1
|
Chen X, Zheng Y, Zhang X, Zheng A, Huang J, Deng G, Wu X, Peng Y, Zhang X, Chen R, Xiao Q, Ye W. Harnessing FDA-approved dipyridamole to inhibit NLRP3 inflammasome and improve outcomes of acute lung injury in sepsis. Toxicol Appl Pharmacol 2025; 500:117383. [PMID: 40360054 DOI: 10.1016/j.taap.2025.117383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Aberrant activation of the NLRP3 inflammasome is critically involved in sepsis-induced acute lung injury (ALI), with inhibition of this pathway emerging as a promising therapeutic approach. This study identifies Dipyridamole, an FDA-approved drug, as a novel inhibitor of the NLRP3 inflammasome. Mechanistically, Dipyridamole suppresses mitochondrial ROS release and directly interacts with NEK7, thereby preventing its association with NLRP3 and impeding inflammasome complex assembly. In an LPS-induced sepsis model, Dipyridamole significantly ameliorated ALI, reduced inflammatory responses, and improved survival rates in model mice. Additionally, Dipyridamole effectively inhibited NLRP3 inflammasome activation in lung tissue. These findings position Dipyridamole as a potent NLRP3 inflammasome inhibitor with substantial therapeutic potential for managing sepsis-induced ALI.
Collapse
Affiliation(s)
- Xiuhui Chen
- Department of Pharmacy & the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, Dongguan 523000, China
| | - Yutong Zheng
- Department of Pharmacy & the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, Dongguan 523000, China
| | - Xiaofeng Zhang
- Department of Pharmacy & the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, Dongguan 523000, China
| | - Anran Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Junjun Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Guoliang Deng
- Department of Pharmacy & the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, Dongguan 523000, China
| | - Xuna Wu
- Department of Pharmacy & the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, Dongguan 523000, China
| | - Yuying Peng
- Department of Pharmacy & the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China
| | - Xiaoling Zhang
- Maternal and Children Hospital of Guangdong Province, Guangzhou 511436, China
| | - Renshan Chen
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 511436, China.
| | - Qing Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China.
| | - Weijun Ye
- Department of Pharmacy & the Eighth People's Hospital of Dongguan, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan 523000, China; Key Laboratory of Precision Pharmacy and Pharmaceutical Basic Research, Dongguan Institute of Pediatrics, Dongguan 523000, China.
| |
Collapse
|
2
|
Folahan JT, Barabutis N. NEK kinases in cell cycle regulation, DNA damage response, and cancer progression. Tissue Cell 2025; 94:102811. [PMID: 40037068 PMCID: PMC11912005 DOI: 10.1016/j.tice.2025.102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
The NIMA-related kinase (NEK) family of serine/threonine kinases is essential for the regulation of cell cycle progression, mitotic spindle assembly, and genomic stability. In this review, we explore the structural and functional diversity of NEK kinases, highlighting their roles in both canonical and non-canonical cellular processes. We examine recent preclinical findings on NEK inhibition, showcasing promising results for NEK-targeted therapies, particularly in cancer types characterized by high NEK expression. We discussed the therapeutic potential of targeting NEKs as modulators of cell cycle and DDR pathways, with a focus on identifying strategies to exploit NEK activity for enhanced treatment efficacy. Future research directions are proposed to further elucidate NEK-mediated mechanisms and to develop selective inhibitors that target NEK-related pathways.
