1
|
Zhai T, Zhang Z, Hu X, He D, Feng W. Role of Long Intergenic Nonprotein-Coding RNA 00511 in Nod-Like Receptor Protein Pyrin Domain 3-Induced Chondrocyte Pyroptosis via the MicroRNA-9-5p/FUT1 Axis. J Microbiol Biotechnol 2024; 34:1511-1521. [PMID: 38934781 PMCID: PMC11294640 DOI: 10.4014/jmb.2312.12014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to determine the function of LINC00511 in Nod-Like Receptor Pyrin Domain 3 inflammasome-mediated chondrocyte pyroptosis via the regulation of miR-9-5p and FUT 1. Chondrocyte inflammatory injury was induced by treating chondrocytes with LPS. Afterwards, the levels of IL-1β and IL-18, the expression of NLRP3, ASC, Caspase-1, and GSDMD, cell viability, and LDH activity in chondrocytes were assessed. LINC00511 expression in LPS-treated chondrocytes was detected, and LINC00511 was subsequently silenced to analyse its role in chondrocyte pyroptosis. The subcellular localization of LINC00511 was predicted and verified. Furthermore, the binding relationships between LINC00511 and miR-9-5p and between miR-9-5p and FUT1 were validated. LINC00511 regulated NLRP3 inflammasome-mediated chondrocyte pyroptosis through the miR-9-5p/FUT1 axis. LPS-treated ATDC5 cells exhibited elevated levels of inflammatory injury; increased levels of NLRP3, ASC, Caspase-1, and GSDMD; reduced cell viability; increased LDH activity; and increased LINC00511 expression, while LINC00511 silencing inhibited the NLRP3 inflammasome to restrict LPS-induced chondrocyte pyroptosis. Next, LINC00511 sponged miR-9-5p, which targeted FUT1. Silencing LINC00511 suppressed FUT1 by upregulating miR-9-5p. Additionally, downregulation of miR-9-5p or overexpression of FUT1 neutralized the suppressive effect of LINC00511 knockdown on LPS-induced chondrocyte pyroptosis. Silencing LINC00511 inhibited the NLRP3 inflammasome to quench Caspase-1-dependent chondrocyte pyroptosis in OA by promoting miR-9-5p and downregulating FUT1.
Collapse
Affiliation(s)
- Tianjun Zhai
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai University of Traditional Chinese Medicine Rehabilitation Institute, Shanghai 201203, P.R. China
| | - Zengqiao Zhang
- Tuina Department of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200083, P.R. China
| | - Xiaoshen Hu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, P.R. China
| | - Dongyi He
- Rheumatoid Internal Medicine in Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200052, P.R. China
| | - Wei Feng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai University of Traditional Chinese Medicine Rehabilitation Institute, Shanghai 201203, P.R. China
- The Second Rehabilitation Hospital of Shanghai, Shanghai 200441, P.R. China
| |
Collapse
|
2
|
Chen Q, Zhang Y, Rong J, Chen C, Wang S, Wang J, Li Z, Hou Z, Liu D, Tao J, Xu J. MicroRNA expression profile of chicken liver at different times after Histomonas meleagridis infection. Vet Parasitol 2024; 329:110200. [PMID: 38744230 DOI: 10.1016/j.vetpar.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Histomonas meleagridis, an anaerobic intercellular parasite, is known to infect gallinaceous birds, particularly turkeys and chickens. The resurgence of histomonosis in recent times has resulted in significant financial setbacks due to the prohibition of drugs used for disease treatment. Currently, research on about H. meleagridis primarily concentrate on the examination of its virulence, gene expression analysis, and the innate immunity response of the host organism. However, there is a lack of research on differentially expressed miRNAs (DEMs) related to liver infection induced by H. meleagridis. In this study, the weight gain and pathological changes at various post-infection time points were evaluated through animal experiments to determine the peak and early stages of infection. Next, High-throughput sequencing was used to examine the expression profile of liver miRNA at 10 and 15 days post-infection (DPI) in chickens infected with the Chinese JSYZ-F strain of H. meleagridis. A comparison with uninfected controls revealed the presence of 120 and 118 DEMs in the liver of infected chickens at 10 DPI and 15 DPI, respectively, with 74 DEMs being shared between the two time points. Differentially expressed microRNAs (DEMs) were categorized into three groups based on the time post-infection. The first group (L1) includes 45 miRNAs that were differentially expressed only at 10 DPI and were predicted to target 1646 genes. The second group (L2) includes 43 miRNAs that were differentially expressed only at 15 DPI and were predicted to target 2257 genes. The third group (L3) includes 75 miRNAs that were differentially expressed at both 10 DPI and 15 DPI and were predicted to target 1623 genes. At L1, L2, and L3, there were 89, 87, and 41 significantly enriched Gene Ontology (GO) terms, respectively (p<0.05). The analysis of differentially expressed miRNA target genes using KEGG pathways revealed significant enrichment at L1, L2, and L3, with 3, 4, and 5 pathways identified, respectively (p<0.05). This article suggests that the expression of liver miRNA undergoes dynamic alterations due to H. meleagridis and the host. It showed that the expression pattern of L1 class DEMs was more conducive to regulating the development of the inflammatory response, while the L2 class DEMs were more conducive to augmenting the inflammatory response. The observed patterns of miRNA expression associated with inflammation were in line with the liver's inflammatory process following infection. The results of this study provide a basis for conducting a comprehensive analysis of the pathogenic mechanism of H. meleagridis from the perspective of host miRNAs.
