1
|
Hu M, Zhou Y, Yao Z, Tang Y, Zhang Y, Liao J, Cai X, Liu L. T cell dysregulation in rheumatoid arthritis: Recent advances and natural product interventions. Int Immunopharmacol 2025; 153:114499. [PMID: 40120382 DOI: 10.1016/j.intimp.2025.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Autoimmune diseases result from chronic and dysregulated activation of the immune system, culminating in pathological self-tissue damage. These disorders are primarily driven by adaptive immune responses, particularly those mediated by T and B lymphocytes, which mistakenly target self-antigens expressed in host tissues. In rheumatoid arthritis (RA), the pathogenesis is closely associated with the emergence of tissue-invasive effector T cells and the functional impairment of regulatory T cells (Tregs), both of which play pivotal roles in disease progression. Therapeutic interventions targeting these dysregulated T cell populations have emerged as a promising strategy for RA management. Although synthetic immunosuppressants remain the mainstay of RA treatment, their long-term application is often hampered by adverse effects, diminished therapeutic efficacy, and poor patient adherence. These limitations highlight the critical need for the development of novel therapeutic approaches. Natural compounds derived from medicinal plants have been widely utilized in the clinical management of RA, with growing evidence supporting their immunomodulatory potential, particularly in restoring T cell-mediated immune tolerance. This review aims to provide a comprehensive overview of recent advances in understanding T cell dysregulation in RA and to elucidate the mechanisms through which natural compounds regulate immune responses. By integrating current findings, this work seeks to offer a theoretical foundation for the optimized use of natural compounds in the treatment of RA, while exploring their potential in advancing precision medicine and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yujun Zhou
- The General Surgery Department of Xiangya Hospital Affiliated to Central South University, Changsha, Hunan 410028, China
| | - Zhongliu Yao
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Yuanyuan Tang
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Ye Zhang
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jing Liao
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Xiong Cai
- Department of Rheumatology of First Hospital and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Liu Z, Zhang H, Yao J. Metabolomic Profiling and Network Toxicology: Mechanistic Insights into Effect of Gossypol Acetate Isomers in Uterine Fibroids and Liver Injury. Pharmaceuticals (Basel) 2024; 17:1363. [PMID: 39459003 PMCID: PMC11510579 DOI: 10.3390/ph17101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE Gossypol is a natural polyphenolic dialdehyde product that is primarily isolated from cottonseed. It is a racemized mixture of (-)-gossypol and (+)-gossypol that has anti-infection, antimalarial, antiviral, antifertility, antitumor and antioxidant activities, among others. Gossypol optical isomers have been reported to differ in their biological activities and toxic effects. METHOD In this study, we performed a metabolomics analysis of rat serum using 1H-NMR technology to investigate gossypol optical isomers' mechanism of action on uterine fibroids. Network toxicology was used to explore the mechanism of the liver injury caused by gossypol optical isomers. SD rats were randomly divided into a normal control group; model control group; a drug-positive group (compound gossypol acetate tablets); high-, medium- and low-dose (-)-gossypol acetate groups; and high-, medium- and low-dose (+)-gossypol acetate groups. RESULT Serum metabolomics showed that gossypol optical isomers' pharmacodynamic effect on rats' uterine fibroids affected their lactic acid, cholesterol, leucine, alanine, glutamate, glutamine, arginine, proline, glucose, etc. According to network toxicology, the targets of the liver injury caused by gossypol optical isomers included HSP90AA1, SRC, MAPK1, AKT1, EGFR, BCL2, CASP3, etc. KEGG enrichment showed that the toxicity mechanism may be related to pathways active in cancer, such as the PPAR signaling pathway, glycolysis/glycolysis gluconeogenesis, Th17 cell differentiation, and 91 other closely related signaling pathways. CONCLUSIONS (-)-gossypol acetate and (+)-gossypol acetate play positive roles in the treatment and prevention of uterine fibroids. Gossypol optical isomers cause liver damage through multiple targets and pathways.
Collapse
Affiliation(s)
- Zishuo Liu
- School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (Z.L.); (H.Z.)
- Key Laboratory of Active Components and Drug Release Technology of Natural Medicines in Xinjiang, Xinjiang Medical University, Urumqi 830017, China
| | - Hui Zhang
- School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (Z.L.); (H.Z.)