Collapse
Affiliation(s)
- Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
3
|
Liu R, Zhao Y, Chen Y, Chen X, Yang G, Li H. NEK7 is an essential regulator in NLRP3 inflammasome assembly of common carp (Cyprinus carpio L.). Int J Biol Macromol 2025; 305:141190. [PMID: 39965690 DOI: 10.1016/j.ijbiomac.2025.141190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/28/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
The NIMA-related kinase 7 (NEK7), a member of the Never in Mitosis Gene A (NIMA) kinase family, participates in the assembly of the NLRP3 inflammasome in mammalian. However, it is currently unclear that the functions of NEK7 in the activation and assembly of NLRP3 inflammasome in teleost. In this research, the cDNA sequence of NEK7 of common carp (CcNEK7) was cloned and its role in the assembly of CcNLRP3 inflammasome was investigated. CcNEK7 was conserved throughout evolution, with its amino acid sequence, three-dimensional structure, and subcellular localization being similar to those in mammals. qPCR detection showed that CcNEK7 had the highest expression levels in the spleen of healthy common carp and could respond to bacteria and virus infection. It was additionally discovered that CcNEK7 can interact with CcNLRP3 and promote the oligomerization of CcNLRP3 and CcASC. Additionally, CcNEK7 significantly increased the CcNLRP3-induced cytotoxicity and pyroptosis, suggesting that CcNEK7 may exerts a regulatory function in the assembly of the CcNLRP3 inflammasome. These results provide a foundation for further understanding the assembly and regulation mechanisms of the inflammasome in bony fish, and also provides a target and theoretical framework for preventing and controlling of various aquatic animal diseases.
Collapse
Affiliation(s)
- Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Yue Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Yixin Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China..
| |
Collapse
|
4
|
Wen L, Quan Z, Guan C, Zheng J, Li Y, Zeng S, Han Z, Ye M, Wang H. Targeted inhibition of NEK7 preventing sepsis-induced cardiomyopathy by inhibiting NLRP3 inflammasome. Int Immunopharmacol 2025; 151:114245. [PMID: 40015203 DOI: 10.1016/j.intimp.2025.114245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SIC) is a severe complication of sepsis; however, its pathogenesis remains elusive. This study aims to investigate the role of NMA-related kinase 7 (NEK7) in SIC. METHODS C57BL/6 mice were stimulated with lipopolysaccharide (LPS) to assess NEK7 expression in the myocardium. AAV-shNEK7 was administered to improve cardiac function and survival rates. HL-1 cardiomyocytes were treated with si-NEK7 after LPS stimulation, and cell viability was measured. Molecular docking analysis and co-immunoprecipitation assays were used to validate the interaction between NEK7 and the NLRP3 inflammasome. RESULTS NEK7 was significantly upregulated in the myocardium of LPS-stimulated C57BL/6 mice. Administration of AAV-shNEK7 improved cardiac function and enhanced survival rates. In LPS-stimulated HL-1 cardiomyocytes, si-NEK7 treatment increased cell viability compared to control cells, due to the suppression of pyroptosis through attenuation of NLRP3 inflammasome activation. Molecular docking analysis and co-immunoprecipitation assays confirmed that targeting NEK7 inhibits its interaction with NLRP3, thereby suppressing inflammasome activation and providing a protective effect. CONCLUSIONS NEK7 plays a crucial role in SIC by facilitating NLRP3 inflammasome activation. Targeting NEK7 presents a potential therapeutic approach for SIC.
Collapse
Affiliation(s)
- Lianghe Wen
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Zhen Quan
- The Second Clinical Medical College of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Chunming Guan
- The Second Clinical Medical College of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Junbo Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Yunlong Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Siyao Zeng
- The Second Clinical Medical College of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Zheng Han
- The Second Clinical Medical College of Harbin Medical University, Heilongjiang Province, Harbin 150086, China
| | - Ming Ye
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China.
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China.
| |
Collapse
|
5
|
Xu W, Huang Y, Zhou R. NLRP3 inflammasome in neuroinflammation and central nervous system diseases. Cell Mol Immunol 2025; 22:341-355. [PMID: 40075143 PMCID: PMC11955557 DOI: 10.1038/s41423-025-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of various central nervous system (CNS) diseases. The NLRP3 inflammasome is an important intracellular multiprotein complex composed of the innate immune receptor NLRP3, the adaptor protein ASC, and the protease caspase-1. The activation of the NLRP3 inflammasome can induce pyroptosis and the release of the proinflammatory cytokines IL-1β and IL-18, thus playing a central role in immune and inflammatory responses. Recent studies have revealed that the NLRP3 inflammasome is activated in the brain to induce neuroinflammation, leading to further neuronal damage and functional impairment, and contributes to the pathological process of various neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke. In this review, we summarize the important role of the NLRP3 inflammasome in the pathogenesis of neuroinflammation and the pathological course of CNS diseases and discuss potential approaches to target the NLRP3 inflammasome for the treatment of CNS diseases.
