1
|
Lei W, Yiming S, Qiang P, Xin C, Peng G, Baofeng Z. Unleashing the Neurotherapeutic Potential: The Crucial Role of miR-206-3p in Facilitating Hsp90aa1-Mediated Central Nervous System Injuries During Heat Stroke. Mol Neurobiol 2025; 62:1433-1450. [PMID: 38995443 DOI: 10.1007/s12035-024-04342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
This study aims to explore the molecular mechanisms of miR-206-3p in regulating Hsp90aa1 and its involvement in the central nervous system (CNS) injury in heat stroke. Weighted gene co-expression network analysis (WGCNA) was performed on the GSE64778 dataset of heat stroke to identify module genes most closely associated with disease characteristics. Through the selection of key genes and predicting upstream miRNAs using RNAInter and miRWalk databases, the regulatory relationship between miR-206-3p and Hsp90aa1 was determined. Through in vitro experiments, various methods, including bioinformatics analysis, dual-luciferase reporter gene assay, RIP experiment, and RNA pull-down experiment, were utilized to validate this regulatory relationship. Furthermore, functional experiments, including CCK-8 assay to test neuron cell viability and flow cytometry to assess neuron apoptosis levels, confirmed the role of miR-206-3p. Transmission electron microscopy, real-time quantitative PCR, DCFH-DA staining, and ATP assay were employed to verify neuronal mitochondrial damage. Heat stroke rat models were constructed, and mNSS scoring and cresyl violet staining were utilized to assess neural functional impairment. Biochemical experiments were conducted to evaluate inflammation, brain water content, and histopathological changes in brain tissue using H&E staining. TUNEL staining was applied to detect neuronal apoptosis in brain tissue. RT-qPCR and Western blot were performed to measure gene and protein expression levels, further validating the regulatory relationship in vivo. Bioinformatics analysis indicated that miR-206-3p regulation of Hsp90aa1 may be involved in CNS injury in heat stroke. In vivo, animal experiments demonstrated that miR-206-3p and Hsp90aa1 co-localized in neurons of the rat hippocampal CA3 region, and with prolonged heat stress, the expression of miR-206-3p gradually increased while the expression of Hsp90aa1 gradually decreased. Further in vitro cellular mechanism validation and functional experiments confirmed that miR-206-3p could inhibit neuronal cell viability and promote apoptosis and mitochondrial damage by targeting Hsp90aa1. In vivo, experiments confirmed that miR-206-3p promotes CNS injury in heat stroke. This study revealed the regulatory relationship between miR-206-3p and Hsp90aa1, suggesting that miR-206-3p could regulate the expression of Hsp90aa1, inhibit neuronal cell viability, and promote apoptosis, thereby contributing to CNS injury in heat stroke.
Collapse
Affiliation(s)
- Wang Lei
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Shen Yiming
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Peng Qiang
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Chu Xin
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Gu Peng
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China
| | - Zhu Baofeng
- Department of Emergency Medicine, Nantong First People's Hospital, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
2
|
Trinh DQ, Mai NH, Pham TD. Insufficient Sleep and Alzheimer's Disease: Potential Approach for Therapeutic Treatment Methods. Brain Sci 2024; 15:21. [PMID: 39851389 PMCID: PMC11763454 DOI: 10.3390/brainsci15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
The interaction between Alzheimer's disease (AD) and sleep deprivation has recently gained attention in the scientific literature, and recent advances suggest that AD epidemiology management should coincide with the management of sleeping disorders. This review focuses on the aspects of the mechanisms underlying the link between AD and insufficient sleep with progressing age. We also provide information which could serve as evidence for future treatments of AD from the early stages in connection with sleep disorder medication.
