1
|
Ding L, Ren JY, Huang YF, Zhang JZ, Bai ZR, Leng Y, Tian JW, Wei J, Jin ML, Wang G, Li X, Qi X. Resistin upregulates fatty acid oxidation in synoviocytes of metabolic syndrome-associated knee osteoarthritis via CAP1/PKA/CREB to promote inflammation and catabolism. Arthritis Res Ther 2025; 27:99. [PMID: 40301946 PMCID: PMC12039190 DOI: 10.1186/s13075-025-03527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/08/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Metabolic Syndrome (MetS), as a syndrome characterized by low-grade inflammation and energy metabolism disorders, is considered to be an important systemic risk factor for knee osteoarthritis (KOA). Our previous study showed that the protein level of serum resistin was positively correlated with the degree of metabolic disorder in MetS-OA. However, whether Resistin promotes the progression of KOA synovitis and the underlying mechanisms remain unclear. This study mainly investigateswhether there were metabolism disorder which promote inflammatory and catabolic phenotype in fibroblast-like synoviocytes (FLS) from KOA patients with MetS (MetS-KOA-FLS), and the roles and mechanisim of resistin in MetS-KOA-FLS. METHODS Comparative analysis of synovium and FLS from MetS-associated KOA (MetS-KOA) and non-MetS-associated KOA (nMetS-KOA) of females to detect the differences in inflammation, catabolism and glycolipid metabolism. Serum from MetS-KOA stimulated nMetS-KOA-FLS to detect the effect of MetS microenvironment on inflammation, catabolism and glycolipid metabolism of nMetS-KOA-FLS. Resistin stimulated MetS-KOA-FLS to explore the effect of resistin on inflammation and catabolism of MetS-KOA-FLS and its specific mechanism. RESULTS Compared with nMetS-KOA-FLS, MetS-KOA-FLS expressed higher inflammatory related factors, catabolic enzymes, and showed stronger adhesive and invasive ability. Resistin was found to be an important factor in the serum and internal environment of MetS-KOA patients, and it mediated the differences in fatty acid oxidation (FAO) between the two groups. Resistin activated the PKA/CREB pathway through CAP1 and upregulated FAO, promoting the inflammatory and catabolic phenotype of MetS-KOA-FLS. CONCLUSIONS This study clarifies the mechanism by which MetS causes synovitis from a metabolic perspective and provides new ideas for further research and treatment of MetS-KOA.
Collapse
Affiliation(s)
- Lu Ding
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jin-Yi Ren
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yi-Fan Huang
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jian-Zeng Zhang
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Zi-Ran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yi Leng
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Jun-Wei Tian
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Min-Li Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Guan Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Xin Qi
- Department of Orthopedic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
2
|
Chen Y, Liang R, Zheng X, Fang D, Lu WW, Chen Y. Identification of ZNF652 as a Diagnostic and Therapeutic Target in Osteoarthritis Using Machine Learning. J Inflamm Res 2024; 17:10141-10161. [PMID: 39649418 PMCID: PMC11624598 DOI: 10.2147/jir.s488841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/17/2024] [Indexed: 12/10/2024] Open
Abstract
Purpose Osteoarthritis (OA) is the most common degenerative joint disease. However, its etiology remains largely unknown. Zinc Finger Protein 652 (ZNF652) is a transcription factor implicated in various biological processes. Nevertheless, its role in OA has not been elucidated. Methods The search term "osteoarthritis" was utilized to procure transcriptome data relating to OA patients and healthy people from the Gene Expression Omnibus (GEO) database. Then a screening process was initiated to identify differentially expressed genes (DEGs). The DEGs were discerned using three distinct machine learning methods. The accuracy of these DEGs in diagnosing OA was evaluated using the Receiver Operating Characteristic (ROC) Curve. A competitive endogenous RNA (ceRNA) visualization network was established to delve into potential regulatory targets. The ZNF652 expression was confirmed in the cartilage of OA rats using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB) and analyzed using an independent t-test. Results ZNF652 was identified as a DEG and exhibited the highest diagnostic value for OA according to the ROC analysis. The GO and KEGG enrichment analyses suggest that ZNF652 plays a vital role in OA development through processes including nitric oxide anabolism, macrophage proliferation, immune response, and the PI3K/Akt and the MAPK signaling pathways. The increased expression of ZNF652 in OA was validated in qRT-PCR (1.193 ± 0.005 vs 1.000 ± 0.005, p < 0.001) and WB (0.981 ± 0.055 vs 0.856 ± 0.026, p = 0.012) analysis. Conclusion ZNF652 was found to be related to OA pathogenesis and can potentially serve as a diagnostic and therapeutic target of OA. The underlying mechanism is that ZNF652 was related to nitric oxide anabolism, macrophage proliferation, various signaling pathways, and immune cells and their functions in OA. Nevertheless, the findings need to be confirmed in clinical trials and the molecular mechanism requires further study.