Collapse
Affiliation(s)
- Qiaoguang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yuming Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Animal Husbandry and Veterinary Station of Daxindian, Penglai District, Yantai 265600, China
| | - Jie Rong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiege Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zaifan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Jian X, Yang D, Wang L, Wang H. CREB1 Silencing Protects Against Inflammatory Response in Rats with Deep Vein Thrombosis Through Reducing RPL9 Expression and Blocking NF-κB Signaling. J Cardiovasc Transl Res 2024; 17:570-584. [PMID: 37891366 DOI: 10.1007/s12265-023-10450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Apoptosis and inflammation of vascular endothelial cells (VECs) are the most important causes of deep vein thrombosis (DVT). cAMP response element binding protein 1 (CREB1) encodes a transcription factor that binds as a homodimer to the cAMP-responsive element and can promote inflammation. CREB1 is found to be upregulated in the plasma of patients with venous thromboembolism. However, the biological functions of CREB1 in DVT remain unknown. We evaluated the effect of CREB1 in a rat model of inferior vena cava (IVA) stenosis-induced DVT. IVC stenosis resulted in stable thrombus, inflammatory response and CREB1 upregulation, whereas CREB1 knockdown inhibited thrombus and inflammation in DVT rats. In vitro analysis showed that CREB1 knockdown inhibited VEC apoptosis. Mechanistically, CREB1 knockdown reduced Ribosomal protein L9 (RPL9) expression and blocked the NF-κB pathway. Therefore, CREB1 may become a potential therapeutic target of DVT prevention.
Collapse
Affiliation(s)
- Xiaorong Jian
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Jiang'an District, Wuhan, 430014, Hubei, China.
| | - Dehua Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Wang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Jiang'an District, Wuhan, 430014, Hubei, China
| | - Hongxiang Wang
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26, Shengli Street, Jiang'an District, Wuhan, 430014, Hubei, China.
| |
Collapse
|
4
|
Yang F, Chen D, Liu Y, Zhang X, Su Y, Zhang X, Yin Z, Wu J. Overexpression of MiR-181c-5p Attenuates Human Umbilical Vascular Endothelial Cell Injury in Deep Vein Thrombosis by Targeting FOS. Int Heart J 2023; 64:759-767. [PMID: 37460318 DOI: 10.1536/ihj.22-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Deep venous thrombosis (DVT) is the third most common cardiovascular disease. Its clinical therapeutic effect is unsatisfactory due to the high rate of postthrombotic syndrome. Several studies have demonstrated the involvement of miRNAs in DVT. Therefore, we identified differentially expressed miRNAs in patients with DVT and explored their effects and underlying mechanism on endothelial cell (EC) injury.Differentially expressed miRNAs were identified via microRNA sequencing and verified using real-time quantitative PCR. The biological function of miR-181c-5p in human umbilical vein endothelial cell (HUVEC) injury stimulated by oxidized low-density lipoprotein (ox-LDL) was investigated. The target gene of miR-181c-5p was analyzed using bioinformatics and verified via dual-luciferase reporter assay.miRNA sequencing showed that miR-181c-5p was downregulated in the peripheral blood of patients with DVT. Furthermore, miR-181c-5p had a high clinical diagnostic value for DVT by receiver operating characteristic curve analysis. An in vitro cell model of EC injury, miR-181c-5p, was repressed in ox-LDL-treated HUVECs. Enhancing miR-181c-5p expression could alleviate the inhibition cell viability, cell apoptosis, raising ROS and MDA production, the reducing SOD level, and the elevated levels of thrombosis-related factor, ET-1 and vWF induced by ox-LDL. Further analysis revealed that FBJ osteosarcoma oncogene (FOS) is a target of miR-181c-5p and could antagonize the protective role of miR-181c-5p in ox-LDL-induced HUVEC injury.Our research demonstrated that miR-181c-5p could attenuate ox-LDL-induced EC injury and thrombosis-related factor expression by negatively regulating FOS. These findings suggest that the miR-181c-5p/FOS axis is a promising therapeutic target for DVT.
Collapse
Affiliation(s)
- Fei Yang
- Department of Cardiovascular and Thoracic Surgery, The First People's Hospital of Changde City
| | - Dexiang Chen
- Department of Cardiovascular and Thoracic Surgery, The First People's Hospital of Changde City
| | - Yi Liu
- Department of Cardiovascular and Thoracic Surgery, The First People's Hospital of Changde City
| | - Xumiao Zhang
- Department of Cardiovascular and Thoracic Surgery, The First People's Hospital of Changde City
| | - Yang Su
- Department of Cardiovascular and Thoracic Surgery, The First People's Hospital of Changde City
| | - Xialing Zhang
- Department of Cardiovascular and Thoracic Surgery, The First People's Hospital of Changde City
| | - Zhiqiang Yin
- Department of Cardiovascular and Thoracic Surgery, The First People's Hospital of Changde City
| | - Jiming Wu
- Department of Cardiovascular and Thoracic Surgery, The First People's Hospital of Changde City
| |
Collapse
|
5
|
Feng Y, Lei B, Zhang H, Niu L, Li X, Luo X, Zhang F. Long noncoding RNA TUG1 induces angiogenesis of endothelial progenitor cells and dissolution of deep vein thrombosis. Thromb J 2022; 20:54. [PMID: 36163177 PMCID: PMC9511754 DOI: 10.1186/s12959-022-00413-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/03/2022] [Indexed: 03/09/2024] Open
Abstract
Objective Long non-coding RNA (lncRNA) essentially controls many physiological and pathological processes of deep vein thrombosis (DVT). Based on that, lncRNA taurine upregulated gene 1 (TUG1)-involved angiogenesis of endothelial progenitor cells (EPCs) and dissolution of DVT was explored. Methods In the in-vitro experiments, EPCs were engineered with mimic, inhibitor, siRNA, and plasmid, after which tube formation, proliferation, migration, and apoptosis were checked. In the in-vivo experiments, a DVT mouse model was established. Before the DVT operation, the mice were injected with agomir, antagomir, siRNA, and plasmid. Subsequently, thrombosis and damage to the femoral vein were pathologically evaluated. TUG1, miR-92a-3p, and 3-Hydroxy-3-methylglutaryl coenzyme A reductase (Hmgcr) expression in the femoral vein was tested. The relationship between TUG1, miR-92a-3p, and Hmgcr was validated. Results DVT mice showed suppressed TUG1 and Hmgcr expression, and elevated miR-92a-3p expression. In EPCs, TUG1 overexpression or miR-92a-3p inhibition promoted cellular angiogenesis, whereas Hmgcr silencing blocked cellular angiogenesis. In DVT mice, elevated TUG1 or inhibited miR-92a-3p suppressed thrombosis and damage to the femoral vein whilst Hmgcr knockdown acted oppositely. In both cellular and animal models, TUG1 overexpression-induced effects could be mitigated by miR-92a-3p up-regulation. Mechanically, TUG1 interacted with miR-92a-3p to regulate Hmgcr expression. Conclusion Evidently, TUG1 promotes the angiogenesis of EPCs and dissolution of DVT via the interplay with miR-92a-3p and Hmgcr. Supplementary Information The online version contains supplementary material available at 10.1186/s12959-022-00413-y.