Collapse
Affiliation(s)
- Dieu Quynh Trinh
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nhu Huynh Mai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | - Toan Duc Pham
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
3
|
Chai D, Jiang H, Lv X. The impact of dexmedetomidine on ketamine-induced neurotoxicity and cognitive impairment in young mice. Int J Dev Neurosci 2024; 84:735-744. [PMID: 39192610 DOI: 10.1002/jdn.10373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The potential neuroprotective effects of dexmedetomidine against ketamine-induced neurotoxicity remain inconclusive. This study aims to investigate the influence of dexmedetomidine on ketamine-induced neuronal apoptosis and neurodevelopmental toxicity. METHODS In vitro experiments employed concentrations of 0.1 uM for dexmedetomidine and 50 uM for ketamine individually as well as their combination. Changes in apoptotic proteins and dendritic development in neurons were assessed after a 6-h exposure to the drugs with evaluations conducted 24 hs' post-treatment. In vivo experiments entailed intraperitoneal administration starting from postnatal Day 7 (P7) continuously for 3 days (P7-P9) using dosages of 100 mg/kg for ketamine and 1 mg/kg for dexmedetomidine alone or combined. Learning, memory and motor coordination abilities were evaluated via rotary rod tests and shuttle box experiments at P30 and P60, respectively. RESULTS Dexmedetomidine effectively mitigated ketamine-induced apoptosis in hippocampal neurons but did not alleviate associated dendritic developmental abnormalities. Although causing reduced motor coordination in mice, no improvement was observed with regard to this effect or reaction speed when treated with dexmedetomidine alongside ketamine. CONCLUSION This study demonstrates that while dexmedetomidine can mitigate ketamine-induced neuronal apoptosis, it has limited impact on its associated neurodevelopmental toxicities.
Collapse
Affiliation(s)
- Dongdong Chai
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Lv
- Department of Anesthesiology and Critical Care Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Miranda-Riestra A, Cercós MG, Trueta C, Oikawa-Sala J, Argueta J, Constantino-Jonapa LA, Cruz-Garduño R, Benítez-King G, Estrada-Reyes R. Participation of Ca 2+-Calmodulin-Dependent Protein Kinase II in the Antidepressant-Like Effects of Melatonin. Mol Pharmacol 2024; 106:107-116. [PMID: 39079719 DOI: 10.1124/molpharm.124.000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/26/2024] [Indexed: 08/18/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine secreted by the pineal gland during the dark phase of the photoperiod. Its main function is the synchronization of different body rhythms with the dark-light cycle. Research on melatonin has significantly advanced since its discovery and we now know that it has considerable significance in various physiological processes, including immunity, aging, and reproduction. Moreover, in recent years evidence of the pharmacological possibilities of melatonin has increased. Indoleamine, on the other hand, has antidepressant-like effects in rodents, which may be mediated by the activation of calcium-calmodulin-dependent kinase II (CaMKII) and are also related to the regulation of neuroplasticity processes, including neurogenesis, synaptic maintenance, and long-term potentiation. Remarkably, patients with major depression show decreased levels of circulating melatonin in plasma. This review presents evidence of the antidepressant-like effects of melatonin in preclinical models and the participation of CaMKII in these actions. CaMKII's role in cognition and memory processes, which are altered in depressive states, are part of the review, and the effects of melatonin in these processes are also reviewed. Furthermore, participation of CaMKII on structural and synaptic plasticity and the effects of melatonin are also described. Finally, the advantages of using melatonin in combination with other antidepressants such as ketamine for neuroplasticity are described. Evidence supports that CaMKII is activated by melatonin and downstream melatonin receptors and may be the common effector in the synergistic effects of melatonin with other antidepressants. SIGNIFICANCE STATEMENT: This review compiled evidence supporting that melatonin causes antidepressant-like effects in mice through calmodulin kinase II stimulation of downstream melatonin receptors as well as the participation of this enzyme in neuroplasticity, memory, and cognition. Finally, we describe evidence about the effectiveness of antidepressant-like effects of melatonin in combination with ketamine.
Collapse
Affiliation(s)
- Armida Miranda-Riestra
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Montserrat G Cercós
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Citlali Trueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Julián Oikawa-Sala
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Luis A Constantino-Jonapa
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Ricardo Cruz-Garduño
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
5
|
Wang L, Xu M, Wang Y, Wang F, Deng J, Wang X, Zhao Y, Liao A, Yang F, Wang S, Li Y. Melatonin improves synapse development by PI3K/Akt signaling in a mouse model of autism spectrum disorder. Neural Regen Res 2024; 19:1618-1624. [PMID: 38051907 PMCID: PMC10883500 DOI: 10.4103/1673-5374.387973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/05/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00043/figure1/v/2023-11-20T171125Z/r/image-tiff
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes, including Ctnnd2 as a candidate gene. Ctnnd2 knockout mice, serving as an animal model of autism, have been demonstrated to exhibit decreased density of dendritic spines. The role of melatonin, as a neurohormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines, in Ctnnd2 deletion-induced nerve injury remains unclear. In the present study, we discovered that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits, spine loss, impaired inhibitory neurons, and suppressed phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signal pathway in the prefrontal cortex. Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice. Furthermore, the administration of melatonin in the prefrontal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region. The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor, wortmannin, and melatonin receptor antagonists, luzindole and 4-phenyl-2-propionamidotetralin, prevented the melatonin-induced enhancement of GABAergic synaptic function. These findings suggest that melatonin treatment can ameliorate GABAergic synaptic function by activating the PI3K/Akt signal pathway, which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders.