Collapse
Grants
- 81821001, 82130107, 82330052, 82202038, U20A20359 National Natural Science Foundation of China (National Science Foundation of China)
- National Key research and development program of China (grant number (2020YFA0509101), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0940000),
- MEXT | JST | Strategic Promotion of Innovative R and D (Strategic Promotion of Innovative R&D)
- the CAS Project for Young Scientists in Basic Research (YSBR-074) and the Fundamental Research Funds for the Central Universities, the outstanding Youth Project of Anhui Provincial Natural Science Foundation (2408085Y049), the Research Start-up Funding of the Institute of Health and Medicine, Hefei Comprehensive National Science Center (2024KYQD004), the Natural Science Foundation of Jiangsu Province (BK20221085),
- The key project of Anhui Provincial Department of Education Fund (2024AH052060).
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Yi Huang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Rongbin Zhou
- National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
6
|
Gorini F, Tonacci A, Sanmartin C, Venturi F. Phthalates and Non-Phthalate Plasticizers and Thyroid Dysfunction: Current Evidence and Novel Strategies to Reduce Their Spread in Food Industry and Environment. TOXICS 2025; 13:222. [PMID: 40137549 PMCID: PMC11945544 DOI: 10.3390/toxics13030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Thyroid hormones (THs) play a crucial role in various biological functions, including metabolism, cell growth, and nervous system development, and any alteration involving the structure of the thyroid gland and TH secretion may result in thyroid disease. Growing evidence suggests that phthalate plasticizers, which are commonly used in a wide range of products (e.g., food packaging materials, children's toys, cosmetics, medical devices), can impact thyroid function, primarily affecting serum levels of THs and TH-related gene expression. Like phthalate compounds, recently introduced alternative plasticizers can leach from their source material into the environment, particularly into foods, although so far only a very limited number of studies have investigated their thyroid toxicity. This review aimed at summarizing the current knowledge on the role of phthalate and non-phthalate plasticizers in thyroid dysfunction and disease, describing the major biological mechanisms underlying this relationship. We will also focus on the food industry as one of the main players for the massive spread of such compounds in the human body, in turn conveyed by edible compounds. Given the increasing worldwide use of plasticizers and the essential role of THs in humans, novel strategies should be envisaged to reduce this burden on the thyroid and, in general, on human health.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.S.); (F.V.)
| |
Collapse
|
7
|
Chen L, Huang L, Wen W, Zeng P, Wu Y, Han Q, Chen X, Guo Z, Yu H, Lu W, Jiang B. Selective and Potent Molecular Glue Degraders for NIMA-Related Kinase 7. Angew Chem Int Ed Engl 2025; 64:e202500169. [PMID: 39927695 DOI: 10.1002/anie.202500169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/11/2025]
Abstract
Molecular glue degraders (MGDs) represent a promising strategy for targeted protein degradation within cells. While chemoproteomics has unveiled hundreds of potential MGD targets, very few proteins are degraded by highly selective and potent MGDs. Here, we developed a novel glutarimide analog with a tetrahydroimidazo[1,2-a]pyrazine scaffold that exhibited strong NIMA-related kinase 7 (NEK7) degradation potential. Further optimization led to the identification of LC-04-045 as a leading NEK7 MGD candidate, demonstrating potent activity with a half-maximal degradation (DC50) of 7 nM and a maximum degradation (Dmax) of 90 % in MOLT-4 cells. Notably, LC-04-045 displayed high selectivity for NEK7 across the proteome. Mechanistic studies indicated that the degradation was mediated by the ubiquitin-proteasome system (UPS) and relied on the glycine 57 (G57)-containing degron motif in NEK7. Additionally, two amino acids adjacent to the degron motif were found to be crucial for modulating the compound's selectivity and potency, underscoring the significance of neighbouring residues in MGD design. Moreover, LC-04-045 effectively inhibited secretion of the downstream cytokines, including IL-1β and IL-18, highlighting the potential therapeutic applications of NEK7 MGDs in treating inflammatory diseases.
