1
|
Khanal S, Shin EJ, Yoo CJ, Kim J, Choi DY. Inosine exerts dopaminergic neuroprotective effects via mitigation of NLRP3 inflammasome activation. Neuropharmacology 2025; 266:110278. [PMID: 39725121 DOI: 10.1016/j.neuropharm.2024.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Transformation of pro-interleukin (IL)-1β into a mature IL-1β via active inflammasome may be related to the progression of PD. Therefore, the modification of inflammasome activity may be a potential therapeutic strategy for PD. Inosine has been shown to exert anti-inflammatory effects in various disease models. In this study, we evaluated inosine's inhibitory effects on the microglial NLRP3 inflammasome, which may be related to the dopaminergic neuroprotective effects of inosine. Inosine suppresses lipopolysaccharides (LPS)-induced NLRP3 inflammasome activation in BV-2 microglial cells dose dependently. When SH-SY5Y cells were treated with conditioned medium from BV-2 cells treated with LPS and inosine, an NLRP3 inhibitor, or a caspase-1 inhibitor, the viability of SH-SY5Y cells was reduced indicating that LPS-induced microglial inflammasome activation could contribute to neuronal death. Inosine's modulatory effect on NLRP3 inflammasome activity appears to rely on the adenosine A2A and A3 receptors activation, as A2A or A3 receptor antagonists reversed the amelioration of NLRP3 activation by inosine. In addition, inosine treatment attenuated intracellular and mitochondrial ROS production mediated by LPS and this effect might be related to attenuation of NLRP3 inflammasome activity, as the antioxidant, N-acetyl cysteine ameliorated LPS-induced activation of the inflammasome. Finally, we assessed the inosine's neuroprotective effects via inflammasome activity modulation in mice receiving an intranigral injection of LPS. Immunohistochemical analysis revealed that LPS caused a significant loss of nigral dopaminergic neurons, which was mitigated by inosine treatment. LPS increased NLRP3 expression in IBA1-positive microglial cells, which was attenuated by inosine injection. These findings indicate that inosine can rescue neurons from LPS-induced injury by ameliorating NLRP3 inflammasome activity. Therefore, inosine could be applied as an intervention for neuroinflammatory diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Shristi Khanal
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea.
| | - Eun-Joo Shin
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, Republic of Korea.
| | - Chang Jae Yoo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Republic of Korea.
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea.
| |
Collapse
|
2
|
Dos Santos B, Piermartiri T, Tasca CI. The impact of purine nucleosides on neuroplasticity in the adult brain. Purinergic Signal 2025; 21:113-131. [PMID: 38367178 PMCID: PMC11958884 DOI: 10.1007/s11302-024-09988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Neuroplasticity refers to the nervous system's ability to adapt and reorganize its cell structures and neuronal networks in response to internal and external stimuli. In adults, this process involves neurogenesis, synaptogenesis, and synaptic and neurochemical plasticity. Several studies have reported the significant impact of the purinergic system on neuroplasticity modulation. And, there is considerable evidence supporting the role of purine nucleosides, such as adenosine, inosine, and guanosine, in this process. This review presents extensive research on how these nucleosides enhance the neuroplasticity of the adult central nervous system, particularly in response to damage. The mechanisms through which these nucleosides exert their effects involve complex interactions with various receptors and signaling pathways. Adenosine's influence on neurogenesis involves interactions with adenosine receptors, specifically A1R and A2AR. A1R activation appears to inhibit neuronal differentiation and promote astrogliogenesis, while A2AR activation supports neurogenesis, neuritogenesis, and synaptic plasticity. Inosine and guanosine positively impact cell proliferation, neurogenesis, and neuritogenesis. Inosine seems to modulate extracellular adenosine levels, and guanosine might act through interactions between purinergic and glutamatergic systems. Additionally, the review discusses the potential therapeutic implications of purinergic signaling in neurodegenerative and neuropsychiatric diseases, emphasizing the importance of these nucleosides in the neuroplasticity of brain function and recovery.
Collapse
Affiliation(s)
- Beatriz Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tetsade Piermartiri
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Programa de Pós-Graduação Em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
- Programa de Pós-Graduação Em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
Boussamet L, Montassier E, Mathé C, Garcia A, Morille J, Shah S, Dugast E, Wiertlewski S, Gourdel M, Bang C, Stürner KH, Masson D, Nicot AB, Vince N, Laplaud DA, Feinstein DL, Berthelot L. Investigating the metabolite signature of an altered oral microbiota as a discriminant factor for multiple sclerosis: a pilot study. Sci Rep 2024; 14:7786. [PMID: 38565581 PMCID: PMC10987558 DOI: 10.1038/s41598-024-57949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
In multiple sclerosis (MS), alterations of the gut microbiota lead to inflammation. However, the role of other microbiomes in the body in MS has not been fully elucidated. In a pilot case-controlled study, we carried out simultaneous characterization of faecal and oral microbiota and conducted an in-depth analysis of bacterial alterations associated with MS. Using 16S rRNA sequencing and metabolic inference tools, we compared the oral/faecal microbiota and bacterial metabolism pathways in French MS patients (n = 14) and healthy volunteers (HV, n = 21). A classification model based on metabolite flux balance was established and validated in an independent German cohort (MS n = 12, HV n = 38). Our analysis revealed decreases in diversity indices and oral/faecal compartmentalization, the depletion of commensal bacteria (Aggregatibacter and Streptococcus in saliva and Coprobacter and Roseburia in faeces) and enrichment of inflammation-associated bacteria in MS patients (Leptotrichia and Fusobacterium in saliva and Enterobacteriaceae and Actinomyces in faeces). Several microbial pathways were also altered (the polyamine pathway and remodelling of bacterial surface antigens and energetic metabolism) while flux balance analysis revealed associated alterations in metabolite production in MS (nitrogen and nucleoside). Based on this analysis, we identified a specific oral metabolite signature in MS patients, that could discriminate MS patients from HV and rheumatoid arthritis patients. This signature allowed us to create and validate a discrimination model on an independent cohort, which reached a specificity of 92%. Overall, the oral and faecal microbiomes were altered in MS patients. This pilot study highlights the need to study the oral microbiota and oral health implications in patients with autoimmune diseases on a larger scale and suggests that knowledge of the salivary microbiome could help guide the identification of new pathogenic mechanisms associated with the microbiota in MS patients.
Collapse
Affiliation(s)
- Léo Boussamet
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Emmanuel Montassier
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Emergency Department, Nantes Hospital, Nantes, France
| | - Camille Mathé
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Alexandra Garcia
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Jérémy Morille
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Sita Shah
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Emilie Dugast
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Sandrine Wiertlewski
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Neurology Department, Nantes Hospital, Nantes, France
| | | | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Klarissa H Stürner
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Damien Masson
- Clinical Biochemistry Department, Nantes Hospital, Nantes, France
| | - Arnaud B Nicot
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Nicolas Vince
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - David-Axel Laplaud
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Neurology Department, Nantes Hospital, Nantes, France
| | - Douglas L Feinstein
- Jesse Brown VA Medical Center, 835 South Wolcott Ave, MC513, E720, Chicago, IL, 60612, USA.