Collapse
Affiliation(s)
- Yeping Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Rongyuan Liang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xifan Zheng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Dalang Fang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Youjiang Medical College of Nationalities, Baise, Guangxi, People’s Republic of China
| | - William W Lu
- Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Yan Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
3
|
Yu Y, Dong G, Niu Y. Construction of ferroptosis-related gene signatures for identifying potential biomarkers and immune cell infiltration in osteoarthritis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:449-461. [PMID: 39258983 DOI: 10.1080/21691401.2024.2402298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Osteoarthritis (OA) is a comprehensive joint disorder. The specific genes that trigger OA and the strategies for its effective management are not fully understood. This study focuses on identifying key genes linked to iron metabolism that could influence both the diagnosis and therapeutic approaches for OA. Analysis of GEO microarray data and iron metabolism genes identified 15 ferroptosis-related DEGs, enriched in hypoxia and HIF-1 pathways. Ten key hub genes (ATM, GCLC, PSEN1, CYBB, ATG7, MAP1LC3B, PLIN2, GRN, APOC1, SIAH2) were identified. Through stepwise regression, we screened 4 out of the above 10 genes, namely, GCLC, GRN, APOC1, and SIAH2, to obtain the optimal model. AUROCs for diagnosis of OA for the four hub genes were 0.81 and 0.80 of training and validation sets, separately. According to immune infiltration results, OA was related to significantly increased memory B cells, M0 macrophages, regulatory T cells, and resting mast cells but decreased activated dendritic cells. The four hub genes showed a close relation to them. It is anticipated that this model will aid in diagnosing osteoarthritis by assessing the expression of specific genes in blood samples. Moreover, studying these hub genes may further elucidate the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- Yali Yu
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, People's Republic of China
- Department of Clinical Laboratory, Henan University Orthopedic Hospital, Zhengzhou, People's Republic of China
| | - Guixiang Dong
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, People's Republic of China
- Department of Clinical Laboratory, Henan University Orthopedic Hospital, Zhengzhou, People's Republic of China
| | - Yanli Niu
- School of Basic Medical Sciences, Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
4
|
Wang W, Zhou F, Li Y, Liu Y, Sun H, Lv Q, Ding W. U-shaped association between triglyceride glucose-body mass index with all-cause and cardiovascular mortality in US adults with osteoarthritis: evidence from NHANES 1999-2020. Sci Rep 2024; 14:19959. [PMID: 39198550 PMCID: PMC11358406 DOI: 10.1038/s41598-024-70443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
The association between insulin resistance (IR) and the risk of all-cause mortality and cardiovascular mortality among osteoarthritis (OA) patients remains uncertain. This study aims to clarify the correlation between a novel marker of IR, the triglyceride glucose-body mass index (TyG-BMI), and the risk of all-cause mortality and cardiovascular mortality in OA patients. Data from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2020 were analyzed. Multivariable Cox proportional hazards regression analysis and restricted cubic spline plots were employed to elucidate the association between the TyG-BMI index and the risk of all-cause mortality or cardiovascular mortality in OA patients. Additionally, subgroup analysis was conducted to explore potential interactions and identify populations at elevated risk of mortality. The study cohort comprised 4097 OA patients who were followed up for a period of 20 years, during which 1197 cases of all-cause mortality and 329 cases of mortality attributed to cardiovascular disease were recorded. Our findings revealed a U-shaped nonlinear relationship between the TyG-BMI index and the risk of all-cause mortality or cardiovascular mortality in OA patients, with the lowest mortality risk thresholds identified at 282 and 270, respectively. Moreover, surpassing these thresholds was associated with a 3% increase in the risk of all-cause mortality and a 5% increase in the risk of cardiovascular mortality for every 10-unit increment in TyG-BMI level. Among American OA patients, a U-shaped nonlinear relationship exists between the TyG-BMI index and the risk of all-cause mortality or cardiovascular mortality. These findings underscore the significant role of IR in the progression of OA.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning, People's Republic of China
| | - Fan Zhou
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuhao Li
- Department of Orthopedics, Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning, People's Republic of China
| | - Yazhou Liu
- School of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Haoran Sun
- Department of Orthopedics, Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning, People's Republic of China
| | - Qiaomei Lv
- Department of Rheumatology, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wenbo Ding
- Department of Orthopedics, Dandong Central Hospital, China Medical University, No. 338 Jinshan Street, Zhenxing District, Dandong, 118002, Liaoning, People's Republic of China.