Collapse
Affiliation(s)
- Lu Chen
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lu Huang
- Lingang Laboratory, Shanghai, 200031, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Wuqiang Wen
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Pingping Zeng
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuanyuan Wu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qiangqiang Han
- SpecAlly Life Technology Co., Ltd., Wuhan, Hubei, 430075, China
| | - Xi Chen
- SpecAlly Life Technology Co., Ltd., Wuhan, Hubei, 430075, China
| | - Zhixiang Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wenchao Lu
- Lingang Laboratory, Shanghai, 200031, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Baishan Jiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
8
|
Ni X, Wang Q, Ning Y, Liu J, Su Q, Lv S, Feng Y, Yang S, Yuan R, Gao H. Anemoside B4 targets NEK7 to inhibit NLRP3 inflammasome activation and alleviate MSU-induced acute gouty arthritis by modulating the NF-κB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156407. [PMID: 39939033 DOI: 10.1016/j.phymed.2025.156407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Acute gouty arthritis is a metabolic disorder caused by monosodium urate (MSU) accumulation, leading to NLRP3 inflammasome activation and joint inflammation. Anemoside B4 (B4), a pentacyclic triterpenoid saponin, exerts significant anti-inflammatory effects. However, the precise molecular mechanisms underlying its therapeutic action, particularly its targeting of key components in NLRP3 inflammasome activation, remain unclear. PURPOSE The aim of this study was to elucidate the therapeutic mechanisms and target of B4 in treating MSU-induced macrophage pyroptosis and acute gouty arthritis, focusing specifically, on its interaction with NEK7, a critical regulator of NLRP3 inflammasome activation. METHODS Comprehensive in vitro and in vivo methods were employed to examine the effects and mechanisms of B4. In vitro analyses included Western blot, co-immunoprecipitation (Co-IP), and immunofluorescence assays to assess NLRP3 inflammasome components and NEK7-NLRP3 interactions. The binding of B4 to NEK7 was evaluated using molecular docking, surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS), NEK7 gene silencing, and site-specific amino acid mutation experiments. In vivo, MSU-induced acute gouty arthritis mouse models and NEK7 knockdown mouse models were used to demonstrate the therapeutic effects and specificity of B4. RESULTS This study provides the first evidence that B4 significantly inhibits MSU-induced inflammation and pyroptosis in macrophages by directly targeting NEK7 and disrupting the NEK7-NLRP3 complex, thereby reducing NLRP3 inflammasome activation. Additionally, B4 effectively suppressed MSU-induced ROS production, mitochondrial damage, and NF-κB activation. In vivo, B4 alleviated symptoms of acute gouty arthritis, reduced NLRP3 expression, and demonstrated specificity for NEK7 in NEK7 knockdown mouse models. CONCLUSION This study highlights B4 as an effective inhibitor of NLRP3 inflammasome activation by directly targeting NEK7, thereby mitigating inflammation and pyroptosis in acute gouty arthritis. These findings position B4 as a prospective therapeutic candidate for the management of acute gouty arthritis, providing insights into its molecular targets and mechanisms.