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.
| | - Laureline Berthelot
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France.
| |
Collapse
|
4
|
He J, Jin Y, He C, Li Z, Yu W, Zhou J, Luo R, Chen Q, Wu Y, Wang S, Song Z, Cheng S. Danggui Shaoyao San: comprehensive modulation of the microbiota-gut-brain axis for attenuating Alzheimer's disease-related pathology. Front Pharmacol 2024; 14:1338804. [PMID: 38283834 PMCID: PMC10811133 DOI: 10.3389/fphar.2023.1338804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Background: Alzheimer's disease (AD), an age-associated neurodegenerative disorder, currently lacks effective clinical therapeutics. Traditional Chinese Medicine (TCM) holds promising potential in AD treatment, exemplified by Danggui Shaoyao San (DSS), a TCM formulation. The precise therapeutic mechanisms of DSS in AD remain to be fully elucidated. This study aims to uncover the therapeutic efficacy and underlying mechanisms of DSS in AD, employing an integrative approach encompassing gut microbiota and metabolomic analyses. Methods: Thirty Sprague-Dawley (SD) rats were allocated into three groups: Blank Control (Con), AD Model (M), and Danggui Shaoyao San (DSS). AD models were established via bilateral intracerebroventricular injections of streptozotocin (STZ). DSS was orally administered at 24 g·kg-1·d-1 (weight of raw herbal materials) for 14 days. Cognitive functions were evaluated using the Morris Water Maze (MWM) test. Pathological alterations were assessed through hematoxylin and eosin (HE) staining. Bloodstream metabolites were characterized, gut microbiota profiled through 16S rDNA sequencing, and cortical metabolomics analyzed. Hippocampal proinflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified using RT-qPCR, and oxidative stress markers (SOD, CAT, GSH-PX, MDA) in brain tissues were measured with biochemical assays. Results: DSS identified a total of 1,625 bloodstream metabolites, predominantly Benzene derivatives, Carboxylic acids, and Fatty Acyls. DSS significantly improved learning and spatial memory in AD rats and ameliorated cerebral tissue pathology. The formulation enriched the probiotic Ligilactobacillus, modulating metabolites like Ophthalmic acid (OA), Phosphocreatine (PCr), Azacridone A, Inosine, and NAD. DSS regulated Purine and Nicotinate-nicotinamide metabolism, restoring balance in the Candidatus Saccharibacteria-OA interplay and stabilizing gut microbiota-metabolite homeostasis. Additionally, DSS reduced hippocampal IL-1β, IL-6, TNF-α expression, attenuating the inflammatory state. It elevated antioxidative enzymes (SOD, CAT, GSH-PX) while reducing MDA levels, indicating diminished oxidative stress in AD rat brains. Conclusion: DSS addresses AD pathology through multifaceted mechanisms, encompassing gut microbiome regulation, specific metabolite modulation, and the mitigation of inflammation and oxidative stress within the brain. This holistic intervention through the Microbial-Gut-Brain Axis (MGBA) underscores DSS's potential as an integrative therapeutic agent in combatting AD.
Collapse
Affiliation(s)
- Jiawei He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yijie Jin
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chunxiang He
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ze Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenjing Yu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinyong Zhou
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Rongsiqing Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qi Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yixiao Wu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shiwei Wang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhenyan Song
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Shaowu Cheng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Office of Science and Technology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
5
|
Oh YC, Jeong YH, Yang HJ, Li W, Ma JY. Lumbricus Extract Prevents LPS-Induced Inflammatory Activation of BV2 Microglia and Glutamate-Induced Hippocampal HT22 Cell Death by Suppressing MAPK/NF-κB/NLRP3 Signaling and Oxidative Stress. Curr Issues Mol Biol 2023; 45:9926-9942. [PMID: 38132466 PMCID: PMC10742620 DOI: 10.3390/cimb45120620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Microglia-induced inflammatory signaling and neuronal oxidative stress are mutually reinforcing processes central to the pathogenesis of neurodegenerative diseases. Recent studies have shown that extracts of dried Pheretima aspergillum (Lumbricus) can inhibit tissue fibrosis, mitochondrial damage, and asthma. However, the effects of Lumbricus extracts on neuroinflammation and neuronal damage have not been previously studied. Therefore, to evaluate the therapeutic potential of Lumbricus extract for neurodegenerative diseases, the current study assessed the extract's anti-inflammatory and antioxidant activities in BV2 microglial cultures stimulated with lipopolysaccharide (LPS) along with its neuroprotective efficacy in mouse hippocampal HT22 cell cultures treated with excess glutamate. Lumbricus extract dose-dependently inhibited the LPS-induced production of multiple proinflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1β) and reversed the upregulation of proinflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2). Lumbricus also activated the antioxidative nuclear factor erythroid 2-relayed factor 2/heme oxygenase-1 pathway and inhibited LPS-induced activation of the nuclear factor-κB/mitogen-activated protein kinases/NOD-like receptor family pyrin domain containing 3 inflammatory pathway. In addition, Lumbricus extract suppressed the glutamate-induced necrotic and apoptotic death of HT22 cells, effects associated with upregulated expression of antiapoptotic proteins, downregulation of pro-apoptotic proteins, and reduced accumulation of reactive oxygen species. Chromatography revealed that the Lumbricus extract contained uracil, hypoxanthine, uridine, xanthine, adenosine, inosine, and guanosine. Its effects against microglial activation and excitotoxic neuronal death reported herein support the therapeutic potential of Lumbricus for neurodegenerative diseases.
Collapse
Affiliation(s)
- You-Chang Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (H.J.Y.); (W.L.)
| | | | | | | | - Jin Yeul Ma
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (H.J.Y.); (W.L.)
| |
Collapse
|
6
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Hoffman SS, Liang D, Hood RB, Tan Y, Terrell ML, Marder ME, Barton H, Pearson MA, Walker DI, Barr DB, Jones DP, Marcus M. Assessing Metabolic Differences Associated with Exposure to Polybrominated Biphenyl and Polychlorinated Biphenyls in the Michigan PBB Registry. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107005. [PMID: 37815925 PMCID: PMC10564108 DOI: 10.1289/ehp12657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) are persistent organic pollutants with potential endocrine-disrupting effects linked to adverse health outcomes. OBJECTIVES In this study, we utilize high-resolution metabolomics (HRM) to identify internal exposure and biological responses underlying PCB and multigenerational PBB exposure for participants enrolled in the Michigan PBB Registry. METHODS HRM profiling was conducted on plasma samples collected from 2013 to 2014 from a subset of participants enrolled in the Michigan PBB Registry, including 369 directly exposed individuals (F0) who were alive when PBB mixtures were accidentally introduced into the food chain and 129 participants exposed to PBB in utero or through breastfeeding, if applicable (F1). Metabolome-wide association studies were performed for PBB-153 separately for each generation and Σ PCB (PCB-118, PCB-138, PCB-153, and PCB-180) in the two generations combined, as both had direct PCB exposure. Metabolite and metabolic pathway alterations were evaluated following a well-established untargeted HRM workflow. RESULTS Mean levels were 1.75 ng / mL [standard deviation (SD): 13.9] for PBB-153 and 1.04 ng / mL (SD: 0.788) for Σ PCB . Sixty-two and 26 metabolic features were significantly associated with PBB-153 in F0 and F1 [false discovery rate (FDR) p < 0.2 ], respectively. There were 2,861 features associated with Σ PCB (FDR p < 0.2 ). Metabolic pathway enrichment analysis using a bioinformatics tool revealed perturbations associated with Σ PCB in numerous oxidative stress and inflammation pathways (e.g., carnitine shuttle, glycosphingolipid, and vitamin B9 metabolism). Metabolic perturbations associated with PBB-153 in F0 were related to oxidative stress (e.g., pentose phosphate and vitamin C metabolism) and in F1 were related to energy production (e.g., pyrimidine, amino sugars, and lysine metabolism). Using authentic chemical standards, we confirmed the chemical identity of 29 metabolites associated with Σ PCB levels (level 1 evidence). CONCLUSIONS Our results demonstrate that serum PBB-153 is associated with alterations in inflammation and oxidative stress-related pathways, which differed when stratified by generation. We also found that Σ PCB was associated with the downregulation of important neurotransmitters, serotonin, and 4-aminobutanoate. These findings provide novel insights for future investigations of molecular mechanisms underlying PBB and PCB exposure on health. https://doi.org/10.1289/EHP12657.