| |
Collapse
|
5
|
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024; 12:1630. [PMID: 39200096 PMCID: PMC11351146 DOI: 10.3390/biomedicines12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with shared pathophysiological links, including inflammation and metabolic dysregulation. This study investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression. Methods involved a literature review of clinical trials and mechanistic studies exploring the effects of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health. Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers. GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these medications, while primarily indicated for diabetes management, hold therapeutic potential in OA by targeting common underlying mechanisms. Further clinical trials are warranted to validate these findings and explore optimal therapeutic strategies for managing both DM and OA comorbidities effectively.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Liliia Babinets
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
6
|
Liu Y, Yao J, Xue X, Lv Y, Guo S, Wei P. Triglyceride-glucose index in the prediction of new-onset arthritis in the general population aged over 45: the first longitudinal evidence from CHARLS. Lipids Health Dis 2024; 23:79. [PMID: 38481325 PMCID: PMC10936084 DOI: 10.1186/s12944-024-02070-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024] Open
Abstract
OBJECTIVE Insulin resistance (IR) imposes a significant burden on inflammatory diseases, and the triglyceride-glucose (TyG) index, which is an easily accessible indicator for detecting IR, holds great application potential in predicting the risk of arthritis. The aim of this study is to analyze the association between the TyG index and the risk of new-onset arthritis in the common population aged over 45 using a prospective cohort study design. METHOD This population-based cohort study involved 4418 participants from the China Health and Retirement Longitudinal Study (from Wave 1 to Wave 4). Multivariate logistic regression models were employed to investigate the association between the TyG index and new-onset arthritis, and RCS analyses were used to investigate potential non-linear relationships. Moreover, decision trees were utilized to identify high-risk populations for incident arthritis. RESULT Throughout a 7-year follow-up interval, it was found that 396 participants (8.96%) developed arthritis. The last TyG index quartile group (Q4) presented the highest risk of arthritis (OR, 1.39; 95% CI, 1.01, 1.91). No dose-response relationship between the TyG index and new-onset arthritis was identified (Poverall=0.068, Pnon-linear=0.203). In the stratified analysis, we observed BMI ranging from 18.5 to 24 exhibited a heightened susceptibility to the adverse effects of the TyG index on the risk of developing arthritis (P for interaction = 0.035). CONCLUSION The TyG index can be used as an independent risk indicator for predicting the start of new-onset arthritis within individuals aged 45 and above within the general population. Improving glucose and lipid metabolism, along with insulin resistance, may play a big part in improving the primary prevention of arthritis.
Collapse
Affiliation(s)
- Yang Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, No.6 Block.1 Fangxingyuan, Fengtai District, Beijing, 100078, China
| | - Junjie Yao
- Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xiaona Xue
- Dongfang Hospital of Beijing University of Chinese Medicine, No.6 Block.1 Fangxingyuan, Fengtai District, Beijing, 100078, China
| | - Yanan Lv
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Dongcheng District, Hai Yun Cang on the 5th Zip, Beijing, 100020, China
| | - Sheng Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, No.6 Block.1 Fangxingyuan, Fengtai District, Beijing, 100078, China
| | - PeiDong Wei
- Dongfang Hospital of Beijing University of Chinese Medicine, No.6 Block.1 Fangxingyuan, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
7
|
Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X, Zeng Y. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg 2024; 16:532-550. [PMID: 38296798 PMCID: PMC10925521 DOI: 10.1111/os.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease in middle-aged and elderly people, characterized by joint pain and dysfunction. Macrophages are key players in OA pathology, and their activation state has been studied extensively. Various studies have suggested that macrophages might respond to stimuli in their microenvironment by changing their phenotypes to pro-inflammatory or anti-inflammatory phenotypes, which is called macrophage polarization. Macrophages accumulate and become polarized (M1 or M2) in many tissues, such as synovium, adipose tissue, bone marrow, and bone mesenchymal tissues in joints, while resident macrophages as well as other stromal cells, including fibroblasts, chondrocytes, and osteoblasts, form the joint and function as an integrated unit. In this study, we focus exclusively on synovial macrophages, adipose tissue macrophages, and osteoclasts, to investigate their roles in the development of OA. We review recent key findings related to macrophage polarization and OA, including pathogenesis, molecular pathways, and therapeutics. We summarize several signaling pathways in macrophage reprogramming related to OA, including NF-κB, MAPK, TGF-β, JAK/STAT, PI3K/Akt/mTOR, and NLRP3. Of note, despite the increasing availability of treatments for osteoarthritis, like intra-articular injections, surgery, and cellular therapy, the demand for more effective clinical therapies has remained steady. Therefore, we also describe the current prospective therapeutic methods that deem macrophage polarization to be a therapeutic target, including physical stimulus, chemical compounds, and biological molecules, to enhance cartilage repair and alleviate the progression of OA.