- Key Laboratory of Active Components and Drug Release Technology of Natural Medicines in Xinjiang, Xinjiang Medical University, Urumqi 830017, China
| | - Jun Yao
- School of Pharmacy, Xinjiang Medical University, Urumqi 830017, China; (Z.L.); (H.Z.)
- Key Laboratory of Active Components and Drug Release Technology of Natural Medicines in Xinjiang, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
3
|
Yu Y, Jiang Y, Glandorff C, Sun M. Exploring the mystery of tumor metabolism: Warburg effect and mitochondrial metabolism fighting side by side. Cell Signal 2024; 120:111239. [PMID: 38815642 DOI: 10.1016/j.cellsig.2024.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The metabolic reconfiguration of tumor cells constitutes a pivotal aspect of tumor proliferation and advancement. This study delves into two primary facets of tumor metabolism: the Warburg effect and mitochondrial metabolism, elucidating their contributions to tumor dominance. The Warburg effect facilitates efficient energy acquisition by tumor cells through aerobic glycolysis and lactic acid fermentation, offering metabolic advantages conducive to growth and proliferation. Simultaneously, mitochondrial metabolism, serving as the linchpin of sustained tumor vitality, orchestrates the tricarboxylic acid cycle and electron transport chain, furnishing a steadfast and dependable wellspring of biosynthesis for tumor cells. Regarding targeted therapy, this discourse examines extant strategies targeting tumor glycolysis and mitochondrial metabolism, underscoring their potential efficacy in modulating tumor metabolism while envisaging future research trajectories and treatment paradigms in the realm of tumor metabolism. By means of a thorough exploration of tumor metabolism, this study aspires to furnish crucial insights into the regulation of tumor metabolic processes, thereby furnishing valuable guidance for the development of novel therapeutic modalities. This comprehensive deliberation is poised to catalyze advancements in tumor metabolism research and offer novel perspectives and pathways for the formulation of cancer treatment strategies in the times ahead.
Collapse
Affiliation(s)
- Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian Glandorff
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; University Clinic of Hamburg at the HanseMerkur Center of TCM, Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Li H, Jiang X, Zhang S, Li Y, Wang X, Liang J. MiR-214_L-1R+4 regulate gossypol-induced immune response through MyD88-dependent signaling pathway in Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109744. [PMID: 38960107 DOI: 10.1016/j.fsi.2024.109744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
MicroRNAs (miRNAs) have been demonstrated to act as crucial modulators with considerable impacts on the immune system. Cottonseed meal is often used as a protein source in aqua feed, cottonseed meal contains gossypol, which is harmful to animals. However, there is a lack of research on the role of miRNAs in fish exposed to gossypol stress. To determine the regulatory effects of miRNAs on gossypol toxicity, Cyprinus carpio were given to oral administration of 20 mg/kg gossypol for 7 days, and the gossypol concentration in the tissues was tested. Then, we detected spleen index, histology, immune enzyme activities of fish induced by gossypol. The results of miRNA sequencing revealed 8 differentially expressed miRNAs in gossypol group, and miR-214_L-1R+4 was found involved in immune response induced by gossypol. The potential targets of miR-214_L-1R+4 were predicted, and found a putative miR-214_L-1R+4 binding site in the 3'UTR of MyD88a. Furthermore, dual-luciferase reporter assays displayed miR-214_L-1R+4 decreased MyD88a expression through binding to the 3'UTR of MyD88a. Moreover, miR-214_L-1R+4 antagomir were intraperitoneally administered to C. carpio, down-regulated miR-214_L-1R+4 could increase MyD88a expression, as well as inflammatory cytokines and anti-inflammatory cytokines expression. These findings revealed that miR-214_L-1R+4 via the MyD88-dependent signaling pathway modulate the immune response to gossypol in C. carpio spleen.
