pathway, and thus may be a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Yuyu Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Li Zhang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shuangxin Liu
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Binfeng Yao
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Hong Zhang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shun Liang
- Division of Nephrology, Yue Bei People's Hospital, Shaoguan, Guangdong 512025, P.R. China
| | - Jianchao Ma
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Xinling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Shi
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
26
|
Losartan suppresses the inflammatory response in collagen-induced arthritis by inhibiting the MAPK and NF-κB pathways in B and T cells. Inflammopharmacology 2018; 27:487-502. [PMID: 30426454 DOI: 10.1007/s10787-018-0545-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
The angiotensin II type 1 receptor (AT1R) antagonist losartan has been confirmed to have a moderate anti-inflammatory effect in vitro and in vivo. However, how it affects immune cells in Rheumatoid Arthritis (RA) is still unknown. We found that in human synovial tissues, AT1R is significantly expressed on T cells and B cells. Treatment with losartan (15 mg/kg) alone and in combination with a low dose of methotrexate (MTX 0.25 mg/kg/3 days) significantly suppressed the progression of CIA. Secondary paw swelling, joint destruction and the presence of pro-inflammatory cytokines (TNF-α and IFN-γ) in the serum were alleviated after treatment. The therapeutic effects of losartan were based on reduced T-cell and B-cell activation, specifically by decreased cell vitality and pro-inflammatory cytokine production. In addition, losartan combined with a low dose of MTX achieved a similar therapeutic effect, while protecting liver and kidney from MTX damage. Mechanistically, losartan inhibits the production of pro-inflammatory mediators, reduces the phosphorylation of p38, ERK, and p65, p50 nuclear transposition in T cells and B cells. Phosphorylation of JNK is not affected by losartan in the CIA rat model. losartan can be used as an effective RA treatment, which exhibits anti-arthritic effects potentially through down-regulating the phosphorylation of p38, ERK and signaling through NF-κB. While achieving similar anti-rheumatic effects, a combination therapy of losartan with a low dose of MTX, can protect from liver and renal damage caused by giving a high dose of MTX.
Collapse
|