Collapse
Affiliation(s)
- Luyi Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Man Xu
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Department of Pediatric, Chongqing University Fuling Hospital, Chongqing, China
| | - Yan Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Feifei Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Jing Deng
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoya Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Yu Zhao
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Ailing Liao
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Feng Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shali Wang
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Yingbo Li
- Institute of Neuroscience, Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Joylin S, Mutalik S, Kalaivani M, Shenoy RP, Ghosh M, Nishitha, Kumar EOAM, Theruveethi N. Influence of different LED wavelengths on retinal melatonin levels - A rodent study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166665. [PMID: 37652369 DOI: 10.1016/j.scitotenv.2023.166665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Retinal melatonin is crucial for neuroprotection. Exposure to light-emitting diodes (LEDs) affects retinal neurons, possibly influencing retinal melatonin levels. Hence, we aimed to quantify the retinal melatonin level with different LED wavelengths. METHOD A total of 24 Sprague Dawley (SD) male rats were divided into four groups (n = 6 in each group) as normal controls (NC), blue light (BL), white light (WL), and yellow light (YL). The rats in the experimental groups were exposed to different wavelengths of LEDs for 28 days (12:12 h light-dark cycle) with uniform illumination of 450-500 lx. Following exposure, the rats were subjected to behavioral tests such as passive avoidance and elevated plus maze tests. Following the behavior tests, the rats were sacrificed, eyes were enucleated, and retinal tissue was stored at -80 °C. The homogenized retina was used for reactive oxygen species (ROS) and melatonin quantification using an enzyme-linked immunosorbent assay (ELISA) kit. RESULTS Passive avoidance test revealed a significant difference across the groups (p < 0.0004). The BL exposure group demonstrated increased latency to enter the dark compartment (DC) and impaired motor memory. The elevated plus maze test revealed a significant difference across all the groups (p < 0.012), where the time spent in the closed arm was greater in the BL exposure group. Comparison of ROS levels revealed a significant difference across the groups (p < 0.0001), with increased nitric oxide concentrations in the experimental groups. Melatonin levels were significantly decreased in the light exposure groups (p < 0.0001) compared to the NC group. CONCLUSION Cumulative exposure to different LED wavelengths resulted in increased anxiety with impaired motor activity. This was also complemented by the addition of oxidative stress leading to decreased melatonin levels in the retina, which might trigger retinal neuronal damage.
Collapse
Affiliation(s)
- Stelyna Joylin
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manokaran Kalaivani
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Revathi P Shenoy
- Department of Medical Laboratory Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Mousumi Ghosh
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Nishitha
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Elizebeth Olive Akansha Manoj Kumar
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India; College of Optometry, University of Houston, Houston, TX, USA
| | - Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
7
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
8
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
9
|
Potes Y, Cachán-Vega C, Antuña E, García-González C, Menéndez-Coto N, Boga JA, Gutiérrez-Rodríguez J, Bermúdez M, Sierra V, Vega-Naredo I, Coto-Montes A, Caballero B. Benefits of the Neurogenic Potential of Melatonin for Treating Neurological and Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24054803. [PMID: 36902233 PMCID: PMC10002978 DOI: 10.3390/ijms24054803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
There are several neurological diseases under which processes related to adult brain neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected. Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor cells while improving neuronal maturation of neural precursor cells and newly created postmitotic neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for neurological conditions associated with impairments in adult brain neurogenesis. For instance, the anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy, schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment effective for retarding the progression of neuropathology associated with Down syndrome. Finally, more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders related to impairments in glucose and insulin homeostasis.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| | - Cristina Cachán-Vega
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Eduardo Antuña
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Claudia García-González
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Nerea Menéndez-Coto
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Jose Antonio Boga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - José Gutiérrez-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Manuel Bermúdez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Verónica Sierra
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Asturias, Spain
- Correspondence: (Y.P.); (B.C.); Tel.: +34-985102767 (Y.P.); +34-985102784 (B.C.)
