1
|
Autthawong T, Ratsameetammajak N, Khunpakdee K, Haruta M, Chairuangsri T, Sarakonsri T. Biomass Waste Utilization as Nanocomposite Anodes through Conductive Polymers Strengthened SiO 2/C from Streblus asper Leaves for Sustainable Energy Storages. Polymers (Basel) 2024; 16:1414. [PMID: 38794607 PMCID: PMC11125036 DOI: 10.3390/polym16101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Sustainable anode materials, including natural silica and biomass-derived carbon materials, are gaining increasing attention in emerging energy storage applications. In this research, we highlighted a silica/carbon (SiO2/C) derived from Streblus asper leaf wastes using a simple method. Dried Streblus asper leaves, which have plenty of biomass in Thailand, have a unique leaf texture due to their high SiO2 content. We can convert these worthless leaves into SiO2/C nanocomposites in one step, producing eco-materials with distinctive microstructures that influence electrochemical energy storage performance. Through nanostructured design, SiO2/C is thoroughly covered by a well-connected framework of conductive hybrid polymers based on the sodium alginate-polypyrrole (SA-PPy) network, exhibiting impressive morphology and performance. In addition, an excellent electrically conductive SA-PPy network binds to the SiO2/C particle surface through crosslinker bonding, creating a flexible porous space that effectively facilitates the SiO2 large volume expansion. At a current density of 0.3 C, this synthesized SA-PPy@Nano-SiO2/C anode provides a high specific capacity of 756 mAh g-1 over 350 cycles, accounting for 99.7% of the theoretical specific capacity. At the high current of 1 C (758 mA g-1), a superior sustained cycle life of over 500 cycles was evidenced, with over 93% capacity retention. The research also highlighted the potential for this approach to be scaled up for commercial production, which could have a significant impact on the sustainability of the lithium-ion battery industry. Overall, the development of green nanocomposites along with polymers having a distinctive structure is an exciting area of research that has the potential to address some of the key challenges associated with lithium-ion batteries, such as capacity degradation and safety concerns, while also promoting sustainability and reducing environmental impact.
Collapse
Affiliation(s)
- Thanapat Autthawong
- Office of Research Administration, Chiang Mai University, Muang, Chiang Mai 50200, Thailand;
- Department of Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (N.R.); (K.K.)
- Material Science Research Center, Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Natthakan Ratsameetammajak
- Department of Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (N.R.); (K.K.)
- Center of Excellent for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Kittiched Khunpakdee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (N.R.); (K.K.)
- Center of Excellent for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| | - Mitsutaka Haruta
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan;
| | - Torranin Chairuangsri
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand;
| | - Thapanee Sarakonsri
- Department of Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand; (N.R.); (K.K.)
- Material Science Research Center, Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
- Center of Excellent for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Muang, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Lawaniya SD, Kumar S, Yu Y, Awasthi K. Nitrogen-doped carbon nano-onions/polypyrrole nanocomposite based low-cost flexible sensor for room temperature ammonia detection. Sci Rep 2024; 14:7904. [PMID: 38570517 PMCID: PMC10991286 DOI: 10.1038/s41598-024-57153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
One of the frontier research areas in the field of gas sensing is high-performance room temperature-based novel sensing materials, and new family of low-cost and eco-friendly carbon nanomaterials with a unique structure has attracted significant attention. In this work, we propose a novel low-cost flexible room temperature ammonia gas sensor based on nitrogen-doped carbon nano-onions/polypyrrole (NCNO-PPy) composite material mounted low-cost membrane substrate was synthesized by combining hydrothermal and in-situ chemical polymerization methods. The proposed flexible sensor revealed high sensing performance when employed as the sensing material for ammonia detection at room temperature. The NCNO-PPy ammonia sensor exhibited 17.32% response for 100 ppm ammonia concentration with a low response time of 26 s. The NCNO-PPy based flexible sensor displays high selectivity, good repeatability, and long-term durability with 1 ppm as the lower detection limit. The proposed flexible sensor also demonstrated remarkable mechanical robustness under extreme bending conditions, i.e., up to 90° bending angle and 500 bending cycles. This enhanced sensing performance can be related to the potential bonding and synergistic interaction between nitrogen-doped CNOs and PPy, the formation of defects from nitrogen doping, and the presence of high reactive sites on the surface of NCNO-PPy composites. Additionally, the computational study was performed on optimized NCNO-PPy nanocomposite for both with and without NH3 interaction. A deeper understanding of the sensing phenomena was proposed by the computation of several electronic characteristics, such as band gap, electron affinity, and ionization potential, for the optimized composite.