Collapse
Affiliation(s)
- Hui Li
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China.
| | - Xinyu Jiang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Shuying Zhang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Yanling Li
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| | - Junping Liang
- College of Fisheries, Henan Normal University, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Province, PR China
| |
Collapse
|
5
|
Mohammed MA, Amer NM, Abdallah HMI, Saleh MS. A comprehensive tool in recycling plant-waste of Gossypium barbadense L agricultural and industrial waste extracts containing gossypin and gossypol: hepatoprotective, anti-inflammatory and antioxidant effects. PLANT METHODS 2024; 20:54. [PMID: 38632634 PMCID: PMC11022478 DOI: 10.1186/s13007-024-01181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Improper management of agricultural and industrial cotton wastes causes environmental pollution and worsens the climate change challenge. Green recycling of cotton could contribute to a circular economy. One of the economic values of cotton wastes lies in their bioactive components. Two types of cotton wastes-agricultural and industrial-of the species Gossypium barbadense L. Giza 95 were targeted in the current study, aiming to maximize their medicinal value and investigate the anti-inflammatory, hepatoprotective, and antioxidant activities of their phytochemical extracts. Phytochemical extraction was performed using different solvents extraction. An anti-inflammatory effect was tested in carrageenan-induced acute edema in a rat paw model. A carbon tetrachloride chronic model of liver injury was used for the assessment of hepatoprotective potential. Liver enzymes (AST and ALT), oxidative stress markers (MDA and GSH), inflammatory biomarkers (C-reactive protein), and histopathological features were investigated. As a result, ethyl acetate proved to be the solvent of best choice to extract the gossypin polyphenolics, where the extracted amount reached 14,826.2 µg/g, followed by butanol (8751.4 µg/g extract). The chloroform (CHCL3) fraction showed the highest amounts of gossypol (190.7 µg/g extract), followed by petroleum ether. Cotton waste's composition analysis showed a wide range of components, including 33 metabolites such as gossypetin, polyphenolics, and other metabolites that possess therapeutic effects. Both chloroform extract and industrial waste extracts showed superior anti-inflammatory and hepatoprotective effects in comparison to other extracts. All tested extracts (ethyl acetate, chloroform, and industrial waste) showed proper antioxidant activities.
Collapse
Affiliation(s)
- Mona A Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Nagat M Amer
- Environmental and Occupational Medicine Department, Environment and Climate Change Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Heba M I Abdallah
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Mai S Saleh
- Environmental and Occupational Medicine Department, Environment and Climate Change Research Institute, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
6
|
Kozlowski Neto VA, Schmidt EMDS, Rubio CP, da Silva NMM, Tardivo R, Costa C, Meirelles PRDL, Cerón JJ, Tvarijonaviciute A, do Amarante AFT. Effect of Supplementation of Lambs with Whole Cottonseed: Impact on Serum Biomarkers and Infection by Gastrointestinal Parasites under Field Conditions. Metabolites 2023; 13:398. [PMID: 36984838 PMCID: PMC10056370 DOI: 10.3390/metabo13030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The purpose of this trial was to evaluate serum levels of oxidative stress biomarkers and biochemical analytes in crossbred lambs during the rearing phase in an integrated crop-livestock system (ICLS) to control gastrointestinal parasites. The experiment used 36 crossbred lambs (cross: Ile de France × White Dorper × Texel) divided into two groups. The WCS group was supplemented with whole cottonseed (WCS), and controls had no supplementation. Body weight, blood collection, and fecal analysis of nematode eggs and Eimeria oocysts counting per gram of feces were performed for each animal within 84 days of experiment. The following serum analytes were determined: total protein, albumin, globulin, cholesterol, haptoglobin, and 10 oxidative stress biomarkers: cupric reducing antioxidant capacity, ferric reducing ability of plasma, trolox equivalent antioxidant capacity, thiol, uric acid, paraoxonase-1, total oxidant status, ferric-xylenol orange, advanced oxidation protein products, and reactive oxygen metabolites derived compounds. The inclusion of WCS suggested the benefit in controlling infection as well as inducing an increase in antioxidants and a decrease in oxidants in lambs naturally infected by gastrointestinal parasites. The combination of WCS and ICLS could be a useful tool in controlling gastrointestinal parasite infection without affecting the production performance.
