1
|
Yu H, Lin Z, Xiao F. Role of body size and shape in animal camouflage. Ecol Evol 2024; 14:e11434. [PMID: 38746542 PMCID: PMC11090776 DOI: 10.1002/ece3.11434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 01/06/2025] Open
Abstract
Animal camouflage serves a dual purpose in that it enhances both predation efficiency and anti-predation strategies, such as background matching, disruptive coloration, countershading, and masquerade, for predators and prey, respectively. Although body size and shape determine the appearance of animals, potentially affecting their camouflage effectiveness, research over the past two centuries has primarily focused on animal coloration. Over the past two decades, attention has gradually shifted to the impact of body size and shape on camouflage. In this review, we discuss the impact of animal body size and shape on camouflage and identify research issues and challenges. A negative correlation between background matching effectiveness and an animal's body size has been reported, whereas flatter body shapes enhance background matching. The effectiveness of disruptive coloration is also negatively correlated with body size, whereas irregular body shapes physically disrupt the body outline, reducing the visibility of true edges and making it challenging for predators to identify prey. Countershading is most likely in larger mammals with smaller individuals, whereas body size is unrelated to countershading in small-bodied taxa. Body shape influences a body reflectance, affecting the form of countershading coloration exhibited by animals. Animals employing masquerade achieve camouflage by resembling inanimate objects in their habitats in terms of body size and shape. Empirical and theoretical research has found that body size affects camouflage strategies by determining key aspects of an animal's appearance and predation risk and that body shape plays a role in the form and effectiveness of camouflage coloration. However, the mechanisms underlying these adaptations remain elusive, and a relative dearth of research on other camouflage strategies. We underscore the necessity for additional research to investigate the interplay between animal morphology and camouflage strategies and their coevolutionary development, and we recommend directions for future research.
Collapse
Affiliation(s)
- Hongmin Yu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Zhixue Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Fanrong Xiao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| |
Collapse
|
2
|
Hwang Y, Yoo S, Park C, Kang C. Comparative and experimental studies on the relationship between body size and countershading in caterpillars. J Evol Biol 2023; 36:1032-1039. [PMID: 36737844 DOI: 10.1111/jeb.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/04/2022] [Accepted: 12/14/2022] [Indexed: 02/05/2023]
Abstract
Countershading is a gradient of colouration in which the illuminated dorsal surfaces are darker than the unilluminated ventral surface. It is widespread in the animal kingdom and endows the body with a more uniform colour to decrease the chance of detection by predators. Although recent empirical studies support the theory of survival advantage conferred by countershading, this camouflage strategy has evolved only in some of the cryptic animals, and our understanding of the factors that affect the evolution of countershading is limited. This study examined the association between body size and countershading using lepidopteran larvae (caterpillars) as a model system. Specifically, we predicted that countershading may have selectively evolved in large-sized species among cryptic caterpillars if (1) large size constrains camouflage which facilitates the evolution of a trait reinforcing their crypsis and (2) the survival advantage of countershading is size-dependent. Phylogenetic analyses of four different lepidopteran families (Saturniidae, Sphingidae, Erebidae, and Geometridae) suggest equivocal results: countershading was more likely to be found in larger species in Saturniidae but not in the other families. The field predation experiment assuming avian predators did not support size-dependent predation in countershaded prey. Collectively, we found only weak evidence that body size is associated with countershading in caterpillars. Our results suggest that body size is not a universal factor that has shaped the interspecific variation in countershading observed in caterpillars.