Collapse
Affiliation(s)
- Yaping Feng
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Bo Lei
- Anesthesia Department, Beijing Haidian Maternal & Child Health Hospital, No. 33 Haidian South Road, Haidian District, Beijing, 100080, China.
| | - Huan Zhang
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Luyuan Niu
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiangtao Li
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiaoyun Luo
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Fuxian Zhang
- Department of Vascular Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|
6
|
MicroRNA-342-3p loaded by human umbilical cord mesenchymal stem cells-derived exosomes attenuates deep vein thrombosis by downregulating EDNRA. J Thromb Thrombolysis 2022; 54:411-419. [PMID: 36006542 DOI: 10.1007/s11239-022-02694-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Exosomes (exos) exert biological functions to maintain the dynamic balance of cells and tissues by transferring biological cargo to recipient cells. Thus, this study explored human umbilical cord mesenchymal stem cells (hucMSCs)-derived exo transfer of microRNA (miR)-342-3p in deep vein thrombosis (DVT). DVT rat models were established via inferior vena cava (IVC) ligation. HucMSCs-exos were extracted and injected into rats with DVT to observe whether they could influences thrombus formation in vivo. HucMSCs-exos were co-cultured with human umbilical vein endothelial cells (HUVECs) in vitro to observe angiogenesis. miR-342-3p and endothelin A receptor (EDNRA) expression in rats with DVT, as well as their interaction was analyzed. miR-342-3p was downregulated and EDNRA was upregulated in rats with DVT. HucMSCs-exos inhibited the formation of thrombus in rats with DVT, as well as promoted angiogenesis of HUVECs. Upregulated miR-342-3p delivery by hucMSCs-exos alleviated DVT in rats and improved angiogenesis of HUVECs. miR-342-3p targeted EDNRA, and the effect of hucMSCs-exos transfer of upregulated miR-342-3p was rescued by overexpressing EDNRA. Briefly, miR-342-3p loaded by hucMSCs-exos attenuates DVT by downregulating EDNRA, offering a novel direction to treat DVT.
Collapse
|
7
|
Gao L, Li L, Hu J, Li G, Zhang Y, Dai X, De Z, Xu F. Metformin inhibits multiple myeloma serum-induced endothelial cell thrombosis by down-regulating miR-532. Ann Vasc Surg 2022; 85:347-357.e2. [PMID: 35561893 DOI: 10.1016/j.avsg.2022.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVES Thrombotic complications in multiple myeloma (MM) impairs the quality of life of patients. Metformin has a certain effect on anti-thrombosis, but its role and mechanism in MM-induced thrombosis are still uncovered. Therefore, this study evaluated the effect of metformin on MM-induced thrombosis. METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to normal serum (15%), MM serum (15%), metformin (0.01 mmol/L), or MM serum and metformin simultaneously. The expression of tissue factor (TF) in HUVECs was detected by flow cytometry and quantitative real-time PCR (qRT-PCR). QRT-PCR was also used to determine the expressions of endothelial protein C receptor (EPCR) and miR-532. The generation of thrombin and activated protein C was measured by thrombin generation and protein C activation assays. And EPCR, extracellular signal-regulated kinase (ERK) 1/2, p38 mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathway related protein expressions were detected by western blot. RESULT MM serum increased the expressions of TF, EPCR and miR-532, and induced thrombin generation and protein C activation in HUVECs. Based on the MM serum treatment, metformin decreased these expressions and inhibited the thrombin generation and protein C activation in HUVECs. However, miR-532 mimic reversed the effect of metformin and promoted the levels of thrombosis related indicators in HUVECs. Moreover, metformin activated the EPCR, ERK 1/2, p38 MAPK and NF-κB pathways but miR-532 mimic suppressed the activation of pathways. CONCLUSION Metformin played an inhibitory effect on MM serum-induced HUVEC thrombosis, suggesting that metformin could serve as a novel antithrombotic approach for MM patients.