Collapse
Affiliation(s)
- Zimu Yuan
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Decheng Jiang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Mengzhu Yang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Jie Tao
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Xin Hu
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Yi Zeng
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
8
|
Winter G. Links between arthritis and diet. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2024; 33:151. [PMID: 38335109 DOI: 10.12968/bjon.2024.33.3.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Affiliation(s)
- George Winter
- Freelance Writer and Fellow of the Institute of Biomedical Science
| |
Collapse
|
9
|
Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR, Chen Y, Tong L, Chen D. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res 2023; 11:63. [PMID: 38052778 PMCID: PMC10698167 DOI: 10.1038/s41413-023-00301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger individuals. Metabolic abnormalities, such as obesity and type II diabetes, are strongly linked to OA, and they affect both weight-bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - William W Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
10
|
Sampath SJP, Venkatesan V, Ghosh S, Kotikalapudi N. Obesity, Metabolic Syndrome, and Osteoarthritis-An Updated Review. Curr Obes Rep 2023; 12:308-331. [PMID: 37578613 DOI: 10.1007/s13679-023-00520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MetS), also called the 'deadly quartet' comprising obesity, diabetes, dyslipidemia, and hypertension, has been ascertained to have a causal role in the pathogenesis of osteoarthritis (OA). This review is aimed at discussing the current knowledge on the contribution of metabolic syndrome and its various components to OA pathogenesis and progression. RECENT FINDINGS Lately, an increased association identified between the various components of metabolic syndrome (obesity, diabetes, dyslipidemia, and hypertension) with OA has led to the identification of the 'metabolic phenotype' of OA. These metabolic perturbations alongside low-grade systemic inflammation have been identified to inflict detrimental effects upon multiple tissues of the joint including cartilage, bone, and synovium leading to complete joint failure in OA. Recent epidemiological and clinical findings affirm that adipokines significantly contribute to inflammation, tissue degradation, and OA pathogenesis mediated through multiple signaling pathways. OA is no longer perceived as just a 'wear and tear' disease and the involvement of the metabolic components in OA pathogenesis adds up to the complexity of the disease. Given the global surge in obesity and its allied metabolic perturbations, this review aims to throw light on the current knowledge on the pathophysiology of MetS-associated OA and the need to address MetS in the context of metabolic OA management. Better regulation of the constituent factors of MetS could be profitable in preventing MetS-associated OA. The identification of key roles for several metabolic regulators in OA pathogenesis has also opened up newer avenues in the recognition and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Samuel Joshua Pragasam Sampath
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India.
| | | | - Sudip Ghosh
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India
| | - Nagasuryaprasad Kotikalapudi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School Teaching Hospital, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Kiełbowski K, Herian M, Bakinowska E, Banach B, Sroczyński T, Pawlik A. The Role of Genetics and Epigenetic Regulation in the Pathogenesis of Osteoarthritis. Int J Mol Sci 2023; 24:11655. [PMID: 37511413 PMCID: PMC10381003 DOI: 10.3390/ijms241411655] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is progressive disease characterised by cartilage degradation, subchondral bone remodelling and inflammation of the synovium. The disease is associated with obesity, mechanical load and age. However, multiple pro-inflammatory immune mediators regulate the expression of metalloproteinases, which take part in cartilage degradation. Furthermore, genetic factors also contribute to OA susceptibility. Recent studies have highlighted that epigenetic mechanisms may regulate the expression of OA-associated genes. This review aims to present the mechanisms of OA pathogenesis and summarise current evidence regarding the role of genetics and epigenetics in this process.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (M.H.); (E.B.); (B.B.); (T.S.)