Collapse
Affiliation(s)
- Shiv Dutta Lawaniya
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Sanjay Kumar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India
| | - Yeontae Yu
- Division of Advanced Materials Engineering, Jeonbuk National University, 567, Baekje-Daero, Deokjin-Gu, Jeonju, 54896, South Korea
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| |
Collapse
|
3
|
Wang S, Gariepy Y, Adekunle A, Raghavan V. Effective and Economical 3D Carbon Sponge with Carbon Nanoparticles as Floating Air Cathode for Sustainable Electricity Production in Microbial Fuel Cells. Appl Biochem Biotechnol 2024; 196:1820-1839. [PMID: 37440114 DOI: 10.1007/s12010-023-04654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
The effective and economical 3D floating air cathodes were fabricated by a simple dipping-drying method with carbon black (CB), ethanol, and PTFE solution. Pristine Type I polyurethane sponge (5 pores/mm) and Pristine Type II polyurethane sponge (3 pores/mm) were used as the support. The deposition of CB on the Pristine Type I and Pristine Type II materials was detected by scanning electron microscopy and Fourier transform infrared spectroscopy. The carbon loss rate test exhibited good CB adhesive stability on both floating air cathodes. Besides, Type I/CB floating air cathode displayed 3.7 times higher tensile strength, 10.58 times higher elongation at break, and 3.3 times lower cost than carbon felt. The electricity production ability of carbon cloth (CC) anode with carbon felt, Type I/CB, and Type II/CB cathode MFCs (CC-CF-MFC, CC-I-MFC, and CC-II-MFC) was evaluated. After 130 days, the CC-I-MFC showed a maximum power density (PD) of 92.58 mW/m3, which was 4.6 times higher than the CC-CF-MFC. Compared with Type II/CB, Type I/CB cathode improved the maximum power density by 160% due to the smaller pores, rougher surface, and higher surface wettability. Further, CC-I-MFC exhibited the best overall oxidation-reduction performance and chemical oxygen demand removal efficiency. Consequently, Type I/CB floating air cathode opens a new opportunity for scaling up simple, inexpensive, and high-performance MFCs for energy production.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Yvan Gariepy
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Vijaya Raghavan
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
4
|
Gleissner C, Mayer P, Bechtold T, Pham T. Multifunctional Polypyrrole-Based Textile Sensors for Integration into Personal Protection Equipment. SENSORS (BASEL, SWITZERLAND) 2024; 24:1387. [PMID: 38474921 DOI: 10.3390/s24051387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
Integrated safety sensors for personal protection equipment increasingly attract research activities as there is a high need for workers in delicate situations to be physically monitored in order to avoid accidents. In this work, we present a simple approach to generate thin, homogeneous polypyrrole (PPy) layers on flexible textile polyamide fabrics. PPy layers of 0.5-1 µm were deposited on the fabric, which thus kept its flexibility. The conductive layers are multifunctional and can act as temperature and gas sensors for the detection of corrosive gases such as HCl and NH3. Using three examples of life-threatening environments, we were able to monitor temperature, atmospheric NH3 and HCl within critical ranges, i.e., 100 to 400 ppm for ammonia and 20 to 100 ppm for HCl. In the presence of HCl, a decrease in resistance was observed, while gaseous NH3 led to an increase in resistance. The sensor signal thus allows for distinguishing between these two gases and indicating critical concentrations. The simple and cheap manufacturing of such PPy sensors is of substantial interest for the future design of multifunction functional sensors in protective clothing.
Collapse
Affiliation(s)
- Carolin Gleissner
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Hoechsterstrasse 73, 6850 Dornbirn, Austria
| | - Paul Mayer
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Hoechsterstrasse 73, 6850 Dornbirn, Austria
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Hoechsterstrasse 73, 6850 Dornbirn, Austria
| | - Tung Pham
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Hoechsterstrasse 73, 6850 Dornbirn, Austria
| |
Collapse
|
5
|
Zhong L, Chen Y, Wen Q, Yang Y. Enhancing diversified extracellular electron transfer (EET) processes through N-MXene-modified non-adhesive hydrogel bioanodes. Bioprocess Biosyst Eng 2024; 47:105-117. [PMID: 38092977 DOI: 10.1007/s00449-023-02950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024]
Abstract
The focus of this study is to develop a high-performance anode material for microbial fuel cells (MFCs). PEDOT:PSS and nitrogen-modified MXene were combined to create a hydrogel composite material called PPNM, which was drop-cast onto carbon felt (CF) as the MFCs anode. The PPNM exhibited a higher peak power density of 4.78 W m-2, an increase of 332% compared to the CF anode. It is worth noting that the PPNM Hydrogel maintains its rough and porous structure, providing favorable sites for bacterial colonization. The introduction of N-MXene has improved the electrochemical performance of the hydrogel, particularly impacting the mediated electron transfer process. Microbial community analysis revealed the presence of more electrochemically active species on the PPNM anode. These findings highlight the potential of PPNM hydrogel and pave the way for similar strategies in achieving high-performance anodes in MFCs.