| |
Collapse
|
10
|
Amanollahi M, Jameie M, Rezaei N. Neuroinflammation as a potential therapeutic target in neuroimmunological diseases. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:475-504. [DOI: 10.1016/b978-0-323-85841-0.00021-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Melatonin attenuates repeated mild traumatic brain injury-induced cognitive deficits by inhibiting astrocyte reactivation. Biochem Biophys Res Commun 2021; 580:20-27. [PMID: 34607259 DOI: 10.1016/j.bbrc.2021.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022]
Abstract
Melatonin has been well documented for its neuroprotective role through inhibiting oxidative stress against traumatic brain injury (TBI). However, the specific role of melatonin and the exact effects on cell responses (neurons, astrocytes, and microglia) in different brain regions are unclear. Here, we subjected mice to closed head injury, to establish a repeated mild TBI model and detect neuronal activity and glial responses in cognition-related brain regions after melatonin administration. Melatonin only showed cognitive enhancement if administered during early pathological stages, but not in late (chronic) stages. Additionally, we observed a significant increase in neuronal activity and inhibition of astrocyte reactivation in medial prefrontal cortex and hippocampus, but not in other cognitive deficit related brain regions. Furthermore, by activating astrocytes in these brain regions, we found neuronal activity upregulation and cognitive improvement following melatonin treatment. Therefore, we concluded that melatonin administration during the early stages of TBI is necessary to inhibit astrocyte reactivation and to promote cognitive function. Our results provide evidence for use of melatonin for cognitive improvement after TBIs.
Collapse
|
12
|
Hardeland R. Melatonin and Microglia. Int J Mol Sci 2021; 22:ijms22158296. [PMID: 34361062 PMCID: PMC8347578 DOI: 10.3390/ijms22158296] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Melatonin interacts in multiple ways with microglia, both directly and, via routes of crosstalk with astrocytes and neurons, indirectly. These effects of melatonin are of relevance in terms of antioxidative protection, not only concerning free-radical detoxification, but also in prevention of processes that cause, promote, or propagate oxidative stress and neurodegeneration, such as overexcitation, toxicological insults, viral and bacterial infections, and sterile inflammation of different grades. The immunological interplay in the CNS, with microglia playing a central role, is of high complexity and includes signaling toward endothelial cells and other leukocytes by cytokines, chemokines, nitric oxide, and eikosanoids. Melatonin interferes with these processes in multiple signaling routes and steps. In addition to canonical signal transduction by MT1 and MT2 melatonin receptors, secondary and tertiary signaling is of relevance and has to be considered, e.g., via the upregulation of sirtuins and the modulation of pro- and anti-inflammatory microRNAs. Many details concerning the modulation of macrophage functionality by melatonin are obviously also applicable to microglial cells. Of particular interest is the polarization toward M2 subtypes instead of M1, i.e., in favor of being anti-inflammatory at the expense of proinflammatory activities, which is well-documented in macrophages but also applies to microglia.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
13
|
McCarty MF, Lerner A. The second phase of brain trauma can be controlled by nutraceuticals that suppress DAMP-mediated microglial activation. Expert Rev Neurother 2021; 21:559-570. [PMID: 33749495 DOI: 10.1080/14737175.2021.1907182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION A delayed second wave of brain trauma is mediated in large part by microglia that are activated to a pro-inflammatory M1 phenotype by DAMP proteins released by dying neurons. These microglia can promote apoptosis or necrosis in neighboring neurons by producing a range of pro-inflammatory cytokines and the deadly oxidant peroxynitrite. This second wave could therefore be mitigated with agents that blunt the post-traumatic M1 activation of microglia and that preferentially promote a pro-healing M2 phenotype. AREAS COVERED The literature on nutraceuticals that might have clinical potential in this regard. EXPERT OPINION The chief signaling pathway whereby DAMPs promote M1 microglial activation involves activation of toll-like receptor 4 (TLR4), NADPH oxidase, NF-kappaB, and the stress activated kinases JNK and p38. The green tea catechin EGCG can suppress TLR4 expression. Phycocyanobilin can inhibit NOX2-dependent NADPH oxidase, ferulate and melatonin can oppose pro-inflammatory signal modulation by NADPH oxidase-derived oxidants. Long-chain omega-3 fatty acids, the soy isoflavone genistein, the AMPK activator berberine, glucosamine, and ketone bodies can down-regulate NF-kappaB activation. Vitamin D activity can oppose JNK/p38 activation. A sophisticated program of nutraceutical supplementation may have important potential for mitigating the second phase of neuronal death and aiding subsequent healing.
Collapse
Affiliation(s)
- Mark F McCarty
- Department of research, Catalytic Longevity Foundation, San Diego, California, USA
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer, Israel
| |
Collapse
|