| |
Collapse
|
12
|
Fettke G, Kaplan B, Baker S, Rice SM. Musculoskeletal and immunological considerations. KETOGENIC 2023:363-381. [DOI: 10.1016/b978-0-12-821617-0.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
[Research progress on the correlation between sarcopenia and osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1549-1557. [PMID: 36545865 PMCID: PMC9763072 DOI: 10.7507/1002-1892.202209015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective To review the research progress on the correlation between sarcopenia and osteoarthritis (OA). Methods The basic and clinical studies at home and abroad in recent years on sarcopenia and OA were extensively reviewed. The correlation between sarcopenia and OA was analyzed and summarized from five aspects: epidemiological status, risk factors, pathogenesis, clinical treatments, and the impact on joint arthroplasty. Results Sarcopenia and OA are common diseases in the elderly with high prevalence and can increase the ill risk of each other. They share a set of risk factors, and show negative interactive and influence on pathogenesis and clinical treatments, thus participating in each other's disease process and reducing the treatment benefits. Clinical studies show that sarcopenia can affect the rehabilitation effect and increase the risk of postoperative complications after total joint arthroplasty in many ways. Conclusion Current research results show that sarcopenia and OA are related and can be mutually affected in the above 5 aspects, but more studies are needed to further clarify the relationship between them, so as to provide more theoretical basis for the understanding, prevention, diagnosis, and treatments of the two diseases.
Collapse
|
14
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Starowicz K. Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes. Int J Mol Sci 2022; 23:ijms231911817. [PMID: 36233118 PMCID: PMC9570304 DOI: 10.3390/ijms231911817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
- Correspondence:
| |
Collapse
|
15
|
Wu X, Pan Z, Liu W, Zha S, Song Y, Zhang Q, Hu K. The Discovery, Validation, and Function of Hypoxia-Related Gene Biomarkers for Obstructive Sleep Apnea. Front Med (Lausanne) 2022; 9:813459. [PMID: 35372438 PMCID: PMC8970318 DOI: 10.3389/fmed.2022.813459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
While there is emerging evidence that hypoxia critically contributes to the pathobiology of obstructive sleep apnea (OSA), the diagnostic value of measuring hypoxia or its surrogates in OSA remains unclear. Here we investigated the diagnostic value of hypoxia-related genes and explored their potential molecular mechanisms of action in OSA. Expression data from OSA and control subjects were downloaded from the Gene Expression Omnibus database. Differentially-expressed genes (DEGs) between OSA and control subjects were identified using the limma R package and their biological functions investigated with the clusterProfiler R package. Hypoxia-related DEGs in OSA were obtained by overlapping DEGs with hypoxia-related genes. The diagnostic value of hypoxia-related DEGs in OSA was evaluated by receiver operating curve (ROC) analysis. Random forest (RF) and lasso machine learning algorithms were used to construct diagnostic models to distinguish OSA from control. Geneset enrichment analysis (GSEA) was performed to explore pathways related to key hypoxia-related genes in OSA. Sixty-three genes associated with hypoxia, transcriptional regulation, and inflammation were identified as differentially expressed between OSA and control samples. By intersecting these with known hypoxia-related genes, 17 hypoxia-related DEGs related to OSA were identified. Protein-protein interaction network analysis showed that 16 hypoxia-related genes interacted, and their diagnostic value was further explored. The 16 hypoxia-related genes accurately predicted OSA with AUCs >0.7. A lasso model constructed using AREG, ATF3, ZFP36, and DUSP1 had a better performance and accuracy in classifying OSA and control samples compared with an RF model as assessed by multiple metrics. Moreover, GSEA revealed that AREG, ATF3, ZFP36, and DUSP1 may regulate OSA via inflammation and contribute to OSA-related cancer risk. Here we constructed a reliable diagnostic model for OSA based on hypoxia-related genes. Furthermore, these transcriptional changes may contribute to the etiology, pathogenesis, and sequelae of OSA.