Collapse
Affiliation(s)
- Susan S. Hoffman
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Donghai Liang
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Robert B. Hood
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | | | - M. Elizabeth Marder
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | - Hillary Barton
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Melanie A. Pearson
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Douglas I. Walker
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Dean P. Jones
- School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michele Marcus
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
El-Latif AMA, Rabie MA, Sayed RH, Fattah MAAE, Kenawy SA. Inosine attenuates rotenone-induced Parkinson's disease in rats by alleviating the imbalance between autophagy and apoptosis. Drug Dev Res 2023; 84:1159-1174. [PMID: 37170799 DOI: 10.1002/ddr.22077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
Growing evidence points to impaired autophagy as one of the major factors implicated in the pathophysiology of Parkinson's disease (PD). Autophagy is a downstream target of adenosine monophosphate-activated protein kinase (AMPK). Inosine has already demonstrated a neuroprotective effect against neuronal loss in neurodegenerative diseases, mainly due its anti-inflammatory and antioxidant properties. We, herein, aimed at investigating the neuroprotective effects of inosine against rotenone-induced PD in rats and to focus on the activation of AMPK-mediated autophagy. Inosine successfully increased p-AMPK/AMPK ratio in PD rats and improved their motor performance and muscular co-ordination (assessed by rotarod, open field, and grip strength tests, as well as by manual gait analysis). Furthermore, inosine was able to mitigate the rotenone-induced histopathological alterations and to restore the tyrosine hydroxylase immunoreactivity in PD rats' substantia nigra. Inosine-induced AMPK activation resulted in an autophagy enhancement, as demonstrated by the increased striatal Unc-S1-like kinase1 and beclin-1 expression, and also by the increment light chain 3II to light chain 3I ratio, along with the decline in striatal mammalian target of rapamycin and p62 protein expressions. The inosine-induced stimulation of AMPK also attenuated neuronal apoptosis and promoted antioxidant activity. Unsurprisingly, these neuroprotective effects were antagonized by a preadministration of dorsomorphin (an AMPK inhibitor). In conclusion, inosine exerted neuroprotective effects against the rotenone-induced neuronal loss via an AMPK activation and through the restoration of the imbalance between autophagy and apoptosis. These findings support potential application of inosine in PD treatment.
Collapse
Affiliation(s)
- Aya M Abd El-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sanaa A Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Shukla S, Saxena A, Shukla SK, Nazir A. Modulation of Neurotransmitter Pathways and Associated Metabolites by Systemic Silencing of Gut Genes in C. elegans. Diagnostics (Basel) 2023; 13:2322. [PMID: 37510066 PMCID: PMC10378590 DOI: 10.3390/diagnostics13142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The gut is now recognized as the "second brain" of the human body due to its integral role in neuronal health and functioning. Although we know that the gut communicates with the brain via immunological factors, microbial metabolites, and neurotransmitters, the interplay of these systems remains poorly understood. To investigate this interplay, we silenced 48 genes that are exclusively or primarily expressed in the C. elegans intestine. We studied the associated effects on various aspects of neurodegeneration, including proteotoxicity induced by α-Syn expression. We also assayed behaviours, such as mobility and cognition, that are governed by various neurotransmitters. We identified nine gut genes that significantly modulated these events. We further performed HR-MAS NMR-based metabolomics to recognize the metabolic variability induced by the respective RNAi conditions of R07E3.1, C14A6.1, K09D9.2, ZK593.2, F41H10.8, M02D8.4, M88.1, C03G6.15 and T01D3.6. We found that key metabolites such as phenylalanine, tyrosine, inosine, and glutamine showed significant variation among the groups. Gut genes that demonstrated neuroprotective effects (R07E3.1, C14A6.1, K09D9.2, and ZK593.2) showed elevated levels of inosine, phenylalanine, and tyrosine; whereas, genes that aggravated neurotransmitter levels demonstrated decreased levels of the same metabolites. Our results shed light on the intricate roles of gut genes in the context of neurodegeneration and suggest a new perspective on the reciprocal interrelation of gut genes, neurotransmitters, and associated metabolites. Further studies are needed to decipher the intricate roles of these genes in context of neurodegeneration in greater detail.
Collapse
Affiliation(s)
- Shikha Shukla
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ankit Saxena
- Sophisticated Analytical Instrumentation Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjeev K Shukla
- Sophisticated Analytical Instrumentation Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
10
|
Thielen E, Oria M, Watanabe-Chailland M, Lampe K, Romick-Rosendale L, Peiro JL. Non-Targeted Metabolic Profiling of Cerebellum in Spina Bifida Fetal Rats. Metabolites 2023; 13:metabo13050670. [PMID: 37233711 DOI: 10.3390/metabo13050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Spina bifida, known more commonly as myelomeningocele, is a neural tube defect that results in herniation of the cerebellum through the foramen magnum into the central canal as part of the Chiari II malformation. Effects stemming from the herniated cerebellum and its metabolic profile have not been extensively studied. The objective of this study is to examine the metabolic effects of this disease on the cerebellum in utero through the utilization of a retinoid acid-induced Spina bifida rat model. Analysis of this model at mid-late (day 15) and term (day 20) of gestation in comparison to both non-exposed and retinoic acid-exposed non-myelomeningocele controls, the observed metabolic changes suggest that mechanisms of oxidative stress and energy depletion are at play in this neuro tissue. These notable mechanisms are likely to result in further damage to neural tissue as the fetus grows and the compressed cerebellum develops and herniates more due to myelomeningocele.
Collapse
Affiliation(s)
- Evan Thielen
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Marc Oria
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Miki Watanabe-Chailland
- NMR-Based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristin Lampe
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Lindsey Romick-Rosendale
- NMR-Based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jose L Peiro
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
11
|
A Purine Derivative Containing an Organoselenium Group Protects Against Memory Impairment, Sensitivity to Nociception, Oxidative Damage, and Neuroinflammation in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2023; 60:1214-1231. [PMID: 36427137 DOI: 10.1007/s12035-022-03110-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
In the present study, the effect of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) was tested against memory impairment and sensitivity to nociception induced by intracerebroventricular injection of amyloid-beta peptide (Aβ) (25-35 fragment), 3 nmol/3 μl/per site in mice. Memory impairment was determined by the object recognition task (ORT) and nociception by the Von-Frey test (VFT). Aβ caused neuroinflammation with upregulation of glial fibrillary acidic protein (GFAP) (in hippocampus), nuclear factor-κB (NF-κB), and the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in cerebral cortex and hippocampus. Additionally, Aβ increased oxidant levels and lipid peroxidation in cerebral cortex and hippocampus, but decreased heme oxygenase-1 (HO-1) and peroxiredoxin-1 (Prdx1) expression in the hippocampus. Anti-neuroinflammatory effects of FSP were demonstrated by a decrease in the expression of GFAP and NF-κB in the hippocampus, as well as a decrease in proinflammatory cytokines in both the hippocampus and cerebral cortex FSP protected against oxidative stress by decreasing oxidant levels and lipid peroxidation and by increasing HO-1 and Prdx1 expressions in the hippocampus of mice. Moreover, FSP prevented the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the hippocampus of mice induced by Aβ. In conclusion, treatment with FSP attenuated memory impairment, nociception sensitivity by decreasing oxidative stress, and neuroinflammation in a mouse model of Alzheimer's disease.
Collapse
|
12
|
Zhao Y, Liu X, Yang G. Adenosinergic Pathway in Parkinson's Disease: Recent Advances and Therapeutic Perspective. Mol Neurobiol 2023; 60:3054-3070. [PMID: 36786912 DOI: 10.1007/s12035-023-03257-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized pathologically by α-synuclein (α-syn) aggregation. In PD, the current mainstay of symptomatic treatment is levodopa (L-DOPA)-based dopamine (DA) replacement therapy. However, the development of dyskinesia and/or motor fluctuations which is relevant to levodopa is restricting its long-term utility. Given that the ability of which is to modulate the striato-thalamo-cortical loops and function to modulate basal ganglia output, the adenosinergic pathway (AP) is qualified as a potential promising non-DA target. As an indispensable component of energy production pathways, AP modulates cellular metabolism and gene regulation in both neurons and neuroglia cells through the recognition and degradation of extracellular adenosine. In addition, AP is geared to the initiation, evolution, and resolution of inflammation as well. Besides the above-mentioned crosstalk between the adenosine and dopamine signaling pathways, the functions of adenosine receptors (A1R, A2AR, A2BR, and A3R) and metabolism enzymes in modulating PD pathological process have been extensively investigated in recent decades. Here we reviewed the emerging findings focused on the function of adenosine receptors, adenosine formation, and metabolism in the brain and discussed its potential roles in PD pathological process. We also recapitulated clinical studies and the preclinical evidence for the medical strategies targeting the Ado signaling pathway to improve motor dysfunction and alleviate pathogenic process in PD. We hope that further clinical studies should consider this pathway in their monotherapy and combination therapy, which would open new vistas to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China. .,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
13
|
Wang Z, Sun Y, Wu Y, Chen R, Xu Y, Cai Y, Chu M, Dou X, Zhang Y, Qin Y, Gu M, Qiao Y, Zhang Q, Li Q, Wang X, Wu J, Wu R. Metabonomic analysis of human and 12 kinds of livestock mature milk. Food Chem X 2023; 17:100581. [PMID: 36845482 PMCID: PMC9944509 DOI: 10.1016/j.fochx.2023.100581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Mature milk, as a nutrient-rich endogenous metabolite, has various beneficial effects on the human body. In order to investigate the specific nutrients provided by different dairy products to humans, we used UHPLC-Q-TOF MS to analyze the highly significantly differentially expressed metabolites in 13 species of mammalian mature milk, which were grouped into 17 major metabolite classes with 1992 metabolites based on chemical classification. KEGG shows that 5 pathways in which differentially significant metabolites are actively involved are ABC transporters, Purine metabolism, Pyrimidine metabolism, Phosphotransferase system, Galactose metabolism. The study found that pig milk and goat milk are closer to human milk and contain more nutrients that are beneficial to human health, followed by camel milk and cow milk. In the context of dairy production, the development of goat milk is more likely to meet human needs and health.