Collapse
Affiliation(s)
- Xinghua Ni
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang & Yao Medicine, Ministry of Education, Nanning 530000, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Qinqin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yujie Ning
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang & Yao Medicine, Ministry of Education, Nanning 530000, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jingyu Liu
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang & Yao Medicine, Ministry of Education, Nanning 530000, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Qian Su
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang & Yao Medicine, Ministry of Education, Nanning 530000, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shang Lv
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shilin Yang
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang & Yao Medicine, Ministry of Education, Nanning 530000, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Renyikun Yuan
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang & Yao Medicine, Ministry of Education, Nanning 530000, China; College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China.
| | - Hongwei Gao
- Engineering Research Center of Innovative Drugs for Traditional Chinese Medicine and Zhuang & Yao Medicine, Ministry of Education, Nanning 530000, China.
| |
Collapse
|
9
|
Xiong X, Xiong H, Peng J, Liu Y, Zong Y. METTL3 Regulates the m 6A Modification of NEK7 to Inhibit the Formation of Osteoarthritis. Cartilage 2025; 16:89-99. [PMID: 37724835 PMCID: PMC11744591 DOI: 10.1177/19476035231200336] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a common degenerative joint disease. The occurrence of OA slowly destroys the soft tissue structure of the patient's joint. Severe cases could lead to disability. Current studies had shown that inhibition of chondrocytes pyroptosis could slow down the progression of OA. Our work aimed to explore the specific mechanisms and ways of regulating this process. DESIGN In this work, the level of N6-methyladenosine (m6A) in clinical tissues was detected by ribonucleic acid (RNA) m6A dot blot. qRT-PCR (quantitative real-time polymerase chain reaction) was used to detect the messenger RNA (mRNA) expression level of m6A modified enzyme in clinical tissues. MTT (3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromid) and flow cytometry were used to detect the effect of sh-METTL3 (methyltransferase like 3) and NIMA-related kinase 7 (NEK7) transfection on chondrocytes pyroptosis in OA. Western blot was used to detect the protein expression levels of pyroptosis-related proteins. ELISA (enzyme-linked immunosorbent assay) was used to measure the protein concentration of inflammatory cytokines. The SRAMP online database was used to predict the m6A site of NEK7. HE staining was used to assess the progression of OA in mice. RESULTS The level of m6A in clinical samples of OA patients was higher, and METTL3 was significantly higher expressed in clinical samples of OA patients. We provided evidence that low expression of METTL3 inhibited chondrocytes pyroptosis. In addition, Rescue experiments and in vivo experiments had shown that METTL3 in combination with NEK7 inhibited the progression of OA by promoting chondrocytes pyroptosis. CONCLUSIONS METTL3 regulates m6A modification of NEK7 and inhibits OA progression.
Collapse
Affiliation(s)
- Xiaochuan Xiong
- Department of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Xiong
- Department of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Peng
- Department of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjie Liu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zong
- Department of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Chen L, Lu H, Ballout F, El-Rifai W, Chen Z, Gokulan RC, McDonald OG, Peng D. Targeting NEK Kinases in Gastrointestinal Cancers: Insights into Gene Expression, Function, and Inhibitors. Int J Mol Sci 2025; 26:1992. [PMID: 40076620 PMCID: PMC11900214 DOI: 10.3390/ijms26051992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Gastrointestinal (GI) cancers, which mainly include malignancies of the esophagus, stomach, intestine, pancreas, liver, gallbladder, and bile duct, pose a significant global health burden. Unfortunately, the prognosis for most GI cancers remains poor, particularly in advanced stages. Current treatment options, including targeted and immunotherapies, are less effective compared to those for other cancer types, highlighting an urgent need for novel molecular targets. NEK (NIMA related kinase) kinases are a group of serine/threonine kinases (NEK1-NEK11) that play a role in regulating cell cycle, mitosis, and various physiological processes. Recent studies suggest that several NEK members are overexpressed in human cancers, including gastrointestinal (GI) cancers, which can contribute to tumor progression and drug resistance. Among these, NEK2 stands out for its consistent overexpression in all types of GI cancer. Targeting NEK2 with specific inhibitors has shown promising results in preclinical studies, particularly for gastric and pancreatic cancers. The development and clinical evaluation of NEK2 inhibitors in human cancers have emerged as a promising therapeutic strategy. Specifically, an NEK2 inhibitor, T-1101 tosylate, is currently undergoing clinical trials. This review will focus on the gene expression and functional roles of NEKs in GI cancers, as well as the progress in developing NEK inhibitors.