Collapse
Affiliation(s)
- Lixia Gao
- Department of Hematology, Karamay Central Hospital
| | - Li Li
- Department of Hematology, Karamay Central Hospital
| | - Jun Hu
- Department of Hematology, Karamay Central Hospital
| | - Guiyuan Li
- Oncology Department, Tongji Hospital Affiliated to Shanghai, Tongji University
| | - Yizhi Zhang
- Department of Hematology, Karamay Central Hospital
| | - Xiangjun Dai
- Science Education Department, Karamay Central Hospital
| | - Zhenyi De
- Department of Pathology, Karamay Central Hospital
| | - Fenglei Xu
- Department of Neurology, Karamay Central Hospital.
| |
Collapse
|
8
|
MicroRNA-136-5p from Endothelial Progenitor Cells-released Extracellular Vesicles Mediates TXNIP to Promote the Dissolution of Deep Venous Thrombosis. Shock 2022; 57:714-721. [PMID: 35583913 DOI: 10.1097/shk.0000000000001920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Endothelial progenitor cells-released extracellular vesicles (EPCs-EVs) have previously been reported to promote the dissolution of deep venous thrombosis (DVT) through delivery of microRNA (miR). Given that, this research was projected to search the relative action of EPCs-EVs transferring of miR-136-5p in DVT. METHODS From EPCs transfected with miR-136-5p agomir or antagomir, EVs were extracted and then injected into DVT mice. Meanwhile, based on the treatment with EPCs-EVs loading miR-136-5p antagomir, silenced thioredoxin-interacting protein (TXNIP) lentivirus was injected into DVT mice to perform the rescue experiments. Afterwards, the length and weight of venous thrombosis, EPC apoptosis and inflammatory factors, plasmin, fibrinogen, and thrombin-antithrombin were measured. miR-136-5p and TXNIP expression in DVT mice, and their targeting relationship were evaluated. RESULTS miR-136-5p expression was suppressed and TXNIP expression was elevated in DVT mice. EPCs-EV reduced the length and weight of venous thrombosis, suppressed cell apoptosis and inflammatory reaction, as well as elevated level of plasmin, and reduced levels of fibrinogen and thrombin-antithrombin in DVT mice. Restored miR-136-5p loaded by EPCs-EV further attenuated DVT but EPCs-EV transfer of depleted miR-136-5p resulted in the opposite consequences. miR-136-5p targeted TXNIP and silenced TXNIP rescued the effect of EPCs-EV transfer of depleted miR-136-5p on DVT. CONCLUSION miR-136-5p from EPCs-EV suppresses TXNIP expression to reduce the thrombus size in DVT, offering a promising treatment target for DVT.
Collapse
|
9
|
Chu C, Wang B, Zhang Z, Liu W, Sun S, Liang G, Zhang X, An H, Wei R, Zhu X, Guo Q, Zhao L, Fu X, Xu K, Li X. miR-513c-5p Suppression Aggravates Pyroptosis of Endothelial Cell in Deep Venous Thrombosis by Promoting Caspase-1. Front Cell Dev Biol 2022; 10:838785. [PMID: 35445025 PMCID: PMC9015708 DOI: 10.3389/fcell.2022.838785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Deep vein thrombosis (DVT) is a common peripheral vascular disease. Secondary pulmonary embolism (PE) caused by DVT leads to substantial patient death. Inflammation has been suggested as a key factor in the pathophysiology of DVT, however, involvement of pyroptosis-related inflammatory factors in DVT formation remains unclear. Here, we proposed that post-transcriptional modification of caspase-1 might be a crucial trigger for enhanced pyroptosis in vascular endothelial cells (VECs), and consequently contributed to severer symptoms in DVT patients. In order to explore the involvement of pyroptosis in DVT, peripheral blood mononuclear cells were collected from 30 DVT patients, and compared with the healthy controls, we found caspase-1 was increased both in mRNA and protein levels. miRNA microarray analysis demonstrated that down-regulated miR-513c-5p was significantly negatively correlated with the expression of caspase-1. In vitro assays suggested that miR-513c-5p overexpression could ameliorate the expression of caspase-1, and thus decreased the production of cleaved gasdermin D (GSDMD) and interleukin (IL)-1β and IL-18 in VECs. The dual-luciferase reporter assay identified direct binding between miR-513c-5p and the 3′ untranslated region of caspase-1 encoding gene. The administration of miR-513c-5p mimics through tail vein injection or caspase-1 inhibitor (vx-765) by intraperitoneal injection remarkably decreased the volume of blood clots in vivo, whereas miR-513c-5p inhibitor aggravated thrombosis formation and this effect was dramatically weakened when treated in combination with vx-765. Collectively, these results revealed that the pyroptosis of VECs induced by decreased miR-513c-5p was involved in DVT progression and indicated a potential therapeutic strategy of targeting the miR-513c-5p/caspase-1/GSDMD signal axis for DVT management.