Collapse
Affiliation(s)
- Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinggang Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanzhi Wu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Rui Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanan Xu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chu
- Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xingtang Dou
- Liaoning Province Modern Agricultural Production Base Construction Engineering Center. Shenyang 110000, China
| | - Yu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuting Qin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ming Gu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qian Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
- Corresponding author.
| |
Collapse
|
14
|
Ngamjariyawat A, Cen J, Said R, Incedal C, Idevall-Hagren O, Welsh N. Metabolic stress-induced human beta-cell death is mediated by increased intracellular levels of adenosine. Front Endocrinol (Lausanne) 2023; 14:1060675. [PMID: 36761184 PMCID: PMC9905624 DOI: 10.3389/fendo.2023.1060675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION High intracellular concentrations of adenosine and 2'-deoxyadenosine have been suggested to be an important mediator of cell death. The aim of the present study was to characterize adenosine-induced death in insulin-producing beta-cells, at control and high glucose + palmitate-induced stress conditions. METHODS Human insulin-producing EndoC-betaH1 cells were treated with adenosine, 2'-deoxyadenosine, inosine and high glucose + sodium palmitate, and death rates using flow cytometry were studied. RESULTS We observed that adenosine and the non-receptor-activating analogue 2-deoxyadenosine, but not the adenosine deamination product inosine, promoted beta-cell apoptosis at concentrations exceeding maximal adenosine-receptor stimulating concentrations. Both adenosine and inosine were efficiently taken up by EndoC-betaH1 cells, and inosine counteracted the cell death promoting effect of adenosine by competing with adenosine for uptake. Both adenosine and 2'-deoxyadenosine promptly reduced insulin-stimulated production of plasma membrane PI(3,4,5)P3, an effect that was reversed upon wash out of adenosine. In line with this, adenosine, but not inosine, rapidly diminished Akt phosphorylation. Both pharmacological Bax inhibition and Akt activation blocked adenosine-induced beta-cell apoptosis, indicating that adenosine/2'-deoxyadenosine inhibits the PI3K/Akt/BAD anti-apoptotic pathway. High glucose + palmitate-induced cell death was paralleled by increased intracellular adenosine and inosine levels. Overexpression of adenosine deaminase-1 (ADA1) in EndoC-betaH1 cells, which increased Akt phosphorylation, prevented both adenosine-induced apoptosis and high glucose + palmitate-induced necrosis. ADA2 overexpression not only failed to protect against adenosine and high glucose + palmitate-activated cell death, but instead potentiated the apoptosis-stimulating effect of adenosine. In line with this, ADA1 overexpression increased inosine production from adenosine-exposed cells, whereas ADA2 did not. Knockdown of ADA1 resulted in increased cell death rates in response to both adenosine and high glucose + palmitate. Inhibition of miR-30e-3p binding to the ADA1 mRNA 3'-UTR promoted the opposite effects on cell death rates and reduced intracellular adenosine contents. DISCUSSION It is concluded that intracellular adenosine/2'-deoxyadenosine regulates negatively the PI3K pathway and is therefore an important mediator of beta-cell apoptosis. Adenosine levels are controlled, at least in part, by ADA1, and strategies to upregulate ADA1 activity, during conditions of metabolic stress, could be useful in attempts to preserve beta-cell mass in diabetes.
Collapse
Affiliation(s)
- Anongnad Ngamjariyawat
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Division of Anatomy, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Khlong Luang, Pathumthani, Thailand
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Romain Said
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Ceren Incedal
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Olof Idevall-Hagren
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- *Correspondence: Nils Welsh,
| |
Collapse
|
15
|
Kim IS, Jo EK. Inosine: A bioactive metabolite with multimodal actions in human diseases. Front Pharmacol 2022; 13:1043970. [PMID: 36467085 PMCID: PMC9708727 DOI: 10.3389/fphar.2022.1043970] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
The nucleoside inosine is an essential metabolite for purine biosynthesis and degradation; it also acts as a bioactive molecule that regulates RNA editing, metabolic enzyme activity, and signaling pathways. As a result, inosine is emerging as a highly versatile bioactive compound and second messenger of signal transduction in cells with diverse functional abilities in different pathological states. Gut microbiota remodeling is closely associated with human disease pathogenesis and responses to dietary and medical supplementation. Recent studies have revealed a critical link between inosine and gut microbiota impacting anti-tumor, anti-inflammatory, and antimicrobial responses in a context-dependent manner. In this review, we summarize the latest progress in our understanding of the mechanistic function of inosine, to unravel its immunomodulatory actions in pathological settings such as cancer, infection, inflammation, and cardiovascular and neurological diseases. We also highlight the role of gut microbiota in connection with inosine metabolism in different pathophysiological conditions. A more thorough understanding of the mechanistic roles of inosine and how it regulates disease pathologies will pave the way for future development of therapeutic and preventive modalities for various human diseases.
Collapse
Affiliation(s)
- In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyoung Jo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| |
Collapse
|
16
|
Birder LA, Jackson EK. Purine nucleoside phosphorylase as a target to treat age-associated lower urinary tract dysfunction. Nat Rev Urol 2022; 19:681-687. [PMID: 36071153 PMCID: PMC9842101 DOI: 10.1038/s41585-022-00642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
The lower urinary tract (LUT), including the bladder, urethra and external striated muscle, becomes dysfunctional with age; consequently, many older individuals suffer from lower urinary tract disorders (LUTDs). By compromising urine storage and voiding, LUTDs degrade quality of life for millions of individuals worldwide. Treatments for LUTDs have been disappointing, frustrating both patients and their physicians; however, emerging evidence suggests that partial inhibition of the enzyme purine nucleoside phosphorylase (PNPase) with 8-aminoguanine (an endogenous PNPase inhibitor that moderately reduces PNPase activity) reverses age-associated defects in the LUT and restores the LUT to that of a younger state. Thus, 8-aminoguanine improves LUT biochemistry, structure and function by rebalancing the LUT purine metabolome, making 8-aminoguanine a novel potential treatment for LUTDs.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Valada P, Hinz S, Vielmuth C, Lopes CR, Cunha RA, Müller CE, Lopes JP. The impact of inosine on hippocampal synaptic transmission and plasticity involves the release of adenosine through equilibrative nucleoside transporters rather than the direct activation of adenosine receptors. Purinergic Signal 2022:10.1007/s11302-022-09899-7. [PMID: 36156760 DOI: 10.1007/s11302-022-09899-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Inosine has robust neuroprotective effects, but it is unclear if inosine acts as direct ligand of adenosine receptors or if it triggers metabolic effects indirectly modifying the activity of adenosine receptors. We now combined radioligand binding studies with electrophysiological recordings in hippocampal slices to test how inosine controls synaptic transmission and plasticity. Inosine was without effect at 30 μM and decreased field excitatory post-synaptic potentials by 14% and 33% at 100 and 300 μM, respectively. These effects were prevented by the adenosine A1 receptor antagonist DPCPX. Inosine at 300 (but not 100) μM also decreased the magnitude of long-term potentiation (LTP), an effect prevented by DPCPX and by the adenosine A2A receptor antagonist SCH58261. Inosine showed low affinity towards human and rat adenosine receptor subtypes with Ki values of > 300 µM; only at the human and rat A1 receptor slightly higher affinities with Ki values of around 100 µM were observed. Affinity of inosine at the rat A3 receptor was higher (Ki of 1.37 µM), while it showed no interaction with the human orthologue. Notably, the effects of inosine on synaptic transmission and plasticity were abrogated by adenosine deaminase and by inhibiting equilibrative nucleoside transporters (ENT) with dipyridamole and NBTI. This shows that the impact of inosine on hippocampal synaptic transmission and plasticity is not due to a direct activation of adenosine receptors but is instead due to an indirect modification of the tonic activation of these adenosine receptors through an ENT-mediated modification of the extracellular levels of adenosine.