Collapse
Affiliation(s)
- Vitoldo Antonio Kozlowski Neto
- School of Veterinary Medicine and Animal Science, São Paulo State University (FMVZ, UNESP), Rua Prof. Doutor Walter Mauricio Correa s/n, Unesp Campus Botucatu, Botucatu 18618-681, SP, Brazil
| | - Elizabeth Moreira dos Santos Schmidt
- School of Veterinary Medicine and Animal Science, São Paulo State University (FMVZ, UNESP), Rua Prof. Doutor Walter Mauricio Correa s/n, Unesp Campus Botucatu, Botucatu 18618-681, SP, Brazil
| | - Camila Peres Rubio
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain
| | - Naiara Mirelly Marinho da Silva
- School of Veterinary Medicine and Animal Science, São Paulo State University (FMVZ, UNESP), Rua Prof. Doutor Walter Mauricio Correa s/n, Unesp Campus Botucatu, Botucatu 18618-681, SP, Brazil
| | - Renata Tardivo
- Department of Animal Nutrition and Breeding, School of Veterinary Medicine and Animal Science, São Paulo State University (FMVZ, UNESP), Rua Prof. Doutor Walter Mauricio Correa s/n, Unesp Campus Botucatu, Botucatu 18618-681, SP, Brazil
| | - Ciniro Costa
- Department of Animal Nutrition and Breeding, School of Veterinary Medicine and Animal Science, São Paulo State University (FMVZ, UNESP), Rua Prof. Doutor Walter Mauricio Correa s/n, Unesp Campus Botucatu, Botucatu 18618-681, SP, Brazil
| | - Paulo Roberto de Lima Meirelles
- Department of Animal Nutrition and Breeding, School of Veterinary Medicine and Animal Science, São Paulo State University (FMVZ, UNESP), Rua Prof. Doutor Walter Mauricio Correa s/n, Unesp Campus Botucatu, Botucatu 18618-681, SP, Brazil
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Espinardo, 30100 Murcia, Spain
| | - Alessandro Francisco Talamini do Amarante
- Institute of Biosciences, São Paulo State University (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, Distrito de Rubião Junior, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
7
|
Yuan J, Zhou M, Xin X, Yao J, Chang J. Comparison of the efficacy of gossypol acetate enantiomers in rats with uterine leiomyoma. J Nat Med 2023; 77:41-52. [PMID: 35984592 DOI: 10.1007/s11418-022-01644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/01/2022] [Indexed: 01/06/2023]
Abstract
Gossypol acetate (GA), as the product of racemic gossypol and acetic acid conjugated by hydrogen bond, is hydrolyzed into gossypol to exert its effect on treating uterine leiomyoma (UL), which has been listed in China. But hypokalemia and mild changes of liver function limit its clinical application. It had been reported that the biological activities of gossypol optical isomers were different. In this study, we aimed to clarify whether there were differences in the efficacy of gossypol enantiomers and whether a single gossypol optical isomer could alleviate adverse reactions in the treatment of UL. The results indicated that (-)-GA and (+)-GA had significant therapeutic effect on rats with UL. Interestingly, (-)-GA could better significantly ameliorate the pathological structure, inhibit the secretion of estrogen, and downregulate the expression of estrogen receptor-alpha (ER-α) and progesterone receptor (PR) than (+)-GA. Additionally, (-)-GA could better evidently decrease the symptoms of abnormally elevated inflammatory factors caused by UL. In contrast, (-)-GA and (+)-GA had certain effects on potassium ion concentration in serum, liver and kidney function, and the effects of (+)-GA on liver function were more obvious than (-)-GA. These findings will be of great significance to the drug development of gossypol optical isomers.