Collapse
Affiliation(s)
- Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Ravindran Caspa Gokulan
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| | - Oliver Gene McDonald
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (H.L.); (F.B.); (W.E.-R.); (Z.C.); (R.C.G.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
11
|
Prud’homme GJ, Wang Q. Anti-Inflammatory Role of the Klotho Protein and Relevance to Aging. Cells 2024; 13:1413. [PMID: 39272986 PMCID: PMC11394293 DOI: 10.3390/cells13171413] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The α-Klotho protein (hereafter Klotho) is an obligate coreceptor for fibroblast growth factor 23 (FGF23). It is produced in the kidneys, brain and other sites. Klotho insufficiency causes hyperphosphatemia and other anomalies. Importantly, it is associated with chronic pathologies (often age-related) that have an inflammatory component. This includes atherosclerosis, diabetes and Alzheimer's disease. Its mode of action in these diseases is not well understood, but it inhibits or regulates multiple major pathways. Klotho has a membrane form and a soluble form (s-Klotho). Cytosolic Klotho is postulated but not well characterized. s-Klotho has endocrine properties that are incompletely elucidated. It binds to the FGF receptor 1c (FGFR1c) that is widely expressed (including endothelial cells). It also attaches to soluble FGF23, and FGF23/Klotho binds to FGFRs. Thus, s-Klotho might be a roaming FGF23 coreceptor, but it has other functions. Notably, Klotho (cell-bound or soluble) counteracts inflammation and appears to mitigate related aging (inflammaging). It inhibits NF-κB and the NLRP3 inflammasome. This inflammasome requires priming by NF-κB and produces active IL-1β, membrane pores and cell death (pyroptosis). In accord, Klotho countered inflammation and cell injury induced by toxins, damage-associated molecular patterns (DAMPs), cytokines, and reactive oxygen species (ROS). s-Klotho also blocks the TGF-β receptor and Wnt ligands, which lessens fibrotic disease. Low Klotho is associated with loss of muscle mass (sarcopenia), as occurs in aging and chronic diseases. s-Klotho counters the inhibitory effects of myostatin and TGF-β on muscle, reduces inflammation, and improves muscle repair following injury. The inhibition of TGF-β and other factors may also be protective in diabetic retinopathy and age-related macular degeneration (AMD). This review examines Klotho functions especially as related to inflammation and potential applications.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 220 Walmer Rd, Toronto, ON M5R 3R7, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai 200030, China
- Shanghai Innogen Pharmaceutical Co., Ltd., Shanghai 201318, China
| |
Collapse
|
12
|
Li J, Gong C, Zhou H, Liu J, Xia X, Ha W, Jiang Y, Liu Q, Xiong H. Kinase Inhibitors and Kinase-Targeted Cancer Therapies: Recent Advances and Future Perspectives. Int J Mol Sci 2024; 25:5489. [PMID: 38791529 PMCID: PMC11122109 DOI: 10.3390/ijms25105489] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Over 120 small-molecule kinase inhibitors (SMKIs) have been approved worldwide for treating various diseases, with nearly 70 FDA approvals specifically for cancer treatment, focusing on targets like the epidermal growth factor receptor (EGFR) family. Kinase-targeted strategies encompass monoclonal antibodies and their derivatives, such as nanobodies and peptides, along with innovative approaches like the use of kinase degraders and protein kinase interaction inhibitors, which have recently demonstrated clinical progress and potential in overcoming resistance. Nevertheless, kinase-targeted strategies encounter significant hurdles, including drug resistance, which greatly impacts the clinical benefits for cancer patients, as well as concerning toxicity when combined with immunotherapy, which restricts the full utilization of current treatment modalities. Despite these challenges, the development of kinase inhibitors remains highly promising. The extensively studied tyrosine kinase family has 70% of its targets in various stages of development, while 30% of the kinase family remains inadequately explored. Computational technologies play a vital role in accelerating the development of novel kinase inhibitors and repurposing existing drugs. Recent FDA-approved SMKIs underscore the importance of blood-brain barrier permeability for long-term patient benefits. This review provides a comprehensive summary of recent FDA-approved SMKIs based on their mechanisms of action and targets. We summarize the latest developments in potential new targets and explore emerging kinase inhibition strategies from a clinical perspective. Lastly, we outline current obstacles and future prospects in kinase inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.)