Collapse
Affiliation(s)
- Pedro Valada
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Sonja Hinz
- Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Christin Vielmuth
- Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Christa E Müller
- Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121, Bonn, Germany
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| |
Collapse
|
18
|
Inosine attenuates 3-nitropropionic acid-induced Huntington's disease-like symptoms in rats via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway. Life Sci 2022; 300:120569. [PMID: 35472453 DOI: 10.1016/j.lfs.2022.120569] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by involuntary bizarre movements, psychiatric symptoms, dementia, and early death. Several studies suggested neuroprotective activities of inosine; however its role in HD is yet to be elucidated. The current study aimed to demonstrate the neuroprotective effect of inosine in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats while investigating possible underlying mechanisms. Rats were randomly divided into five groups; group 1 received i.p. injections of 1% DMSO, whereas groups 2, 3, 4, and 5 received 3-NP (10 mg/kg, i.p.) for 14 days, concomitantly with inosine (200 mg/kg., i.p.) in groups 3, 4, and 5, SCH58261, a selective adenosine 2A receptor (A2AR) antagonist, (0.05 mg/kg, i.p.) in group 4, and PD98059, an extracellular signal-regulated kinase (ERK) inhibitor, (0.3 mg/kg, i.p.) in group 5. Treatment with inosine mitigated 3-NP-induced motor abnormalities and body weight loss. Moreover, inosine boosted the striatal brain-derived neurotrophic factor (BDNF) level, p-tropomyosin receptor kinase B (TrKB), p-ERK, and p-cAMP response element-binding protein (CREB) expression, which subsequently suppressed oxidative stress biomarkers (malondialdehyde and nitric oxide) and pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-1β) and replenished the glutathione content. Similarly, histopathological analyses revealed decreased striatal injury score, the expression of the glial fibrillary acidic protein, and neuronal loss after inosine treatment. These effects were attenuated by the pre-administration of SCH58261 or PD98059. In conclusion, inosine attenuated 3-NP-induced HD-like symptoms in rats, at least in part, via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway.
Collapse
|
19
|
Speers AB, García-Jaramillo M, Feryn A, Matthews DG, Lichtenberg T, Caruso M, Wright KM, Quinn JF, Stevens JF, Maier CS, Soumyanath A, Gray NE. Centella asiatica Alters Metabolic Pathways Associated With Alzheimer's Disease in the 5xFAD Mouse Model of ß-Amyloid Accumulation. Front Pharmacol 2021; 12:788312. [PMID: 34975484 PMCID: PMC8717922 DOI: 10.3389/fphar.2021.788312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Centella asiatica is an herb used in Ayurvedic and traditional Chinese medicine for its beneficial effects on brain health and cognition. Our group has previously shown that a water extract of Centella asiatica (CAW) elicits cognitive-enhancing effects in animal models of aging and Alzheimer's disease, including a dose-related effect of CAW on memory in the 5xFAD mouse model of ß-amyloid accumulation. Here, we endeavor to elucidate the mechanisms underlying the effects of CAW in the brain by conducting a metabolomic analysis of cortical tissue from 5xFAD mice treated with increasing concentrations of CAW. Tissue was collected from 8-month-old male and female 5xFAD mice and their wild-type littermates treated with CAW (0, 200, 500, or 1,000 mg/kg/d) dissolved in their drinking water for 5 weeks. High-performance liquid chromatography coupled to high-resolution mass spectrometry analysis was performed and relative levels of 120 annotated metabolites were assessed in the treatment groups. Metabolomic analysis revealed sex differences in the effect of the 5xFAD genotype on metabolite levels compared to wild-type mice, and variations in the metabolomic response to CAW depending on sex, genotype, and CAW dose. In at least three of the four treated groups (5xFAD or wild-type, male or female), CAW (500 mg/kg/d) significantly altered metabolic pathways related to purine metabolism, nicotinate and nicotinamide metabolism, and glycerophospholipid metabolism. The results are in line with some of our previous findings regarding specific mechanisms of action of CAW (e.g., improving mitochondrial function, reducing oxidative stress, and increasing synaptic density). Furthermore, these findings provide new information about additional, potential mechanisms for the cognitive-enhancing effect of CAW, including upregulation of nicotinamide adenine dinucleotide in the brain and modulation of brain-derived neurotrophic factor. These metabolic pathways have been implicated in the pathophysiology of Alzheimer's disease, highlighting the therapeutic potential of CAW in this neurodegenerative disease.
Collapse
Affiliation(s)
- Alex B. Speers
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Manuel García-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Alicia Feryn
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, United States
| | - Donald G. Matthews
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Talia Lichtenberg
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Maya Caruso
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Kirsten M. Wright
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
- Parkinson’s Disease Research Education and Clinical Care Center, Veterans’ Administration Portland Health Care System, Portland, OR, United States
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Claudia S. Maier
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| | - Nora E. Gray
- Department of Neurology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
20
|
Teixeira FC, Soares MSP, Blödorn EB, Domingues WB, Reichert KP, Zago AM, Carvalho FB, Gutierres JM, Gonçales RA, da Cruz Fernandes M, Campos VF, Chitolina MR, Stefanello FM, Spanevello RM. Investigating the Effect of Inosine on Brain Purinergic Receptors and Neurotrophic and Neuroinflammatory Parameters in an Experimental Model of Alzheimer's Disease. Mol Neurobiol 2021; 59:841-855. [PMID: 34792730 DOI: 10.1007/s12035-021-02627-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathology characterized by progressive impairment of memory, associated with neurochemical alterations and limited therapy. The aim of this study was to evaluate the effects of inosine on memory, neuroinflammatory cytokines, neurotrophic factors, expression of purinergic receptors, and morphological changes in the hippocampus and cerebral cortex of the rats with AD induced by streptozotocin (STZ). Male rats were divided into four groups: I, control; II, STZ; III, STZ plus inosine (50 mg/kg); and IV, STZ plus inosine (100 mg/kg). The animals received intracerebroventricular injections of STZ or buffer. Three days after the surgical procedure, animals were treated with inosine (50 mg/kg or 100 mg/kg) for 25 days. Inosine was able to prevent memory deficits and decreased the immunoreactivity of the brain A2A adenosine receptor induced by STZ. Inosine also increased the levels of brain anti-inflammatory cytokines (IL-4 and IL-10) and the expression of brain-derived neurotrophic factor and its receptor. Changes induced by STZ in the molecular layer of the hippocampus were attenuated by treatment with inosine. Inosine also protected against the reduction of immunoreactivity for synaptophysin induced by STZ in CA3 hippocampus region. However, inosine did not prevent the increase in GFAP in animals exposed to STZ. In conclusion, our findings suggest that inosine has therapeutic potential for AD through the modulation of different brain mechanisms involved in neuroprotection.