Collapse
|
16
|
Shou X, Wang Y, Zhang X, Zhang Y, Yang Y, Duan C, Yang Y, Jia Q, Yuan G, Shi J, Shi S, Cui H, Hu Y. Network Pharmacology and Molecular Docking Analysis on Molecular Mechanism of Qingzi Zhitong Decoction in the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:727608. [PMID: 35237152 PMCID: PMC8883437 DOI: 10.3389/fphar.2022.727608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a disease with complex pathological mechanisms. We explored the potential molecular mechanisms behind the therapeutic functions of Qingzi Zhitong decoction (QZZTD) in the treatment of UC by network pharmacology and molecular docking. QZZTD is a formula of Chinese traditional medicine consisting of 10 herbs. The potential active ingredients of QZZTD and their target genes were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database, and UC-related target genes were obtained from GeneCards and OMIM databases. A total of 138 co-identified target genes were obtained by plotting the intersection target Venn diagram, and then the STRING database and Cytoscape software were used to establish protein-protein interaction networks and herb-ingredient-target networks. Four key active compounds and nine key proteins were identified. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that the biological functions of potential target genes were associated with DNA transcription, signaling receptor and ligand activity, cytokine activity, cellular autophagy, and antioxidant pathways, with related pathways involving the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, advanced glycosylation end product (AGE)-RAGE signaling pathway, tumor necrosis factor (TNF) signaling pathway, and IL-17 signaling pathway. Moreover, the binding activities of key target genes and essential active compounds of Chinese herbal medicines in QZZTD were further validated by molecular docking. This demonstrated that quercetin, luteolin, hyndarin, and beta-sitosterol had good binding to eight key proteins, and Akt1 was the target protein with the best binding activity, suggesting that Akt1 could be the essential mediator responsible for signaling transduction after QZZTD administration. The rat experiment verified that QZZTD inhibited PI3K-Akt pathway activation and reduced inflammation in UC. In conclusion, our study suggested four potential key active components, including quercetin, were identified in QZZTD, which could interact with Akt1 and modulate the activation of the PI3K-Akt pathway. The other three pathways may also be involved in the signaling transduction induced by QZZTD in the treatment of UC.
Collapse
Affiliation(s)
- Xintian Shou
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yumeng Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xuesong Zhang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yanju Zhang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yan Yang
- National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chenglin Duan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Qiulei Jia
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Guozhen Yuan
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Jingjing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Shuqing Shi
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Hanming Cui
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yuanhui Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| |
Collapse
|
17
|
Maglaviceanu A, Wu B, Kapoor M. Fibroblast-like synoviocytes: Role in synovial fibrosis associated with osteoarthritis. Wound Repair Regen 2021; 29:642-649. [PMID: 34021514 DOI: 10.1111/wrr.12939] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
The synovial membrane undergoes a variety of structural changes throughout the pathogenesis of osteoarthritis (OA), including the development of fibrosis. Fibroblast-like synoviocytes (FLS) are a heterogenous cell population of the synovium that are suggested to drive the fibrotic response, but the exact mechanisms associated with their activation in OA remain unclear. Once activated, FLS are suggested to acquire a myofibroblast-like phenotype that drives fibrogenesis through excessive extracellular matrix (ECM) component deposition and an enhanced contractile function. In this review, we define FLS in the synovium, discuss how select extracellular or endogenous factors potentially induce their activation in OA, and describe how the activity of myofibroblast-like cells affects the structure of the synovial membrane.