Collapse
Affiliation(s)
- Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen Liu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shangwen Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Gang Liang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoshan Zhang
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongqiang An
- Department of Peripheral Vascular Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Wei
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoxiao Zhu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qiang Guo
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lin Zhao
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoxiao Fu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ke Xu
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Wang H, Guo L, Wang Y, Song S. Isoflurane upregulates microRNA-9-3p to protect rats from hepatic ischemia-reperfusion injury through inhibiting fibronectin type III domain containing 3B. Cell Cycle 2021; 20:1527-1539. [PMID: 34308776 PMCID: PMC8409784 DOI: 10.1080/15384101.2021.1947548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/23/2021] [Accepted: 05/31/2021] [Indexed: 12/29/2022] Open
Abstract
Isoflurane has been studied in ischemia-reperfusion injury, while the regulatory mechanism by which isoflurane regulates microRNA(miR)-9-3p in hepatic ischemia/reperfusion injury (HIRI) via targeting fibronectin type III domain containing 3B (FNDC3B) remains seldom investigated. This study aims to determine the role of miR-9-3p in HIRI progression under the treatment of isoflurane. Rat HIRI models were established and treated with isoflurane. MiR-9-3p was altered to assess its role in inflammation, oxidative stress, transaminases, pathology, and hepatocyte apoptosis in HIRI rat liver tissues. Expression of miR-9-3p and FNDC3B in rat liver tissues was determined, and the targeting relationship between miR-9-3p and FNDC3B was confirmed using bioinformatic prediction and dual luciferase reporter gene assay. MiR-9-3p was downregulated, whereas FNDC3B was upregulated in HIRI rat liver tissues. Isoflurane treatment upregulated miR-9-3p and attenuated pathological changes, inflammation, oxidative stress, transaminases, and hepatocyte apoptosis in HIRI rat liver tissues. MiR-9-3p upregulation further strengthened the effect of isoflurane on HIRI, while miR-9-3p downregulation suppressed the therapeutic role of isoflurane. FNDC3B was confirmed as a target gene of miR-9-3p. Isoflurane upregulates miR-9-3p to protect rats from HIRI by inhibiting FNDC3VB. Our research may provide novel targets for HIRI treatment.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Longlong Guo
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yang Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Shan Song
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
11
|
Gromadziński L, Paukszto Ł, Skowrońska A, Holak P, Smoliński M, Łopieńska-Biernat E, Lepiarczyk E, Lipka A, Jastrzębski JP, Majewska M. Transcriptomic Profiling of Femoral Veins in Deep Vein Thrombosis in a Porcine Model. Cells 2021; 10:1576. [PMID: 34206566 PMCID: PMC8304794 DOI: 10.3390/cells10071576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Deep vein thrombosis (DVT) is a severe disease affecting the human venous system, accompanied by high morbidity and mortality rates caused by early and late complications. The study aimed at analyzing the changes in the transcriptome of the femoral vein caused by DVT in the porcine model based on the formation of the thrombus in vivo. The study was performed on 11 castrated male pigs: A thrombus was formed in each left femoral vein in six animals; the remaining five served as a control group. Total RNA was isolated from the left femoral veins of the experimental and control animals. High-throughput RNA sequencing was used to analyze the global changes in the transcriptome of veins with induced DVT. Applied multistep bioinformatics revealed 1474 differentially expressed genes (DEGs): 1019 upregulated and 455 downregulated. Functional Gene Ontology annotated 1220 of DEGs into 225 biological processes, 30 molecular functions and 40 cellular components categories. KEGG analysis disclosed TNF, NF-κB and apoptosis pathways' overexpression in DVT samples. A thorough analysis of the detected DEGs indicated that a dysregulated inflammatory response and disturbed balance between clotting and anti-clotting factors play a crucial role in the process of DVT.
Collapse
Affiliation(s)
- Leszek Gromadziński
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Agnieszka Skowrońska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.S.); (E.L.)
| | - Piotr Holak
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Michał Smoliński
- Clinic of Cardiology and Internal Diseases, University Clinical Hospital in Olsztyn, 10-082 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.S.); (E.L.)
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland;
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.S.); (E.L.)
| |
Collapse
|
12
|
Sileno S, Beji S, D'Agostino M, Carassiti A, Melillo G, Magenta A. microRNAs involved in psoriasis and cardiovascular diseases. VASCULAR BIOLOGY 2021; 3:R49-R68. [PMID: 34291190 PMCID: PMC8284950 DOI: 10.1530/vb-21-0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory disease involving the skin. Both genetic and environmental factors play a pathogenic role in psoriasis and contribute to the severity of the disease. Psoriasis, in fact, has been associated with different comorbidities such as diabetes, metabolic syndrome, gastrointestinal or kidney diseases, cardiovascular disease (CVD), and cerebrovascular diseases (CeVD). Indeed, life expectancy in severe psoriasis is reduced by up to 5 years due to CVD and CeVD. Moreover, patients with severe psoriasis have a higher prevalence of traditional cardiovascular (CV) risk factors, including dyslipidemia, diabetes, smoking, and hypertension. Further, systemic inflammation is associated with oxidative stress increase and induces endothelial damage and atherosclerosis progression. Different miRNA have been already described in psoriasis, both in the skin tissues and in the blood flow, to play a role in the progression of disease. In this review, we will summarize and discuss the most important miRNAs that play a role in psoriasis and are also linked to CVD.
Collapse
Affiliation(s)
- Sara Sileno
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Sara Beji
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Marco D'Agostino
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Alessandra Carassiti
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Experimental Immunology Laboratory Via Monti di Creta, Rome, Italy
| | - Guido Melillo
- Unit of Cardiology, IDI-IRCCS, Via Monti di Creta, Rome, Italy
| | - Alessandra Magenta
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Via Fosso del Cavaliere, Rome, Italy
| |
Collapse
|
13
|
Meng Y, Yin Q, Ma Q, Qin H, Zhang J, Zhang B, Pang H, Tian H. FXII regulates the formation of deep vein thrombosis via the PI3K/AKT signaling pathway in mice. Int J Mol Med 2021; 47:87. [PMID: 33760144 PMCID: PMC8018183 DOI: 10.3892/ijmm.2021.4920] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Deep vein thrombosis (DVT) is a common peripheral vascular disease, which may result in pulmonary embolism and is accompanied by endothelial injury. However, the pathogenesis of DVT remains unclear. Coagulation factor XII (FXII), as an important coagulation factor, has been reported to be closely associated with thrombosis. However, the association between FXII protein and DVT formation is not yet fully understood. The present study examined the effects of FXII protein on DVT formation and aimed to reveal the underlying mechanism. In the present study, histological characterization of the femoral vein tissue was examined by hematoxylin and eosin staining. The damage to the femoral vein tissue was examined by TUNEL assay. Superoxide dismutase (SOD) and malondialdehyde (MDA) concentrations were examined using ELISA. Tumor necrosis factor (TNF)‑α, interleukin (IL)‑6, IL‑8 and phosphoinositide 3‑kinase (PI3K)/AKT signaling were determined by ELISA, immunohistochemical staining and western blot analysis. The results demonstrated that thrombosis, FXII protein, cell apoptosis and the SOD concentrations were decreased, while the MDA concentrations were increased in mice with DVT compared with the control or sham groups. TNF‑α, IL‑6, IL‑8 and PI3K/AKT signaling was also upregulated in the mice with DVT. Furthermore, the knockdown of FXII significantly upregulated the SOD concentrations and downregulated thrombosis and cell apoptosis, as well as the MDA concentrations in mice with DVT. The knockdown of FXII also significantly downregulated the protein expression of TNF‑α, IL‑6 and IL‑8, and the activation of PI3K/AKT signaling. Additionally, LY294002 pre‑treatment markedly downregulated thrombosis and cell apoptosis and the MDA content, whereas it upregulated the SOD concentrations in mice with DVT. LY294002 pre‑treatment also significantly downregulated the TNF‑α, IL‑6 and IL‑8 protein levels. Taken together, the present study demonstrates that FXII protein promotes DVT via the activation of PI3K/AKT signaling by inducing an inflammatory response. Targeting FXII protein may thus prove to be a potential approach for the treatment of DVT.