Collapse
Affiliation(s)
- Fernanda Cardoso Teixeira
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil
| | - Eduardo Bierhaus Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Karine Paula Reichert
- Laboratório de Enzimologia Toxicológica, Programa de Pós- Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Adriana Maria Zago
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabiano Barbosa Carvalho
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jessie Martins Gutierres
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Marilda da Cruz Fernandes
- Laboratório de Pesquisa Em Patologia, Programa de Pós - Graduação Em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós - Graduação Em Biotecnologia, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Maria Rosa Chitolina
- Laboratório de Enzimologia Toxicológica, Programa de Pós- Graduação Em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Programa de Pós - Graduação Em Bioquímica E Bioprospecção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação E Câncer, Programa de Pós Graduação Em Bioquímica E Bioprospeção, Universidade Federal de Pelotas, Campus Capão do Leão, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
21
|
Abdelkader NF, Ibrahim SM, Moustafa PE, Elbaset MA. Inosine mitigated diabetic peripheral neuropathy via modulating GLO1/AGEs/RAGE/NF-κB/Nrf2 and TGF-β/PKC/TRPV1 signaling pathways. Biomed Pharmacother 2021; 145:112395. [PMID: 34775239 DOI: 10.1016/j.biopha.2021.112395] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inosine is a dietary supplement that is widely used for managing numerous central neurological disorders. Interestingly, recent experimental investigation of inosine revealed its potential to promote peripheral neuroprotection after sciatic nerve injury. Such investigation has guided the focus of the current study to expose the potential of inosine in mitigating diabetic peripheral neuropathy (DPN) in rats and to study the possible underlying signaling pathways. Adult male Wistar rats were arbitrarily distributed into four groups. In the first group, animals received saline daily for 15 days whereas rats of the remaining groups received a single injection of both nicotinamide (50 mg/Kg/i.p.) and streptozotocin (52.5 mg/Kg/i.p.) for DPN induction. Afterward, inosine (10 mg/Kg/p.o.) was administered to two groups, either alone or in combination with caffeine (3.75 mg/Kg/p.o.), an adenosine receptor antagonist. As a result, inosine showed a hypoglycemic effect, restored the sciatic nerve histological structure, enhanced myelination, modulated conduction velocities and maintained behavioral responses. Furthermore, inosine increased GLO1, reduced AGE/RAGE axis and oxidative stress which in turn, downregulated NF-κB p65 and its phosphorylated form in the sciatic nerves. Inosine enhanced Nrf2 expression and its downstream molecule HO-1, resulting in increased CAT and SOD along with lowered MDA. Moreover, pain was relieved due to suppression of PKC and TRPV1 expression, which ultimately lead to reduced SP and TGF-β. The potential effects of inosine were nearly blocked by caffeine administration; this emphasizes the role of adenosine receptors in inosine-mediated neuroprotective effects. In conclusion, inosine alleviated hyperglycemia-induced DPN via modulating GLO1/AGE/RAGE/NF-κB p65/Nrf2 and TGF-β/PKC/TRPV1/SP pathways.
Collapse
Affiliation(s)
- Noha F Abdelkader
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt.
| | - Sherehan M Ibrahim
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt
| | - Passant E Moustafa
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| | - Marawan A Elbaset
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| |
Collapse
|
22
|
Protective Effects of Inosine on Memory Consolidation in a Rat Model of Scopolamine-Induced Cognitive Impairment: Involvement of Cholinergic Signaling, Redox Status, and Ion Pump Activities. Neurochem Res 2021; 47:446-460. [PMID: 34623562 DOI: 10.1007/s11064-021-03460-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
This study investigated the effects of inosine on memory acquisition and consolidation, cholinesterases activities, redox status and Na+, K+-ATPase activity in a rat model of scopolamine-induced cognitive impairment. Adult male rats were divided into four groups: control (saline), scopolamine (1 mg/kg), scopolamine plus inosine (50 mg/kg), and scopolamine plus inosine (100 mg/kg). Inosine was pre-administered for 7 days, intraperitoneally. On day 8, scopolamine was administered pre (memory acquisition protocol) or post training (memory consolidation protocol) on inhibitory avoidance tasks. The animals were subjected to the step-down inhibitory avoidance task 24 hours after the training. Scopolamine induced impairment in the acquisition and consolidation phases; however, inosine was able to prevent only the impairment in memory consolidation. Also, scopolamine increased the activity of acetylcholinesterase and reduced the activity of Na+, K+-ATPase and the treatment with inosine protected against these alterations in consolidation protocol. In the animals treated with scopolamine, inosine improved the redox status by reducing the levels of reactive oxygen species and thiobarbituric acid reactive substances and restoring the activity of the antioxidant enzymes, superoxide dismutase and catalase. Our findings suggest that inosine may offer protection against scopolamine-induced memory consolidation impairment by modulating brain redox status, cholinergic signaling and ion pump activity. This compound may provide an interesting approach in pharmacotherapy and as a prophylactic against neurodegenerative mechanisms involved in Alzheimer's disease.
Collapse
|
23
|
Nascimento FP, Macedo-Júnior SJ, Lapa-Costa FR, Cezar-Dos-Santos F, Santos ARS. Inosine as a Tool to Understand and Treat Central Nervous System Disorders: A Neglected Actor? Front Neurosci 2021; 15:703783. [PMID: 34504414 PMCID: PMC8421806 DOI: 10.3389/fnins.2021.703783] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Since the 1970s, when ATP was identified as a co-transmitter in sympathetic and parasympathetic nerves, it and its active metabolite adenosine have been considered relevant signaling molecules in biological and pathological processes in the central nervous system (CNS). Meanwhile, inosine, a naturally occurring purine nucleoside formed by adenosine breakdown, was considered an inert adenosine metabolite and remained a neglected actor on the purinergic signaling scene in the CNS. However, this scenario began to change in the 1980s. In the last four decades, an extensive group of shreds of evidence has supported the importance of mediated effects by inosine in the CNS. Also, inosine was identified as a natural trigger of adenosine receptors. This evidence has shed light on the therapeutic potential of inosine on disease processes involved in neurological and psychiatric disorders. Here, we highlight the clinical and preclinical studies investigating the involvement of inosine in chronic pain, schizophrenia, epilepsy, depression, anxiety, and in neural regeneration and neurodegenerative diseases, such as Parkinson and Alzheimer. Thus, we hope that this review will strengthen the knowledge and stimulate more studies about the effects promoted by inosine in neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Francisney Pinto Nascimento
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | | | | | - Fernando Cezar-Dos-Santos
- Programa de Pós-Graduação em Biociências, Laboratório de Neurofarmacologia Clínica, Faculdade de Medicina, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Brazil
| | - Adair R S Santos
- Programa de Pós-Graduação em Neurociências, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
24
|
Li W, Wang S, Wang H, Wang J, Jin F, Fang F, Fang C. Astragaloside IV prevents memory impairment in D-galactose-induced aging rats via the AGEs/RAGE/ NF-κB axis. Arch Med Res 2021; 53:20-28. [PMID: 34217517 DOI: 10.1016/j.arcmed.2021.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND We investigated the effects of astragaloside IV (AS-IV) on memory function in aging rats mimicked by D-galactose administration and explored the potential molecular mechanisms. METHODS Twenty-seven male rats were randomly divided into control group (N = 9), model group (N = 9), and AS-IV treated group (N = 9). Aging model was stimulated by D-galactose (400 mg/kg/d, i.p., dissolved in saline) for 8 weeks in rats. The general status of the rats was observed weekly. Learning and memory function was determined using the eight-arm radical maze and step-down test. Pathological changes in the hippocampal CA1 region were determined by hematoxylin and eosin staining. Organ indexes, superoxide dismutase (SOD) activity and malonaldehyde (MDA) content in the serum were measured. Expression of advanced glycation end products (AGEs), receptor for AGEs (RAGE), nuclear factor-κB (NF-κB), interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, real-time polymerase chain reaction or western blotting. RESULTS AS-IV improved the general status of the aging rats induced by D-galactose, prevented the impairment of memory function, organ indexes, and the pathological damage of the hippocampus. From the prospective of oxidative stress, AS-IV increased sera SOD activity and decreased MDA content. Additionally, AS-IV also reduced the inflammatory response by reducing hippocampal IL-1β, TNF-α, and IL-6 expression. Importantly, AS-IV prevented D-galactose-induced expression of AGEs, RAGE and NF-κB in the hippocampus. CONCLUSION AS-IV could prevent D-galactose-induced aging and memory impairment in rats, likely via regulation of inflammatory response, which was modulated by AGEs/RAGE/NF-κB axis.