Collapse
Affiliation(s)
- Yerin Hwang
- Department of Biosciences, Mokpo National University, Muan, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sohee Yoo
- Department of Biosciences, Mokpo National University, Muan, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Chohee Park
- Department of Biosciences, Mokpo National University, Muan, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Changku Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Takeishi T, Fujiwara K, Osada N, Mita A, Takada T, Shiroishi T, Suzuki H. Phylogeographic study using nuclear genome sequences of <i>Asip</i> to infer the origins of ventral fur color variation in the house mouse <i>Mus musculus</i>. Genes Genet Syst 2021; 96:271-284. [DOI: 10.1266/ggs.21-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Toki Takeishi
- Laboratory of Ecology and Genetics Graduate School of Environmental Science, Hokkaido University
| | - Kazumichi Fujiwara
- Graduate School of Information Science and Technology, Hokkaido University
| | - Naoki Osada
- Graduate School of Information Science and Technology, Hokkaido University
| | | | - Toyoyuki Takada
- Integrated Bioresource Information Division, RIKEN BioResource Research Center
| | | | - Hitoshi Suzuki
- Laboratory of Ecology and Genetics Graduate School of Environmental Science, Hokkaido University
| |
Collapse
|
4
|
Kishimoto M, Kato M, Suzuki H. Morphological and Molecular Recharacterization of the Rodent Genus Mus from Nepal Based on Museum Specimens. MAMMAL STUDY 2021. [DOI: 10.3106/ms2020-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Makoto Kishimoto
- Graduate School of Environmental Science, Hokkaido University, North 10, West 5, Sapporo 060-0810, Japan
| | - Masaru Kato
- Field Science Center for Northern Biosphere, Botanic Garden & Museum, Hokkaido University, North 3, West 8, Sapporo, 060-0003, Japan
| | - Hitoshi Suzuki
- Graduate School of Environmental Science, Hokkaido University, North 10, West 5, Sapporo 060-0810, Japan
| |
Collapse
|
5
|
Howell N, Sheard C, Koneru M, Brockelsby K, Ono K, Caro T. Aposematism in mammals. Evolution 2021; 75:2480-2493. [PMID: 34347894 DOI: 10.1111/evo.14320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
Abstract
Aposematic coloration is traditionally considered to signal unpalatability or toxicity. In mammals, most research has focused on just one form of defense, namely, noxious anal secretions, and its black-and-white advertisement as exemplified by skunks. The original formulation of aposematism, however, encompassed a broader range of morphological, physiological, and behavioral defenses, and there are many mammal species with black-and-white contrasting patterns that do not have noxious adaptations. Here, using Bayesian phylogenetic models and data from 1726 terrestrial nonvolant mammals we find that two aspects of conspicuous coloration, black-and-white coloration patterns on the head and body, advertise defenses that are morphological (spines, large body size), behavioral (pugnacity), and physiological (anal secretions), as well as being involved with sexual signaling and environmental factors linked to crypsis. Within Carnivora, defensive anal secretions are associated with complex black-and-white head patterns and longitudinal black-and-white body striping; in primates, larger bodied species exhibit irregular patches of black-and-white pelage; and in rodents, pugnacity is linked to sharp countershading and irregular blocks of white and black pelage. We show that black-and-white coloration in mammals is multifunctional, that it serves to warn predators of several defenses other than noxious anal secretions, and that aposematism in mammals is not restricted to carnivores.
Collapse
Affiliation(s)
- Natasha Howell
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, United Kingdom
| | - Catherine Sheard
- School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, United Kingdom
| | - Manisha Koneru
- Department of Ecology and Evolution, University of California, Davis, Davis, California, 95616
| | - Kasey Brockelsby
- Department of Ecology and Evolution, University of California, Davis, Davis, California, 95616
| | - Konatsu Ono
- Department of Animal Biology, University of California, Davis, Davis, California, 95616
| | - Tim Caro
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, United Kingdom.,Center for Population Biology, University of California, Davis, Davis, California, 95616
| |
Collapse
|
6
|
Caro T, Brockelsby K, Ferrari A, Koneru M, Ono K, Touche E, Stankowich T. The evolution of primate coloration revisited. Behav Ecol 2021. [DOI: 10.1093/beheco/arab029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Primates are noted for their varied and complex pelage and bare skin coloration but the significance of this diverse coloration remains opaque. Using new updated information, novel scoring of coat and skin coloration, and controlling for shared ancestry, we reexamined and extended findings from previous studies across the whole order and the five major clades within it. Across primates, we found (i) direct and indirect evidence for pelage coloration being driven by protective coloration strategies including background matching, countershading, disruptive coloration, and aposematism, (ii) diurnal primates being more colorful, and (iii) the possibility that pelage color diversity is negatively associated with female trichromatic vision; while (iv) reaffirming avoidance of hybridization driving head coloration in males, (v) darker species living in warm, humid conditions (Gloger’s rule), and (vi) advertising to multiple mating partners favoring red genitalia in females. Nonetheless, the importance of these drivers varies greatly across clades. In strepsirrhines and cercopithecoids, countershading is important; greater color diversity may be important for conspecific signaling in more diurnal and social strepsirrhines; lack of female color vision may be associated with colorful strepsirrhines and platyrrhines; whereas cercopithecoids obey Gloger’s rule. Haplorrhines show background matching, aposematism, character displacement, and red female genitalia where several mating partners are available. Our findings emphasize several evolutionary drivers of coloration in this extraordinarily colorful order. Throughout, we used coarse but rigorous measures of coloration, and our ability to replicate findings from earlier studies opens up opportunities for classifying coloration of large numbers of species at a macroevolutionary scale.