| |
Collapse
|
13
|
Cheng N, Wang Y, Gu Z. Understanding the role of NLRP3-mediated pyroptosis in allergic rhinitis: A review. Biomed Pharmacother 2023; 165:115203. [PMID: 37481928 DOI: 10.1016/j.biopha.2023.115203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
Allergic rhinitis (AR) is a chronic, inflammatory disease of the nasal mucosa, caused by the immunoglobulin E-mediated immune response. The annual incidence rate of AR is on the rise, exerting a significant impact on individuals' physical and mental wellbeing. The treatment effect in some patients is still not ideal, as the pathogenesis of AR is complex and diverse. Recent studies have shown that NLRP3 inflammasome-mediated pyroptosis is widely involved in the occurrence and development of AR through various pathways. This article reviews the mechanism of pyroptosis and its research progress in the field of AR, and puts forward possible therapeutic targets to offer innovative approaches for its management.
Collapse
Affiliation(s)
- Nuo Cheng
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yunxiu Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
14
|
Li X, Qiu H, Gan J, Liu Z, Yang S, Yuan R, Gao H. Total tanshinones protect against acute lung injury through the PLCγ2/NLRP3 inflammasome signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116478. [PMID: 37121449 DOI: 10.1016/j.jep.2023.116478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge is a widely used traditional Chinese medicine with anticholinesterase, antitumor, and anti-inflammatory. Total Tanshinones (TTN), the most significant active ingredient of Salvia miltiorrhiza Bunge, exerts anti-inflammatory activity. However, the protective mechanism of total Tanshinones on acute lung injury (ALI) still needs to be explored. AIM OF THIS STUDY In this study, the underlying mechanisms of TTN to treat with ALI were investigated in vitro and in vivo. MATERIALS AND METHODS Cell experiments established an in vitro model of LPS-induced J774A.1 and MH-S macrophages to verify the mechanism. The levels of inflammatory cytokines (TNF-α, IL-6 and IL-1β) were estimated by ELISA. The changes of ROS, Ca2+ and NO were detected by flow cytometry. The expression levels of proteins related to the NLRP3 inflammasome were determined by Western blotting. The effect of TTN on NLRP3 inflammasome activation was examined by immunofluorescence analysis of caspase-1 p20. Male BALB/c mice were selected to establish the ALI model. The experiment was randomly divided into six groups: control, LPS, LPS + si-NC, LPA + si-Nek7, LPS + TTN, and DEX. Pathological alterations were explored by H&E staining. The expression levels of proteins related to the NLRP3 inflammasome were analyzed by Western blotting. RESULTS TTN decreased pro-inflammatory cytokines levels like TNF-α, IL-6, IL-1β, NO, and ROS in alveolar macrophages. TTN bound to NIMA-related kinase 7 (NEK7), a new therapeutic protein to modulate NLRP3 inflammasome and PLCγ2-PIP2 signaling pathway. In ALI mice, LPS enhanced IL-1β levels in the serum, lung tissues, and bronchoalveolar lavage fluid (BALF),which were reversed by TTN. TTN decreased cleaved-caspase-1 and NLRP3 expressions in lung tissues. When Nek7 was knocked down in mice by siRNA, the syndrome of ALI in mice was significantly suppressed, of which the effect was similar to that of TTN. CONCLUSIONS This research demonstrates that TTN alleviated ALI by binding to NEK7 in vitro and in vivo to modulate NLRP3 inflammasome activation and PLCγ2-PIP2 signaling pathways.
Collapse
Affiliation(s)
- Xinxing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Haixin Qiu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Jinyue Gan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Zhenjie Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|