Collapse
Affiliation(s)
- Wei Li
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Shuo Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Hao Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jiepeng Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Feng Jin
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Chaoyi Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang 050091, China.
| |
Collapse
|
25
|
Abstract
The global increase in lifespan noted not only in developed nations, but also in large developing countries parallels an observed increase in a significant number of non-communicable diseases, most notable neurodegenerative disorders. Neurodegenerative disorders present a number of challenges for treatment options that do not resolve disease progression. Furthermore, it is believed by the year 2030, the services required to treat cognitive disorders in the United States alone will exceed $2 trillion annually. Mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae), the mechanistic target of rapamycin, and the pathways of autophagy and apoptosis offer exciting avenues to address these challenges by focusing upon core cellular mechanisms that may significantly impact nervous system disease. These pathways are intimately linked such as through cell signaling pathways involving protein kinase B and can foster, sometimes in conjunction with trophic factors, enhanced neuronal survival, reduction in toxic intracellular accumulations, and mitochondrial stability. Feedback mechanisms among these pathways also exist that can oversee reparative processes in the nervous system. However, mammalian forkhead transcription factors, silent mating type information regulation 2 homolog 1, mechanistic target of rapamycin, and autophagy can lead to cellular demise under some scenarios that may be dependent upon the precise cellular environment, warranting future studies to effectively translate these core pathways into successful clinical treatment strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling New York, New York, NY, USA
| |
Collapse
|
26
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
27
|
Shahpouri MM, Barekatain M, Tavakoli M, Badihian S, Shaygannejad V. Effect of Donepezil on Cognitive Impairment, Quality of Life, and Depression in Multiple Sclerosis Patients: A Randomized Clinical Trial. Int J Prev Med 2020; 11:69. [PMID: 32742613 PMCID: PMC7373083 DOI: 10.4103/ijpvm.ijpvm_154_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/29/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Cognitive impairment is one of the debilitating consequences of multiple sclerosis (MS) with negative effects on daily life, individual and social activities, quality of life (QOL), and depression. No approved medication is introduced so far for affected individuals. We aimed to evaluate the efficacy of donepezil on cognitive performance, QOL, and depression in MS. Methods: This is a double-blinded randomized clinical trial conducted on 100 patients with MS during 2018. Patients were assessed prior to intervention abbreviated mental test (AMT), prospective and retrospective mental questionnaire (PRMQ), everyday memory questionnaire (EMQ), digit span test, Beck depression inventory (BDI), and MSQOL questionnaire. Then patients were randomly divided into two groups of treatment (daily regimen of 10 mg donepezil) and placebo for 3 months. Subjects were reassessed using the same instruments at the end of intervention. Results: Fifty patients remained in each group at the end of study. The mean age in donepezil and placebo groups was 31.9 ± 5.89 and 30.65 ± 5.43 years, respectively. EMQ, PRMQ, digit span test, MSQOL, and depression scores improved following donepezil therapy (P < 0.001) while no statistically significant difference was found in the placebo group (P > 0.05). Comparison of two groups also showed more favorable scores in donepezil group with respect to all assessment tools (P < 0.001). Conclusions: Donepezil could effectively improve cognitive impairment in MS patients. Also, its positive effect on QOL and depression could result in a smaller number of interventions in this group of patients.
Collapse
Affiliation(s)
- Mohammad Mahdi Shahpouri
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Barekatain
- Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahgol Tavakoli
- Department of Psychology, School of Educational Sciences and Psychology, University of Isfahan, Isfahan, Iran
| | - Shervin Badihian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Inosine, an endogenous purine nucleoside, avoids early stages of atherosclerosis development associated to eNOS activation and p38 MAPK/NF-kB inhibition in rats. Eur J Pharmacol 2020; 882:173289. [PMID: 32565337 DOI: 10.1016/j.ejphar.2020.173289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is a multifactorial chronic disease, initiated by an endothelial dysfunction. Adenosine and its analogs can change a variety of inflammatory diseases and has shown important effects at different disease models. Inosine is a stable analogous of adenosine, but its effects in inflammatory diseases, like atherosclerosis, have not yet been studied. The aim of this study was to evaluate the pharmacological properties of inosine, administered sub chronically in a hypercholesterolemic model. Male Wistar rats were divided into four groups: control group (C) and control + inosine (C + INO) received standard chow, hypercholesterolemic diet group (HCD) and HCD + inosine (HCD + INO) were fed a hypercholesterolemic diet. At 31st experimentation day, the treatment with inosine was performed for C + INO and HCD + INO groups once daily in the last 15 days. We observed that the hypercholesterolemic diet promoted an increase in lipid levels and inflammatory cytokines production, while inosine treatment strongly decreased these effects. Additionally, HCD group presented a decrease in maximum relaxation acetylcholine induced and an increase in contractile response phenylephrine induced when compared to the control group, as well as it has presented an enhancement in collagen and ADP-induced platelet aggregation. On the other hand, inosine treatment promoted a decrease in contractile response to phenylephrine, evoked an improvement in endothelium-dependent vasorelaxant response and presented antiplatelet properties. Moreover, inosine activated eNOS and reduced p38 MAPK/NF-κB pathway in aortic tissues. Taken together, the present results indicate inosine as a potential drug for the treatment of cardiovascular disorders such as atherosclerosis.
Collapse
|
29
|
Inosine protects against impairment of memory induced by experimental model of Alzheimer disease: a nucleoside with multitarget brain actions. Psychopharmacology (Berl) 2020; 237:811-823. [PMID: 31834453 DOI: 10.1007/s00213-019-05419-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
RATIONALE Inosine is a naturally occurring purine nucleoside formed by adenosine breakdown. This nucleoside is reported to exert potent effects on memory and learning, possibly through its antioxidant and anti-inflammatory actions. OBJECTIVE The objective is to evaluate the effects of inosine on the behavioral and neurochemical parameters in a rat model of Alzheimer's disease (AD) induced by streptozotocin (STZ). METHODS Adult male rats were divided into four groups: control (saline), STZ, STZ plus inosine (50 mg/kg), and STZ plus inosine (100 mg/kg). STZ (3 mg/kg) was administered by bilateral intracerebroventricular injection. The animals were treated intraperitoneally with inosine for 25 days. Memory, oxidative stress, ion pump activities, acetylcholinesterase (AChE), and choline acetyltransferase (ChAT) activities and expression were evaluated in the cerebral cortex and hippocampus. RESULTS The memory impairment induced by STZ was prevented by inosine. An increase in the Na+, K+-ATPase, and Mg-ATPase activities and a decrease in the Ca2+-ATPase activity were induced by STZ in the hippocampus and cerebral cortex, and inosine could prevent these alterations in ion pump activities. Inosine also prevented the increase in AChE activity and the alterations in AChE and ChAT expression induced by STZ. STZ increased the reactive oxygen species, nitrite levels, and superoxide dismutase activity and decreased the catalase and glutathione peroxidase activities. Inosine treatment conferred protection from these oxidative alterations in the brain. CONCLUSIONS Our findings demonstrate that inosine affects brain multiple targets suggesting that this molecule may have therapeutic potential against cognitive deficit and tissue damage in AD.
Collapse
|
30
|
The protective effect of inosine against rotenone-induced Parkinson's disease in mice; role of oxido-nitrosative stress, ERK phosphorylation, and A2AR expression. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1041-1053. [PMID: 31915844 DOI: 10.1007/s00210-019-01804-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a severe disabling syndrome in which neuroinflammation and various signaling pathways are believed to mediate dopaminergic neurodegeneration. Here, the possible disease-modifying effects of the purine nucleoside inosine were examined against rotenone-induced PD. Mice were allocated into six groups, namely, a normal control group receiving dimethylsulfoxide, a PD control group receiving rotenone, a standard treatment group receiving L-dopa/carbidopa together with rotenone, and three treatment groups receiving inosine in low, medium, and high doses together with rotenone. At the end of the experimental protocol, three behavioral tests were performed to assess PD motor manifestations, namely, wire-hanging test, wood-walking test, and stair test. After performing the behavioral study, mice striata were isolated for the colorimetric assay of hypoxanthine, the enzyme-linked immunosorbent assay of dopamine, tumor necrosis factor-α, interleukin-6 and nitrite, the Western blot estimation of total and phosphorylated extracellular signal-regulated kinase (tERK and pERK), the polymerase chain reaction estimation of adenosine A2A receptor (A2AR) expression, as well as the histopathological examination of substantia nigra and striatal tissue. Inosine protected against PD progression in a dose-dependent manner, with the effect comparable to the standard treatment L-dopa/carbidopa, evidenced by behavioral, biochemical, and histologic findings. The beneficial antiparkinsonian effect of inosine could be attributed to the ability of the drug to ameliorate neuroinflammation and oxido-nitrosative stress, together with suppression of ERK phosphorylation and down-regulation of A2AR expression. Inosine could therefore be considered as a disease-modifying agent against PD, but further studies are claimed to confirm such effects clinically.