Collapse
Affiliation(s)
- Yan Meng
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qian Yin
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qiang Ma
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hao Qin
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Junbo Zhang
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bo Zhang
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Honggang Pang
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hongyan Tian
- Department of Peripheral Vascular Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
14
|
Duan Y, Meng Y, Gao Z, Wang X, Zhang H. microRNA-9-5p protects liver sinusoidal endothelial cell against oxygen glucose deprivation/reperfusion injury. Open Life Sci 2021; 16:375-383. [PMID: 33977146 PMCID: PMC8060979 DOI: 10.1515/biol-2021-0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Maintenance of the function and survival of liver sinusoidal endothelial cells (LSECs) play a crucial role in hepatic ischemia/reperfusion (I/R) injury, a major cause of liver impairment during the surgical treatment. Emerging evidence indicates a critical role of microRNAs in I/R injury. This study aims to investigate whether miR-9-5p exerts a protective effect on LSECs. METHODS We transfected LSECs with miR-9-5p mimic or mimic NC. LSECs were treated with oxygen and glucose deprivation (OGD, 5% CO2, and 95% N2), followed by glucose-free Dulbecco's modified Eagle's medium (DMEM) medium for 6 h and high glucose (HG, 30 mmol/L glucose) DMEM medium for 12 h. The biological role of miR-9-5p in I/R-induced LSEC injury was determined. RESULTS In the in vitro model of OGD/HG injury in LSECs, the expression levels of miR-9-5p were significantly downregulated, and those of CXC chemokine receptor-4 (CXCR4) upregulated. LSEC I/R injury led to deteriorated cell death, enhanced oxidative stress, and excessive inflammatory response. Mechanistically, we showed that miR-9-5p overexpression significantly downregulated both mRNA and protein levels of CXCR4, followed by the rescue of LSECs, ameliorated inflammatory response, and deactivation of pro-apoptotic signaling pathways. CONCLUSIONS miR-9-5p promotes LSEC survival and inhibits apoptosis and inflammatory response in LSECs following OGD/HG injury via downregulation of CXCR4.
Collapse
Affiliation(s)
- Yi Duan
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Beijing 102218, China
| | - Yuanyuan Meng
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Beijing 102218, China
| | - Zhifeng Gao
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Beijing 102218, China
| | - Xiaoyu Wang
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Beijing 102218, China
| | - Huan Zhang
- Department of Anesthesiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Litang Road, Beijing 102218, China
| |
Collapse
|
15
|
Silencing circRNA LRP6 down-regulates PRMT1 to improve the streptozocin-induced pancreatic β-cell injury and insulin secretion by sponging miR-9-5p. J Bioenerg Biomembr 2021; 53:333-342. [PMID: 33826088 DOI: 10.1007/s10863-021-09895-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 01/09/2023]
Abstract
Due to the sedentary lifestyles of people, the number of obese people is increasing alarmingly, which leads to the high prevalence of diabetes mellitus (DM). It was reported that circularRNA (circRNA) LRP6 was upregulated in HG-treated mesangial cells, and it could regulate high glucose-induced cell injury via sponging miR-205. Thus, the aim of this study was to explore the underlying pathogenesis of DM. Streptozocin (STZ) was used to stimulate the in vitro model of pancreatic β-cell injury. Then, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and methyl thiazolyl tetrazolium (MTT) assay were used to evaluate the expression of circLRP6 and the cell viability in STZ-challenged INS-1 cells, respectively. After knocking down circLRP6, the cell viability and apoptosis were respectively measured by MTT and TdT-mediated dUTP nick-end labeling (TUNEL) staining, and insulin release and oxidative stress were respectively measured by enzyme-linked immunosorbent assay (ELISA) and corresponding kits. After the interactions among circLRP6, PRMT1, and miR-9-5p were predicted and confirmed, the above mentioned assays were conducted again. The expression of circLRP6 was elevated while cell viability was decreased after INS-1 cells were exposed to STZ. Silencing circLRP6 resulted in an increase in the cell viability, a decrease in the cell apoptosis, together with more insulin release. The circLRP6/miR-9-5p/PRMT1 regulatory network was then confirmed, which affected the cell viability, apoptosis, insulin release, and oxidative stress in STZ-challenged INS-1 cells. In conclusion, this study first provides evidence that the circLRP6/miR-9-5p/PRMT1 regulatory network can affect STZ-induced cell viability, oxidative stress, and insulin secretion in INS-l cells, which can further impact the progression of diabetes.