Collapse
Affiliation(s)
- Jie Yuan
- School of Pharmacy, Xinjiang Second Medical College, Karamay, 834000, China
| | - Mengyu Zhou
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832008, China
| | - Xiaobing Xin
- School of Pharmacy, Xinjiang Second Medical College, Karamay, 834000, China
| | - Jun Yao
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| | - Junmin Chang
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
8
|
Wannaratana S, Banlunara W, Chokeshaiusaha K, Sananmuang T. The reversible effects of gossypol toxicity on male pigeons' reproductive performance. Vet World 2022; 15:2836-2843. [PMID: 36718333 PMCID: PMC9880844 DOI: 10.14202/vetworld.2022.2836-2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022] Open
Abstract
Background and Aim Gossypol, a cotton seed derivative, is well known for its reversible antifertility in male reproduction across species. Its antifertility and reversibility effects on male reproductive function vary among species in dose-and time-dependent manners. In this study, the antifertility potential of gossypol in pigeons was evaluated for the first time to determine whether it might be used as a dietary supplement for pigeon population control. Materials and Methods Male pigeons were assigned into three experimental groups: The gossypol-treated group (n = 12), the sham control group (n = 6), and the negative control group (n = 6). There were two experimental periods: A gossypol-feeding period of 28 days and a gossypol-free period of 28 days. During the gossypol-feeding period, birds in the gossypol-treated group were fed 4 mg of gossypol extract per day. Birds in the sham control group were fed 0.5 mL of mixed ethanol and sunflower oil, while those in the negative control group were fed 0.5 mL of phosphate buffer saline. After the gossypol-feeding phase was completed, all remaining pigeons in all groups continued to receive their regular diet for an additional 28 days (gossypol-free phase). The body weight and semen quality of the birds in the experimental groups were compared to evaluate gossypol's antifertility effect. Results In the gossypol-treated group as compared to the control groups, the percentages of sperm motility and viability were significantly lower at 21 days, and the percentage of normal sperm morphology was significantly lower at 28 days during the gossypol-feeding period. After gossypol withdrawal, these antifertility effects were resumed and reached a comparable semen quality to the control groups within 14 days. Conclusion Gossypol supplementation (4 mg/day for 28 days) could lower male pigeons' reproductive performance in terms of sperm motility, viability, and sperm morphology. Such infertility was, however, reversible within 14 days after gossypol withdrawal without any side effects on the pigeons, suggesting its application as a safe contraceptive feeding for male pigeons.
Collapse
Affiliation(s)
- Suwarak Wannaratana
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi 20110, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kaj Chokeshaiusaha
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi 20110, Thailand
| | - Thanida Sananmuang
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi 20110, Thailand,Corresponding author: Thanida Sananmuang, e-mail: Co-authors: SW: , WB: , KC:
| |
Collapse
|
9
|
Liu Y, Wang L, Zhao L, Zhang Y. Structure, properties of gossypol and its derivatives-from physiological activities to drug discovery and drug design. Nat Prod Rep 2022; 39:1282-1304. [PMID: 35587693 DOI: 10.1039/d1np00080b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covering up to 2022Gossypol is a polyphenolic compound isolated from cottonseed. There are two optical enantiomers of gossypol, (-)-gossypol and (+)-gossypol. Gossypol exists as three different tautomers, aldehyde, ketone and lactol. Gossypol is toxic and provides a protective mechanism for cotton plants against pests. Gossypol was used as a male contraceptive in China in the 1970s. It was eventually abandoned due to noticeable side effects, disruption of potassium uptake and incomplete reversibility. Gossypol has gained considerable research interest due to its attractive biological activities, especially antitumor and antivirus. Gossypol derivatives are prepared by a structural modification to reduce toxicity and improve their therapeutic effect. This review depicts the bioactivity and regulation mechanisms of gossypol and its derivatives as drug lead compounds, with emphasis on its antitumor mechanism. The design and synthesis of pharmacologically active derivatives based on the structure of gossypol, such as gossypol Schiff bases, apogossypol, gossypolone, are thoroughly discussed. This review aims to serve as a reference for gossypol-based drug discovery and drug design.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Lulu Wang
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource, School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
10
|
Liu Y, Long K, Kang W, Wang T, Wang W. Optochemical Control of Immune Checkpoint Blockade via Light‐Triggered PD‐L1 Dimerization. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yuwei Liu
- State Key Laboratory of Pharmaceutical Biotechnology The University of Hong Kong Hong Kong China
- Department of Pharmacology and Pharmacy Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