Collapse
|
31
|
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13:23-34. [PMID: 31794280 PMCID: PMC6959472 DOI: 10.1080/17512433.2020.1698288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Dementia is the 7th leading cause of death that imposes a significant financial and service burden on the global population. Presently, only symptomatic care exists for cognitive loss, such as Alzheimer's disease.Areas covered: Given the advancing age of the global population, it becomes imperative to develop innovative therapeutic strategies for cognitive loss. New studies provide insight to the association of cognitive loss with metabolic disorders, such as diabetes mellitus.Expert opinion: Diabetes mellitus is increasing in incidence throughout the world and affects 350 million individuals. Treatment strategies identifying novel pathways that oversee metabolic and neurodegenerative disorders offer exciting prospects to treat dementia. The mechanistic target of rapamycin (mTOR) and circadian clock gene pathways that include AMP activated protein kinase (AMPK), Wnt1 inducible signaling pathway protein 1 (WISP1), erythropoietin (EPO), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) provide novel strategies to treat cognitive loss that has its basis in metabolic cellular dysfunction. However, these pathways are complex and require precise regulation to maximize treatment efficacy and minimize any potential clinical disability. Further investigations hold great promise to treat both the onset and progression of cognitive loss that is associated with metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
32
|
Bisaga GN, Mikhailenko AA, Barsukov IN. [Progress and prospects of metabolic therapy in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:73-78. [PMID: 31089100 DOI: 10.17116/jnevro201911903173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Side-effects and incomplete response to standard therapy of patients with multiple sclerosis (MS) stimulate the development of an alternative therapy, that influences, in particular, metabolic functions of MS patients. Metabolic therapy (vitamins, antioxidants and others) have been used for a long time in neurologic practice for the treatment of MS on the basis of pathophysiological mechanisms, positive clinical experience, low rate of side-effects and practical availability. Recent objective scientific data explain the necessity of correction of the disturbed metabolic profile (metabolome) in MS, and the first evidence of the efficacy of several metabolic agents, particularly, biotin and vitamin D, was shown. Taking into account the mechanisms of action and clinical experience, the authors consider the prospects of using the combined medicine cytoflavin, that contains succinate, nicotinamide, riboflavin and inosine, in metabolic therapy of MS.
Collapse
Affiliation(s)
- G N Bisaga
- FGBE 'National Medical Research Centre V.A. Almazov', St.-Petersburg, Russia; Military Medical Academy S.M. Kirov, St.-Petersburg, Russia
| | | | - I N Barsukov
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
33
|
Li J, Zhao R, Zhao H, Chen G, Jiang Y, Lyu X, Wu T. Reduction of Aging-Induced Oxidative Stress and Activation of Autophagy by Bilberry Anthocyanin Supplementation via the AMPK-mTOR Signaling Pathway in Aged Female Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7832-7843. [PMID: 31242723 DOI: 10.1021/acs.jafc.9b02567] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oxidative-stress-induced senescence constitutes a great risk factor for chronic diseases. Therefore, ameliorating oxidative-stress-induced senescence is expected to prevent chronic diseases. The beneficial effects of bilberry anthocyanin (BA) on healthy aging were evaluated using 12 month old, aging female SD rats in this study. The experimental results suggested that consumption of a middle-dose of BA (MBA) appreciably increased the relative liver mass by 7.34% when compared with that of the AC group. Furthermore, BA significantly increased the total antioxidant capacity, total superoxide dismutase activity, and catalase activities; decreased malondialdehyde, serum low-density lipoprotein cholesterol (LDL-C), serum total cholesterol (TC), serum triglyceride (TG), and glycated serum protein (GSP) levels; and reduced TC/high-density lipoprotein cholesterol (HDL-C) and LDL-C/HDL-C ratios. In addition, MBA decreased the activity of fecal bacterial enzymes and increased the content of fecal short-chain fatty acids. The Western blot results showed that MBA significantly upregulated the expression of OCLN, ZO-1, and autophagy-related proteins (ATP6 V0C, ATG4D, and CTSB) in aging rats. Moreover, it also showed that MBA induced the phosphorylation of AMPK and FOXO3a and inhibited the phosphorylation of mTOR, which indicated that bilberry anthocyanin induced autophagy via the AMPK-mTOR signaling pathways. This induction of autophagy further promoted oxidative stress resistance effects and intestinal epithelial barrier function of bilberry anthocyanin in aging female rats.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Runtian Zhao
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Huan Zhao
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Guiyun Chen
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Yuhan Jiang
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Xiaoling Lyu
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University , Beijing 100193 , China
| |
Collapse
|
34
|
Maiese K. Impacting dementia and cognitive loss with innovative strategies: mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural Regen Res 2019; 14:773-774. [PMID: 30688262 PMCID: PMC6375029 DOI: 10.4103/1673-5374.249224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
35
|
Doyle C, Cristofaro V, Sullivan MP, Adam RM. Inosine - a Multifunctional Treatment for Complications of Neurologic Injury. Cell Physiol Biochem 2018; 49:2293-2303. [PMID: 30261493 DOI: 10.1159/000493831] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
Spinal cord injury (SCI) caused by trauma or disease leads to motor and sensory abnormalities that depend on the level, severity and duration of the lesion. The most obvious consequence of SCI is paralysis affecting lower and upper limbs. SCI also leads to loss of bladder and bowel control, both of which have a deleterious, life-long impact on the social, psychological, functional, medical and economic well being of affected individuals. Currently, there is neither a cure for SCI nor is there adequate management of its consequences. Although medications provide symptomatic relief for the complications of SCI including muscle spasms, lower urinary tract dysfunction and hyperreflexic bowel, strategies for repair of spinal injuries and recovery of normal limb and organ function are still to be realized. In this review, we discuss experimental evidence supporting the use of the naturally occurring purine nucleoside inosine to improve the devastating sequelae of SCI. Evidence suggests inosine is a safe, novel agent with multifunctional properties that is effective in treating complications of SCI and other neuropathies.
Collapse
Affiliation(s)
- Claire Doyle
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian Cristofaro
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Division of Urology, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Maryrose P Sullivan
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Division of Urology, VA Boston Healthcare System, Boston, Massachusetts, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Maiese K. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer's Disease. Curr Neurovasc Res 2018; 15:367-371. [PMID: 30484407 PMCID: PMC6538488 DOI: 10.2174/1567202616666181128120003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
The world's population continues to age at a rapid pace. By the year 2050, individuals over the age of 65 will account for sixteen percent of the world's population and life expectancy will increase well over eighty years of age. Accompanied by the aging of the global population is a significant rise in Non-Communicable Diseases (NCDs). Neurodegenerative disorders will form a significant component for NCDs. Currently, dementia is the 7th leading cause of death and can be the result of multiple causes that include diabetes mellitus, vascular disease, and Alzheimer's Disease (AD). AD may represent at least sixty percent of these cases. Current treatment for these disorders is extremely limited to provide only some symptomatic relief at present. Sirtuins and in particular, the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), represent innovative strategies for the treatment of cognitive loss. New work has revealed that SIRT1 provides protection against memory loss through mechanisms that involve oxidative stress, Aβ toxicity, neurofibrillary degeneration, vascular injury, mitochondrial dysfunction, and neuronal loss. In addition, SIRT1 relies upon other avenues that can include trophic factors, such as erythropoietin, and signaling pathways, such as Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4). Yet, SIRT1 can have detrimental effects as well that involve tumorigenesis and blockade of stem cell differentiation and maturation that can limit reparative processes for cognitive loss. Further investigations with sirtuins and SIRT1 should be able to capitalize upon these novel targets for dementia and cognitive loss.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|