Collapse
|
16
|
Ghafouri-Fard S, Abak A, Fattahi F, Hussen BM, Bahroudi Z, Shoorei H, Taheri M. The interaction between miRNAs/lncRNAs and nuclear factor-κB (NF-κB) in human disorders. Biomed Pharmacother 2021; 138:111519. [PMID: 33756159 DOI: 10.1016/j.biopha.2021.111519] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/27/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor-κB (NF-κB) represents a group of inducible transcription factors (TFs) regulating the expression of a great variety of genes implicated in diverse processes, particularly modulation of immune system responses. This TF has functional interactions with non-coding RNAs, constructing a complicated network through which NF-κB, miRNAs, and lncRNAs coordinately regulate gene expression at different facets. This type of interaction is involved in the pathophysiology of several human disorders including both neoplastic disorders and non-neoplastic conditions. MALAT1 and NKILA are among lncRNAs whose interactions with NF-κB have been vastly assessed in different conditions including cancer and inflammatory conditions. In addition, miR-146a/b has functional interactions with this TF in different contexts. Although miRNAs have mutual interactions with NF-κB, the regulatory role of miRNAs on this TF has been more clarified. The aim of the current review is to explore the function of NF-κB-related miRNAs and lncRNAs in these two types of human disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afete Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faranak Fattahi
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Bashdar M Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Ge X, Meng Q, Wei L, Liu J, Li M, Liang X, Lin F, Zhang Y, Li Y, Liu Z, Fan H, Zhou X. Myocardial ischemia-reperfusion induced cardiac extracellular vesicles harbour proinflammatory features and aggravate heart injury. J Extracell Vesicles 2021; 10:e12072. [PMID: 33664937 PMCID: PMC7902529 DOI: 10.1002/jev2.12072] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/02/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) curb important biological functions. We previously disclosed that ischemia-reperfusion (IR) induces increased release of EVs (IR-EVs) in the heart. However, the role of IR-EVs in IR pathological process remains poorly understood. Here we found that adoptive transfer of IR-EVs aggravated IR induced heart injury, and EV inhibition by GW4869 reduced the IR injury. Our in vivo and in vitro investigations substantiated that IR-EVs facilitated M1-like polarization of macrophages with increased expression of proinflammatory cytokines. Further, we disclosed the miRNA profile in cardiac EVs and confirmed the enrichment of miRNAs, such as miR-155-5p in IR-EVs compared to EVs from the sham heart (S-EVs). In particular, IR-EVs transferred miR-155-5p to macrophages and enhanced the inflammatory response through activating JAK2/STAT1 pathway. Interestingly, IR-EVs not only boosted the local inflammation in the heart, but even triggered systemic inflammation in distant organs. Taken together, we newly identify an IR-EVs-miR-155-5p-M1 polarization axis in the heart post IR. The EVs derived from IR-injured heart contribute to both local and systemic inflammation. Importantly, EV inhibition by GW4869 is supposed to be a promising therapeutic strategy for IR injury.
Collapse
Affiliation(s)
- Xinyu Ge
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
- Department of Cardiothoracic SurgeryShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
| | - Qingshu Meng
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| | - Lu Wei
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| | - Jing Liu
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
- Department of Cardiothoracic SurgeryShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
| | - Mimi Li
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| | - Xiaoting Liang
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| | - Fang Lin
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| | - Yuhui Zhang
- Department of UltrasoundShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP.R. China
| | - Yinzhen Li
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Department of Respiratory MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP.R. China
| | - Zhongmin Liu
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
- Department of Cardiothoracic SurgeryShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Department of Heart FailureShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
| | - Huimin Fan
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
- Department of Cardiothoracic SurgeryShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Department of Heart FailureShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
| | - Xiaohui Zhou
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Shanghai Heart Failure Research CenterShanghai East HospitalTongji University School of MedicineShanghaiP.R. China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic DiseasesTongji University School of MedicineShanghaiP.R. China
| |
Collapse
|
18
|
Cui L, Chen S, Wang D, Yang Q. LINC01116 promotes proliferation and migration of endometrial stromal cells by targeting FOXP1 via sponging miR-9-5p in endometriosis. J Cell Mol Med 2020; 25:2000-2012. [PMID: 33372387 PMCID: PMC7882988 DOI: 10.1111/jcmm.16039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is a common multi-factorial gynaecological disease. Recent studies have revealed that long non-coding RNAs (lncRNAs) are involved in the pathogenesis of endometriosis. In the present study, the expression profiles of lncRNAs in 6 pairs of endometriosis ectopic endometrium (ecEM) and eutopic endometrium (euEM) tissues were analysed by RNA sequencing. From the profiles, LINC01116 was found to be up-regulated in ecEM tissues compared to euEM tissues and was verified by quantitative real-time PCR (qRT-PCR). Then, functional experiments demonstrated that LINC01116 promoted the proliferation and migration of ectopic primary endometrial stromal cells (ESCs), while miR-9-5p exerted the opposite effects. Dual-luciferase reporter assays verified that LINC01116 directly sponged miR-9-5p and relieved the suppression of its target, Forkhead box protein P1 (FOXP1). Rescue experiments further demonstrated that LINC01116 could promote proliferation and migration of ESCs by targeting FOXP1 via sponging miR-9-5p. Overall, our study illuminates that LINC01116 promotes the progression of endometriosis through the miR-9-5p/FOXP1 axis. This finding provides a novel therapeutic target for patients with endometriosis.