Collapse
Affiliation(s)
- Tim Caro
- Department of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- Center for Population Biology, University of California, 1 Shields Avenue, Davis, Davis, CA 95616, USA
| | - Kasey Brockelsby
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Annie Ferrari
- Department of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Manisha Koneru
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Konatsu Ono
- Department of Animal Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Edward Touche
- Department of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Theodore Stankowich
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| |
Collapse
|
7
|
Bell RB, Bradley BJ, Kamilar JM. The Evolutionary Ecology of Primate Hair Coloration: A Phylogenetic Approach. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09547-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Donohue CG, Hemmi JM, Kelley JL. Countershading enhances camouflage by reducing prey contrast. Proc Biol Sci 2020; 287:20200477. [PMID: 32396802 DOI: 10.1098/rspb.2020.0477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A three-dimensional body shape is problematic for camouflage because overhead lighting produces a luminance gradient across the body's surface. Countershading, a form of patterning where animals are darkest on their uppermost surface, is thought to counteract this luminance gradient and enhance concealment, but the mechanisms of protection remain unclear. Surprisingly, no study has examined how countershading alters prey contrast, or investigated how the presence of a dorsoventral luminance gradient affects detection under controlled viewing conditions. It has also been suggested that the direction of the dorsoventral luminance gradient (darkest or lightest on top) may interfere with predators' abilities to resolve prey's three-dimensional shape, yet this intriguing idea has never been tested. We used live fish predators (western rainbowfish, Melanotaenia australis) and computer-generated prey images to compare the detectability of uniformly pigmented (i.e. non-countershaded) prey with that of optimally countershaded prey of varying contrasts against the background. Optimally countershaded prey were difficult for predators to detect, and the probability and speed of detection depended on prey luminance contrast with the background. In comparison, non-countershaded prey were always highly detectable, even though their average luminance closely matched the luminance of the background. Our findings suggest that uniformly pigmented three-dimensional prey are highly conspicuous to predators because overhead lighting increases luminance contrast between different body parts or between the body and the background. We found no evidence for the notion that countershading interferes with predator perception of three-dimensional form.
Collapse
Affiliation(s)
- Callum G Donohue
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.,The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jennifer L Kelley
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia.,The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
9
|
Sakuma Y, Matsunami M, Takada T, Suzuki H. Multiple Conserved Elements Structuring Inverted Repeats in the Mammalian Coat Color-Related Gene Asip. Zoolog Sci 2019; 36:23-30. [PMID: 31116535 DOI: 10.2108/zs180081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/17/2018] [Indexed: 11/17/2022]
Abstract
In the agouti signaling gene protein (Asip) of the house mouse (Mus musculus), inverted repeat (IR) arrays are known to exist in a non-coding region adjacent to the ventral-specific promoter region and the accompanying two exons (exons 1A and 1A'), which are around 100 kb upstream from the amino acid coding regions of exons 2, 3, and 4. To determine the gene structure of mammalian Asip and to elucidate trends in its evolution, non-coding sequences of six rodent (mouse, rat, Chinese hamster, squirrel, guinea pig, and naked mole rat) and three non-rodent (rabbit, human, and cow) species were retrieved from databases and compared. Our homology search analyses revealed the presence of three to five highly conserved non-coding elements (CNE). These CNEs were found to form IRs in rodents and lagomorphs. Combinations of IRs were further shown to build symmetric, long IR arrays. Intra- and inter-specific comparisons of the sequences of three universal CNEs showed homogeneity between CNE pairs within species. This implies that certain evolutionary constraints maintained the IR structure in the rodent and rabbit species.