- Laboratory of Molecular Engineering and Nanomedicine Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| | - Kaiqi Long
- State Key Laboratory of Pharmaceutical Biotechnology The University of Hong Kong Hong Kong China
- Department of Pharmacology and Pharmacy Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
- Laboratory of Molecular Engineering and Nanomedicine Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| | - Weirong Kang
- State Key Laboratory of Pharmaceutical Biotechnology The University of Hong Kong Hong Kong China
- Department of Pharmacology and Pharmacy Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
- Laboratory of Molecular Engineering and Nanomedicine Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| | - Tianyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology The University of Hong Kong Hong Kong China
- Department of Pharmacology and Pharmacy Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
- Laboratory of Molecular Engineering and Nanomedicine Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology The University of Hong Kong Hong Kong China
- Department of Pharmacology and Pharmacy Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
- Laboratory of Molecular Engineering and Nanomedicine Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| |
Collapse
|
11
|
New Bioactive Fused Triazolothiadiazoles as Bcl-2-Targeted Anticancer Agents. Int J Mol Sci 2021; 22:ijms222212272. [PMID: 34830153 PMCID: PMC8621373 DOI: 10.3390/ijms222212272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
A series of 3-(6-substituted phenyl-[1,2,4]-triazolo[3,4-b]-[1,3,4]-thiadiazol-3-yl)-1H-indoles (5a–l) were designed, synthesized and evaluated for anti-apoptotic Bcl-2-inhibitory activity. Synthesis of the target compounds was readily accomplished through a reaction of acyl hydrazide (1) with carbon disulfide in the presence of alcoholic potassium hydroxide to afford the corresponding intermediate potassium thiocarbamate salt (2), which underwent cyclization reaction in the presence of excess hydrazine hydrate to the corresponding triazole thiol (3). Further cyclisation reaction with substituted benzoyl chloride derivatives in the presence of phosphorous oxychloride afforded the final 6-phenyl-indol-3-yl [1,2,4]-triazolo[3,4-b]-[1,3,4]-thiadiazole compounds (5a–l). The novel series showed selective sub-micromolar IC50 growth-inhibitory activity against Bcl-2-expressing human cancer cell lines. The most potent 6-(2,4-dimethoxyphenyl) substituted analogue (5k) showed selective IC50 values of 0.31–0.7 µM against Bcl-2-expressing cell lines without inhibiting the Bcl-2-negative cell line (Jurkat). ELISA binding affinity assay (interruption of Bcl-2-Bim interaction) showed potent binding affinity for (5k) with an IC50 value of 0.32 µM. Moreover, it fulfils drug likeness criteria as a promising drug candidate.
Collapse
|
12
|
Li S, Xie F, Shi K, Wang J, Cao Y, Li Y. Gossypol ameliorates the IL-1β-induced apoptosis and inflammation in chondrocytes by suppressing the activation of TLR4/MyD88/NF-κB pathway via downregulating CX43. Tissue Cell 2021; 73:101621. [PMID: 34534743 DOI: 10.1016/j.tice.2021.101621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/25/2022]
Abstract
The effects of anti-inflammatory drug gossypol on osteoarthritis (OA) treatment were discussed in this paper. After identified using toluidine blue and immunofluorescence staining of type II collagen, chondrocytes from OA patients were treated with interleukin-1β (IL-1β), gossypol, and overexpressed connexin43 (CX43). In treated chondrocytes, according to MTT assay and flow cytometry, gossypol increased viability and reduced apoptosis of IL-1β induced chondrocytes. Enzyme linked immunosorbent assay (ELISA) suggested that gossypol downregulated inflammatory tumor necrosis factor (TNF)-α level. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot confirmed that gossypol downregulated CX43, nuclear factor-kappa B (NF-κB) p65, TNF-α, toll like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88) and interleukin-6 (IL-6) expressions. Besides, overexpressed CX43 reversed the effects of gossypol on viability, apoptosis, and expressions of factors related to TLR4/MyD88/NF-κB pathway of IL-1β-induced chondrocytes. In conclusion, gossypol ameliorates IL-1β-induced apoptosis and inflammation in chondrocytes by suppressing TLR4/MyD88/NF-κB pathway via downregulating CX43.
Collapse
Affiliation(s)
- Sen Li
- Department of Joint Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jianye District, Nanjing City, Jiangsu Province, 210017, China
| | - Faqing Xie
- Department of Joint Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jianye District, Nanjing City, Jiangsu Province, 210017, China
| | - Kaiwen Shi
- Department of Joint Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jianye District, Nanjing City, Jiangsu Province, 210017, China
| | - Jin Wang
- Department of Joint Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jianye District, Nanjing City, Jiangsu Province, 210017, China
| | - Yan Cao
- Department of Joint Surgery, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jianye District, Nanjing City, Jiangsu Province, 210017, China
| | - Yongxiang Li
- Department of Joint Orthopedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jianye District, Nanjing City, Jiangsu Province, 210017, China.