Collapse
Affiliation(s)
- Liangyi Cui
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Silei Chen
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dandan Wang
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics & Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
LncRNA RP11-86H7.1 promotes airway inflammation induced by TRAPM2.5 by acting as a ceRNA of miRNA-9-5p to regulate NFKB1 in HBECS. Sci Rep 2020; 10:11587. [PMID: 32665564 PMCID: PMC7360621 DOI: 10.1038/s41598-020-68327-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
Traffic-related air pollution particulate matter 2.5 (TRAPM2.5), is involved in chronic obstructive pulmonary disease (COPD), which is characterized by airway inflammation. Specifically, these harmful particles or gases can increase chronic airway inflammation. Some recent studies have shown that lncRNAs are closely related to COPD and participate in the regulation of airway inflammation. However, the precise mechanisms remain unknown. In the present study, we investigated the effect of TRAPM2.5 on airway inflammation in human bronchial epithelial cells (HBECs) and the underlying mechanisms mediated by a lncRNA. After exposure to TRAPM2.5, the novel lncRNA RP11-86H7.1 was markedly upregulated in HBECs. Functional assays indicated that the lncRNA RP11-86H7.1 was required for the TRAPM2.5-induced expression of inflammatory factors in HBECs. A mechanistic study demonstrated that lncRNA RP11-86H7.1 might participate in TRAPM2.5-induced inflammatory responses by activating the NF-κB signaling pathway. Moreover, the lncRNA RP11-86H7.1 can promote the inflammatory response by acting as a competing endogenous RNA of miR-9-5p, reversing the inhibitory effect of its target gene NFKB1, and sustaining NF-κB activation. In summary, our study elucidates the pro-inflammatory roles of the lncRNA RP11-86H7.1–miR-9-5p–NFKB1 regulatory network in airway inflammation induced by TRAPM2.5 and indicates that the components of this network might serve as novel diagnostic biomarkers and potential therapeutic targets.
Collapse
|
20
|
Chicharro P, Rodríguez-Jiménez P, Llamas-Velasco M, Montes N, Sanz-García A, Cibrian D, Vara A, Gómez MJ, Jiménez-Fernández M, Martínez-Fleta P, Sánchez-García I, Lozano-Prieto M, Triviño JC, Miñambres R, Sánchez-Madrid F, de la Fuente H, Dauden E. Expression of miR-135b in Psoriatic Skin and Its Association with Disease Improvement. Cells 2020; 9:cells9071603. [PMID: 32630692 PMCID: PMC7408353 DOI: 10.3390/cells9071603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
miRNAs have been associated with psoriasis since just over a decade. However, we are far from a complete understanding of their role during the development of this disease. Our objective was to characterize the cutaneous expression of miRNAs not previously described in psoriasis, the changes induced following the treatment with biologicals and their association with disease improvement. Next generation sequencing was performed from five skin samples from psoriasis patients (lesional and non-lesional skin) and five controls, and from this cohort, 12 microRNAs were selected to be analyzed in skin samples from 44 patients with plaque psoriasis. In 15 patients, an additional sample was obtained after three months of biological treatment. MiR-9-5p, miR-133a-3p and miR-375 were downregulated in the lesional skin of psoriasis patients. After treatment, expression of miR-133a-3p, miR-375, miR-378a and miR-135b in residual lesions returned towards the levels observed in non-lesional skin. The decrease in miR-135b levels after treatment with biologics was associated with both the improvement of patients evaluated through Psoriasis Area and Severity Index score and the decrease in local inflammatory response. Moreover, basal expression of miR-135b along with age was associated with the improvement of psoriasis, suggesting its possible usefulness as a prognostic biomarker.
Collapse
Affiliation(s)
- Pablo Chicharro
- Dermatology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (P.C.); (P.R.-J.); (M.L.-V.); (E.D.)
| | - Pedro Rodríguez-Jiménez
- Dermatology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (P.C.); (P.R.-J.); (M.L.-V.); (E.D.)
| | - Mar Llamas-Velasco
- Dermatology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (P.C.); (P.R.-J.); (M.L.-V.); (E.D.)
| | - Nuria Montes
- Rheumatology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain;
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, 28003 Madrid, Spain
| | - Ancor Sanz-García
- Data Analysis Unit, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain;
| | - Danay Cibrian
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (D.C.); (A.V.); (M.J.-F.); (P.M.-F.); (I.S.-G.); (M.L.-P.); (F.S.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Alicia Vara
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (D.C.); (A.V.); (M.J.-F.); (P.M.-F.); (I.S.-G.); (M.L.-P.); (F.S.-M.)
| | - Manuel J Gómez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain;
| | - María Jiménez-Fernández
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (D.C.); (A.V.); (M.J.-F.); (P.M.-F.); (I.S.-G.); (M.L.-P.); (F.S.-M.)
| | - Pedro Martínez-Fleta
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (D.C.); (A.V.); (M.J.-F.); (P.M.-F.); (I.S.-G.); (M.L.-P.); (F.S.-M.)
| | - Inés Sánchez-García
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (D.C.); (A.V.); (M.J.-F.); (P.M.-F.); (I.S.-G.); (M.L.-P.); (F.S.-M.)
| | - Marta Lozano-Prieto
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (D.C.); (A.V.); (M.J.-F.); (P.M.-F.); (I.S.-G.); (M.L.-P.); (F.S.-M.)
| | - Juan C Triviño
- Sistemas Genómicos, 46980 Valencia, Spain; (J.C.T.); (R.M.)
| | | | - Francisco Sánchez-Madrid
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (D.C.); (A.V.); (M.J.-F.); (P.M.-F.); (I.S.-G.); (M.L.-P.); (F.S.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (D.C.); (A.V.); (M.J.-F.); (P.M.-F.); (I.S.-G.); (M.L.-P.); (F.S.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28009 Madrid, Spain
- Correspondence:
| | - Esteban Dauden
- Dermatology Department, Instituto de Investigación Sanitaria Hospital Universitario de la Princesa (IISP), 28006 Madrid, Spain; (P.C.); (P.R.-J.); (M.L.-V.); (E.D.)
| |
Collapse
|