Collapse
Affiliation(s)
- Yuki Sakuma
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Masatoshi Matsunami
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan, .,Graduate School of Medicine, University of the Ryukyus, Nishihara-cho 903-0215, Japan,
| | - Toyoyuki Takada
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hitoshi Suzuki
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
10
|
Seasonal pelage color change of two sympatric arboreal squirrel species in the subarctic region. THE EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1682694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
11
|
An Exceptionally Preserved Three-Dimensional Armored Dinosaur Reveals Insights into Coloration and Cretaceous Predator-Prey Dynamics. Curr Biol 2017; 27:2514-2521.e3. [DOI: 10.1016/j.cub.2017.06.071] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/16/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023]
|
12
|
Abstract
Countershading, the widespread tendency of animals to be darker on the side that receives strongest illumination, has classically been explained as an adaptation for camouflage: obliterating cues to 3D shape and enhancing background matching. However, there have only been two quantitative tests of whether the patterns observed in different species match the optimal shading to obliterate 3D cues, and no tests of whether optimal countershading actually improves concealment or survival. We use a mathematical model of the light field to predict the optimal countershading for concealment that is specific to the light environment and then test this prediction with correspondingly patterned model "caterpillars" exposed to avian predation in the field. We show that the optimal countershading is strongly illumination-dependent. A relatively sharp transition in surface patterning from dark to light is only optimal under direct solar illumination; if there is diffuse illumination from cloudy skies or shade, the pattern provides no advantage over homogeneous background-matching coloration. Conversely, a smoother gradation between dark and light is optimal under cloudy skies or shade. The demonstration of these illumination-dependent effects of different countershading patterns on predation risk strongly supports the comparative evidence showing that the type of countershading varies with light environment.
Collapse
|
13
|
Kelley JL, Merilaita S. Testing the role of background matching and self-shadow concealment in explaining countershading coloration in wild-caught rainbowfish. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer L. Kelley
- Centre for Evolutionary Biology/Neuroecology Group; School of Animal Biology; University of Western Australia; Perth WA 6009 Australia
| | - Sami Merilaita
- Behavioural and Evolutionary Ecology Group; Department of Biosciences; Åbo Akademi University; 20520 Turku Finland
| |
Collapse
|
14
|
Abstract
Most scholars agree that avoiding predators is a central concern of lemurs, monkeys, and apes. However, given uncertainties about the frequency with which primates actually become prey, the selective importance of predation in primate evolution continues to be debated. Some argue that primates are often killed by predators, while others maintain that such events are relatively rare. Some authors have contended that predation's influence on primate sociality has been trivial; others counter that predation need not occur often to be a powerful selective force. Given the challenges of documenting events that can be ephemeral and irregular, we are unlikely ever to amass the volume of systematic, comparative data we have on such topics as feeding, social dynamics, or locomotor behavior. Nevertheless, a steady accumulation of field observations, insight gained from natural experiments, and novel taphonomic analyses have enhanced understanding of how primates interact with several predators, especially raptors, the subject of this review.
Collapse
Affiliation(s)
- W Scott McGraw
- Department of Anthropology, 064 Smith Laboratory, The Ohio State University, 174 West 18th Avenue
| | | |
Collapse
|
15
|
Abstract
In this review I survey pelage and skin colouration patterns of the 29 orders of extant mammals and assess their functional significance. The vast majority of mammals are shades of grey or brown. Concealment is probably the principal evolutionary driver of pelage colouration in this Class likely through background matching and self-shadow concealment. A small minority of species are aposematic while many others have distinctive markings used in intraspecific and interspecific communication although the meaning of these markings is unclear. Colouration in mammals also has physiological consequences but these are barely understood as yet.
Collapse
Affiliation(s)
- Tim Caro
- Department of Wildlife, Fish and Conservation Biology, and Center for Population Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Allen WL, Higham JP. Analyzing visual signals as visual scenes. Am J Primatol 2013; 75:664-82. [PMID: 23440880 DOI: 10.1002/ajp.22129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/11/2012] [Accepted: 12/30/2012] [Indexed: 11/07/2022]
Abstract
The study of visual signal design is gaining momentum as techniques for studying signals become more sophisticated and more freely available. In this paper we discuss methods for analyzing the color and form of visual signals, for integrating signal components into visual scenes, and for producing visual signal stimuli for use in psychophysical experiments. Our recommended methods aim to be rigorous, detailed, quantitative, objective, and where possible based on the perceptual representation of the intended signal receiver(s). As methods for analyzing signal color and luminance have been outlined in previous publications we focus on analyzing form information by discussing how statistical shape analysis (SSA) methods can be used to analyze signal shape, and spatial filtering to analyze repetitive patterns. We also suggest the use of vector-based approaches for integrating multiple signal components. In our opinion elliptical Fourier analysis (EFA) is the most promising technique for shape quantification but we await the results of empirical comparison of techniques and the development of new shape analysis methods based on the cognitive and perceptual representations of receivers. Our manuscript should serve as an introductory guide to those interested in measuring visual signals, and while our examples focus on primate signals, the methods are applicable to quantifying visual signals in most taxa.