| |
Collapse
|
13
|
Sibeko L, Johns T. Global survey of medicinal plants during lactation and postpartum recovery: Evolutionary perspectives and contemporary health implications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113812. [PMID: 33450288 DOI: 10.1016/j.jep.2021.113812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cross-cultural comparison of plants used during lactation and the postpartum period offers insight into a largely overlooked area of ethnopharmacological research. Potential roles of phytochemicals in emerging models of interaction among immunity, inflammation, microbiome and nervous system effects on perinatal development have relevance for the life-long health of individuals and of populations in both traditional and contemporary contexts. AIM OF THE STUDY Delineate and interpret patterns of traditional and contemporary global use of medicinal plants ingested by mothers during the postpartum period relative to phytochemical activity on immune development and gastrointestinal microbiome of breastfed infants, and on maternal health. MATERIALS AND METHODS Published reviews and surveys on galactagogues and postpartum recovery practices plus ethnobotanical studies from around the world were used to identify and rank plants, and ascertain regional use patterns. Scientific literature for 20 most-cited plants based on frequency of publication was assessed for antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, antidepressant, analgesic, galactagogic and safety properties. RESULTS From compilation of 4418 use reports related to 1948 species, 105 plant taxa were recorded ≥7 times, with the most frequently cited species, Foeniculum vulgare, Trigonella foenum-graecum, Pimpinella anisum, Euphorbia hirta and Asparagus racemosus, 81, 64, 42, 40 and 38 times, respectively. Species and use vary globally, illustrated by the pattern of aromatic plants of culinary importance versus latex-producing plants utilized in North Africa/Middle East and Sub-Saharan Africa with opposing predominance. For 18/20 of the plants a risk/benefit perspective supports assessment that positive immunomodulation and related potential exceed any safety concerns. Published evidence does not support a lactation-enhancing effect for nearly all the most-cited plants while antidepressant data for the majority of plants are predominately limited to animal studies. CONCLUSIONS Within a biocultural context traditional postpartum plant use serves adaptive functions for the mother-infant dyad and contributes phytochemicals absent in most contemporary diets and patterns of ingestion, with potential impacts on allergic, inflammatory and other conditions. Polyphenolics and other phytochemicals are widely immunologically active, present in breast milk and predominately non-toxic. Systematic analysis of phytochemicals in human milk, infant lumen and plasma, and immunomodulatory studies that differentiate maternal ingestion during lactation from pregnancy, are needed. Potential herb-drug interaction and other adverse effects should remain central to obstetric advising, but unless a plant is specifically shown as harmful, considering potential contributions to health of individuals and populations, blanket advisories against postpartum herbal use during lactation appear empirically unwarranted.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
14
|
Hsieh YS, Chu SC, Huang SC, Kao SH, Lin MS, Chen PN. Gossypol Reduces Metastasis and Epithelial-Mesenchymal Transition by Targeting Protease in Human Cervical Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 49:181-198. [PMID: 33371817 DOI: 10.1142/s0192415x21500105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metastasis is the most prevalent cause of cancer-associated deaths amongst patients with cervical cancer. Epithelial-mesenchymal transition (EMT) is essential for carcinogenesis, and it confers metastatic properties to cancer cells. Gossypol is a natural polyphenolic compound with anti-inflammation, anti-oxidant, and anticancer activities. In this study, we investigated the antimetastatic and antitumour effects of gossypol on human cervical cancer cells (HeLa and SiHa cells). Gossypol exerted a strong inhibition effect on the migration and invasion of human cervical cancer cells. It reduced the focal adhesion kinase (FAK) pathway-mediated expression of matrix metalloproteinase-2 and urokinase-type plasminogen activator, subsequently inhibiting the invasion of SiHa cells. In addition, gossypol reversed EMT induced by transforming growth factor beta 1 (TGF-[Formula: see text]1) and up-regulated epithelial markers, such as E-cadherin but significantly suppressed Ras homolog family member (Rho)A, RhoB, and p-Samd3. The tail vein injection model showed that gossypol treatment via oral gavage reduced lung metastasis. Gossypol also decreased tumour growth in vivo in the nude mouse xenograft model. All these findings suggest that gossypol suppressed the invasion and migration of human cervical cancer cells by targeting the FAK signaling pathway and reversing TGF-[Formula: see text]1-induced EMT. Hence, gossypol warrants further attention for basic mechanistic studies and drug development.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Clinical Laboratory Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Shu-Chen Chu