Collapse
Affiliation(s)
- Anca Maglaviceanu
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Li M, Xiao YB, Wang XT, Zhuang JP, Zhou CL. Proline-Serine-Threonine Phosphatase-Interacting Protein 2 Alleviates Diabetes Mellitus-Osteoarthritis in Rats through Attenuating Synovial Inflammation and Cartilage Injury. Orthop Surg 2021; 13:1398-1407. [PMID: 33939302 PMCID: PMC8274158 DOI: 10.1111/os.13000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
Objective To explore the possible way of proline‐serine–threonine phosphatase‐interacting protein 2 (PSTPIP2) influencing diabetes mellitus‐osteoarthritis (DM‐OA) progression. Methods In vivo, eight‐week‐old male Sprague Dawley rats were induced with DM‐OA by intraperitoneal injection of streptozotocin with high‐fat diet feeding and intra‐articular injection of monoiodoacetate. PSTPIP2 overexpression was achieved by intra‐articular injection of lentivirus vectors. PSTPIP2 expression was verified by real‐time polymerase chain reaction and Western blotting. Histological changes were examined by hematoxylin/eosin and safranin‐O/fast‐green staining. In vitro, rat synovial fibroblasts were induced DM‐OA by stimulation of high glucose (HG) and interleukin (IL)‐1β. PSTPIP2 overexpression was achieved by lentivirus infection. U0126 was added as an ERK inhibitor. Levels of tumor necrosis factor (TNF)‐α, IL‐6, and IL‐1β were detected using enzyme‐linked immunosorbent assay. Expression of matrix metalloproteinase (MMP)‐3, MMP‐13, aggrecanase‐2 (ADAMTS‐5), intercellular cell adhesion molecule (ICAM)‐1, extracellular regulated protein kinase (ERK) and phospho‐ERK (p‐ERK) was detected by Western blotting. Results In DM‐OA rats, PSTPIP2 relative messenger RNA (mRNA) level was significantly decreased compared to control rats. The protein expression was also decreased obviously. Inflammation score in synovium was dramatically increased, accompanying with increased TNF‐α, IL‐6, and IL‐1β levels. Osteoarthritis research society international (OARSI) score in cartilage was markedly increased, along with increased MMP‐3, MMP‐13, ADAMTS‐5, ICAM‐1, ERK and p‐ERK expression. In PSTPIP2‐overexpressed DM‐OA rats, PSTPIP2 mRNA level and protein expression was increased compared to DM‐OA rats received negative‐control lentivirus vectors. The inflammation score, as well as TNF‐α, IL‐6, and IL‐1β levels were dramatically decreased. Also, the OARSI score and protein expression of MMP‐3, MMP‐13, ADAMTS‐5, ICAM‐1, ERK and p‐ERK were decreased. In HG+IL‐1β‐treated rat synovial fibroblasts, PSTPIP2 protein expression was decreased compared to normal glucose (NG)‐treated cells. Levels of TNF‐α, IL‐6, and IL‐1β, as well as expression of MMP‐3, MMP‐13, ADAMTS‐5, ICAM‐1, ERK and p‐ERK were increased. After cells were infected with PSTPIP2‐overexpressed lentivirus, levels of TNF‐α, IL‐6, and IL‐1β, and expression of MMP‐3, MMP‐13, ADAMTS‐5, ICAM‐1, ERK and p‐ERK were obviously decreased compared to cells infected with NC lentivirus. In addition, ERK inhibitor U0126 treatment also decreased the TNF‐α, IL‐6, and IL‐1βlevels and MMP‐3, MMP‐13, ADAMTS‐5, ICAM‐1, ERK and p‐ERK expression in HG + IL‐1β treated rat synovial fibroblasts. Conclusion Overexpression of PSTPIP2 alleviates synovial inflammation and cartilage injury during DM‐OA progression via inhibiting ERK phosphorylation.
Collapse
Affiliation(s)
- Ming Li
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan-Bo Xiao
- Heilongjiang University Hospital, Harbin, China
| | - Xin-Tao Wang
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jin-Peng Zhuang
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang-Long Zhou
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Tripolino C, Ciaffi J, Pucino V, Ruscitti P, van Leeuwen N, Borghi C, Giacomelli R, Meliconi R, Ursini F. Insulin Signaling in Arthritis. Front Immunol 2021; 12:672519. [PMID: 33995414 PMCID: PMC8119635 DOI: 10.3389/fimmu.2021.672519] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
Inflammatory arthritis is burdened by an increased risk of metabolic disorders. Cytokines and other mediators in inflammatory diseases lead to insulin resistance, diabetes and hyperlipidemia. Accumulating evidence in the field of immunometabolism suggests that the cause-effect relationship between arthritis and metabolic abnormalities might be bidirectional. Indeed, the immune response can be modulated by various factors such as environmental agents, bacterial products and hormones. Insulin is produced by pancreatic cells and regulates glucose, fat metabolism and cell growth. The action of insulin is mediated through the insulin receptor (IR), localized on the cellular membrane of hepatocytes, myocytes and adipocytes but also on the surface of T cells, macrophages, and dendritic cells. In murine models, the absence of IR in T-cells coincided with reduced cytokine production, proliferation, and migration. In macrophages, defective insulin signaling resulted in enhanced glycolysis affecting the responses to pathogens. In this review, we focalize on the bidirectional cause-effect relationship between impaired insulin signaling and arthritis analyzing how insulin signaling may be involved in the aberrant immune response implicated in arthritis and how inflammatory mediators affect insulin signaling. Finally, the effect of glucose-lowering agents on arthritis was summarized.