Collapse
Affiliation(s)
- William L Allen
- Department of Anthropology, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
17
|
Allen WL, Baddeley R, Cuthill IC, Scott-Samuel NE. A Quantitative Test of the Predicted Relationship between Countershading and Lighting Environment. Am Nat 2012; 180:762-76. [DOI: 10.1086/668011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Kamilar JM, Heesy CP, Bradley BJ. Did trichromatic color vision and red hair color coevolve in primates? Am J Primatol 2012. [PMID: 23192604 DOI: 10.1002/ajp.22099] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reddish pelage and red hair ornaments have evolved many times, independently, during primate evolution. It is generally assumed that these red-coat phenotypes, like red skin phenotypes, play a role in sociosexual signaling and, thus evolved in tandem with conspecific color vision. This study examines the phylogenetic distribution of color vision and pelage coloration across the primate order to ask: (1) did red pelage and trichromacy coevolve; or (2) did trichromacy evolve first, and then subsequently red pelage evolved as an exaptation? We collected quantitative, color-corrected photographic color data for 142 museum research skins from 92 species representing 41 genera spanning all major primate lineages. For each species, we quantified the ratio of Red/Green values (from a RGB color model) at 20 anatomical landmarks. For these same species, we compiled data on color vision type (routine trichromatic, polymorphic, routine dichromatic, monochromatic) and data on variables that potentially covary with visual system (VS) and coloration, including activity pattern and body mass dimorphism (proxy for sexual selection). We also considered whether the long-term storage of research skins might influence coloration. Therefore, we included the time since the specimen was collected as an additional predictor. Analyzing the data with phylogenetic generalized least squares models, we found that the amount of red hair present in primates is associated with differences in VSs, but not in the direction expected. Surprisingly, trichromatic primate species generally exhibited less red hair compared to red-green colorblind species. Thus, our results do not support the general assumption that color vision and red pelage coloration are a coevolutionary product of sociosexual signaling in primates. In addition, we did not find an effect of activity pattern, body mass dimorphism, or time since collection on the redness of primate hair. Our results have important implications for the evolution of primate coloration and visual systems.
Collapse
Affiliation(s)
- Jason M Kamilar
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308, USA.
| | | | | |
Collapse
|
19
|
Predictors of orbital convergence in primates: A test of the snake detection hypothesis of primate evolution. J Hum Evol 2011; 61:233-42. [DOI: 10.1016/j.jhevol.2011.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/27/2022]
|
20
|
Allen WL, Cuthill IC, Scott-Samuel NE, Baddeley R. Why the leopard got its spots: relating pattern development to ecology in felids. Proc Biol Sci 2011; 278:1373-80. [PMID: 20961899 PMCID: PMC3061134 DOI: 10.1098/rspb.2010.1734] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 09/20/2010] [Indexed: 11/12/2022] Open
Abstract
A complete explanation of the diversity of animal colour patterns requires an understanding of both the developmental mechanisms generating them and their adaptive value. However, only two previous studies, which involved computer-generated evolving prey, have attempted to make this link. This study examines variation in the camouflage patterns displayed on the flanks of many felids. After controlling for the effects of shared ancestry using a fully resolved molecular phylogeny, this study shows how phenotypes from plausible felid coat pattern generation mechanisms relate to ecology. We found that likelihood of patterning and pattern attributes, such as complexity and irregularity, were related to felids' habitats, arboreality and nocturnality. Our analysis also indicates that disruptive selection is a likely explanation for the prevalence of melanistic forms in Felidae. Furthermore, we show that there is little phylogenetic signal in the visual appearance of felid patterning, indicating that camouflage adapts to ecology over relatively short time scales. Our method could be applied to any taxon with colour patterns that can reasonably be matched to reaction-diffusion and similar models, where the kinetics of the reaction between two or more initially randomly dispersed morphogens determines the outcome of pattern development.
Collapse
Affiliation(s)
- William L Allen
- School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.
| | | | | | | |
Collapse
|
21
|
|