- Institute and Department of Food Science Central Taiwan, University of Science and Technology, Taichung, Taiwan, ROC
| | - Shih-Chien Huang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Institute of Medicine Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Meng-Shuan Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
- Clinical Laboratory Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
- Institute of Medicine Chung Shan Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
15
|
Huang SF, Chu SC, Hsu LS, Tu YC, Chen PN, Hsieh YS. Antimetastatic effects of gossypol on colon cancer cells by targeting the u-PA and FAK pathways. Food Funct 2020; 10:8172-8181. [PMID: 31730141 DOI: 10.1039/c9fo01306g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metastasis is the most prevalent cause of treatment failure in patients with colon cancer. Gossypol is reported to exhibit antioxidant, anticancer, antivirus and antimicrobial properties. However, the effects of gossypol on cancer invasion and tumour growth of human colon cancer remain unclear. This study aimed to provide molecular evidence associated with the antimetastatic and anti-tumour effects of gossypol on human colorectal carcinoma (CRC) cells. Gossypol inhibited the viability of human colon cancer cells in a dose-dependent manner. Gossypol was sufficient to reduce the invasion, migration and adhesion in DLD-1 and COLO 205 cells. Zymography and western blot assay showed that gossypol reduced the activities and protein expression of urokinase-type plasminogen activator (u-PA), respectively. Gossypol suppressed the level of p-focal adhesion kinase (FAK) and epithelial-to-mesenchymal transition markers, including N-cadherin, fibronectin and vimentin. Gossypol also inhibited the lung metastasis of DLD-1 cells, as indicated by the nude mouse model. These results suggested that gossypol inhibited the metastatic properties of human colon cancer cells by targeting u-PA through the FAK pathway, suggesting that gossypol could be used as an adjuvant therapeutic agent for the treatment of human colon cancer cells.
Collapse
Affiliation(s)
- She-Fang Huang
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung City, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Yang F, Cai HH, Feng XE, Zhang YL, Ge R, Xiao BG, Li QS. 5,2′-Dibromo-2,4,5-trihydroxydiphenylmethanone, a novel immunomodulator of T lymphocytes by regulating the CD4+ T cell subset balance via activating the mitogen-activated protein kinase pathway. Int Immunopharmacol 2019; 72:487-495. [DOI: 10.1016/j.intimp.2019.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022]
|
17
|
D'Agostino VG, Sighel D, Zucal C, Bonomo I, Micaelli M, Lolli G, Provenzani A, Quattrone A, Adami V. Screening Approaches for Targeting Ribonucleoprotein Complexes: A New Dimension for Drug Discovery. SLAS DISCOVERY 2019; 24:314-331. [PMID: 30616427 DOI: 10.1177/2472555218818065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA-binding proteins (RBPs) are pleiotropic factors that control the processing and functional compartmentalization of transcripts by binding primarily to mRNA untranslated regions (UTRs). The competitive and/or cooperative interplay between RBPs and an array of coding and noncoding RNAs (ncRNAs) determines the posttranscriptional control of gene expression, influencing protein production. Recently, a variety of well-recognized and noncanonical RBP domains have been revealed by modern system-wide analyses, underlying an evolving classification of ribonucleoproteins (RNPs) and their importance in governing physiological RNA metabolism. The possibility of targeting selected RNA-protein interactions with small molecules is now expanding the concept of protein "druggability," with new implications for medicinal chemistry and for a deeper characterization of the mechanism of action of bioactive compounds. Here, taking SF3B1, HuR, LIN28, and Musashi proteins as paradigmatic case studies, we review the strategies applied for targeting RBPs, with emphasis on the technological advancements to study protein-RNA interactions and on the requirements of appropriate validation strategies to parallel high-throughput screening (HTS) efforts.
Collapse
Affiliation(s)
- Vito Giuseppe D'Agostino
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Denise Sighel
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Chiara Zucal
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Isabelle Bonomo
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Mariachiara Micaelli
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Graziano Lolli
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Provenzani
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Quattrone
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Valentina Adami
- 2 University of Trento, HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| |
Collapse
|