Collapse
Affiliation(s)
- Cesare Tripolino
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy
| | - Jacopo Ciaffi
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy
| | - Valentina Pucino
- Institute of Inflammation and Ageing, University of Birmingham and Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nina van Leeuwen
- Rheumatology Department, Leiden University Medical Center, Leiden, Netherlands
| | - Claudio Borghi
- Unità Operativa Medicina Interna Cardiovascolare-IRCCS Azienda Ospedaliera-Universitaria, Bologna, Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome "Campus Biomedico", Rome, Italy
| | - Riccardo Meliconi
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesco Ursini
- Geriatric Medicine Unit, Department of Medical Functional Area, "San Giovanni di Dio" Hospital, Crotone, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Du H, Zhao Y, Yin Z, Wang DW, Chen C. The role of miR-320 in glucose and lipid metabolism disorder-associated diseases. Int J Biol Sci 2021; 17:402-416. [PMID: 33613101 PMCID: PMC7893589 DOI: 10.7150/ijbs.53419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose and lipids are important nutrients that provide the majority of energy for each organ to maintain homeostasis of the body. With the continuous improvement in living standards, the incidence of metabolic disorder-associated diseases, such as diabetes, hyperlipidemia, and atherosclerosis, is increasing worldwide. Among them, diabetes, which could be induced by both glucose and lipid metabolic disorders, is one of the five diseases with the highest incidence and mortality worldwide. However, the detailed molecular mechanisms underlying glucose and lipid metabolism disorders and target-organ damage are still not fully defined. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNAs, which usually affect their target mRNAs in the cytoplasm by post-transcriptional regulation. Previously, we have found that miR-320 contributed to glucose and lipid metabolism via different signaling pathways. Most importantly, we identified that nuclear miR-320 mediated diabetes-induced cardiac dysfunction by activating the transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Here, we reviewed the roles of miR-320 in glucose and lipid metabolism and target-organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Chen Chen
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
21
|
Jakson I, Ujvari D, Brusell Gidlöf S, Lindén Hirschberg A. Insulin regulation of solute carrier family 2 member 1 (glucose transporter 1) expression and glucose uptake in decidualizing human endometrial stromal cells: an in vitro study. Reprod Biol Endocrinol 2020; 18:117. [PMID: 33218355 PMCID: PMC7679983 DOI: 10.1186/s12958-020-00674-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Solute carrier family 2 member 1 (SLC2A1; previously known as glucose transporter 1), is the most abundant glucose transporter in human endometrium and is up-regulated during decidualization, whereas high insulin may have a negative impact on this process. The present study aimed to investigate the effect of insulin on the expression of SLC2A1 and glucose uptake in decidualizing human endometrial stromal cells. METHODS We induced in vitro decidualization of endometrial stromal cells obtained from regularly menstruating healthy non-obese women. The cells were treated with increasing concentrations of insulin, and the involvement of the transcription factor forkhead box O1 (FOXO1) was evaluated using a FOXO1 inhibitor. SLC2A1 mRNA levels were measured by Real-Time PCR and protein levels were evaluated by immunocytochemistry. Glucose uptake was estimated by an assay quantifying the cellular uptake of radioactive glucose. One-way ANOVA, Dunnett's multiple comparisons test and paired t-test were used to determine the statistical significance of the results. RESULTS We found that insulin dose-dependently decreased SLC2A1 mRNA levels and decreased protein levels of SLC2A1 in decidualizing human endometrial stromal cells. Transcriptional inactivation of FOXO1 seems to explain at least partly the down-regulation of SLC2A1 by insulin. Glucose uptake increased upon decidualization, whereas insulin treatment resulted in a slight inhibition of the glucose uptake, although not significant for all insulin concentrations. CONCLUSIONS These results indicate an impairment of decidualization by high concentrations of insulin. Future studies will determine the clinical significance of our results for endometrial function and decidualization in women with insulin resistance and hyperinsulinemia.
Collapse
Affiliation(s)
- Ivika Jakson
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska vägen 37A, 171 76, Stockholm, Sweden.
- Women's Health Theme, Karolinska University Hospital, Stockholm, Sweden.
| | - Dorina Ujvari
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska vägen 37A, 171 76, Stockholm, Sweden
| | - Sebastian Brusell Gidlöf
- Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
- Department of Obstetrics & Gynecology, Stockholm South General Hospital, Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska vägen 37A, 171 76, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|