Collapse
Affiliation(s)
- Linhan Zhong
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, China
| | - Ye Chen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, China.
| | - Qing Wen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, China
| | - Yang Yang
- China Energy Longyuan Environmental Protection Co. Ltd., Beijing, 100039, China
| |
Collapse
|
6
|
Liu K, Ma Z, Li X, Qiu Y, Liu D, Liu S. N-Doped Carbon Nanowire-Modified Macroporous Carbon Foam Microbial Fuel Cell Anode: Enrichment of Exoelectrogens and Enhancement of Extracellular Electron Transfer. MATERIALS (BASEL, SWITZERLAND) 2023; 17:69. [PMID: 38203925 PMCID: PMC10779606 DOI: 10.3390/ma17010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Microbial fuel cell (MFC) performance is affected by the metabolic activity of bacteria and the extracellular electron transfer (EET) process. The deficiency of nanostructures on macroporous anode obstructs the enrichment of exoelectrogens and the EET. Herein, a N-doped carbon nanowire-modified macroporous carbon foam was prepared and served as an anode in MFCs. The anode has a hierarchical porous structure, which can solve the problem of biofilm blockage, ensure mass transport, favor exoelectrogen enrichment, and enhance the metabolic activity of bacteria. The microscopic morphology, spectroscopy, and electrochemical characterization of the anode confirm that carbon nanowires can penetrate biofilm, decrease charge resistance, and enhance long-distance electron transfer efficiency. In addition, pyrrolic N can effectively reduce the binding energy and electron transfer distance of bacterial outer membrane hemin. With this hierarchical anode, a maximum power density of 5.32 W/m3 was obtained, about 2.5-fold that of bare carbon cloth. The one-dimensional nanomaterial-modified macroporous anodes in this study are a promising strategy to improve the exoelectrogen enrichment and EET for MFCs.
Collapse
Affiliation(s)
- Ke Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Zhuo Ma
- Harbin Institute of Technology, School of Life Science and Technology, Harbin 150001, China
| | - Xinyi Li
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, School of Medicine and Health, Harbin 150080, China
| | - Yunfeng Qiu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, School of Medicine and Health, Harbin 150080, China
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Shaoqin Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, School of Medicine and Health, Harbin 150080, China
| |
Collapse
|
7
|
Ratsameetammajak N, Autthawong T, Khunpakdee K, Haruta M, Chairuangsri T, Sarakonsri T. Insight into the Role of Conductive Polypyrrole Coated on Rice Husk-Derived Nanosilica-Reduced Graphene Oxide as the Anodes: Electrochemical Improvement in Sustainable Lithium-Ion Batteries. Polymers (Basel) 2023; 15:4638. [PMID: 38139889 PMCID: PMC10747683 DOI: 10.3390/polym15244638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Polypyrrole (PPy) is a type of conducting polymer that has garnered attention as a potential electrode material for sustainable energy storage devices. This is mostly attributed to its mechanical flexibility, ease of processing, and ecologically friendly nature. Here, a polypyrrole-coated rice husk-derived nanosilica-reduced graphene oxide nanocomposite (SiO2-rGO@PPy) as an anode material was developed by a simple composite technique followed by an in situ polymerization process. The architecture of reduced graphene oxide offers a larger electrode/electrolyte interface to promote charge-transfer reactions and provides sufficient space to buffer a large volume expansion of SiO2, maintaining the mechanical integrity of the overall electrode during the lithiation/delithiation process. Moreover, the conducting polymer coating not only improves the capacity of SiO2, but also suppresses the volume expansion and rapid capacity fading caused by serious pulverization. The present anode material shows a remarkable specific reversible capacity of 523 mAh g-1 at 100 mA g-1 current density and exhibits exceptional discharge rate capability. The cycling stability at a current density of 100 mA g-1 shows 81.6% capacity retention and high Coulombic efficiency after 250 charge-discharge cycles. The study also pointed out that this method might be able to be used on a large scale in the lithium-ion battery industry, which could have a big effect on its long-term viability. Creating sustainable nanocomposites is an exciting area of research that could help solve some of the biggest problems with lithium-ion batteries, like how easy they are to make and how big they can be used in industry. This is because they are sustainable and have less of an impact on the environment.
Collapse
Affiliation(s)
- Natthakan Ratsameetammajak
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.R.); (T.A.); (K.K.)
- Center of Excellent for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanapat Autthawong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.R.); (T.A.); (K.K.)
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittiched Khunpakdee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.R.); (T.A.); (K.K.)
- Center of Excellent for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mitsutaka Haruta
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan;
| | - Torranin Chairuangsri
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Thapanee Sarakonsri
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.R.); (T.A.); (K.K.)
- Center of Excellent for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Wang Z, Li D, Shi Y, Sun Y, Okeke SI, Yang L, Zhang W, Zhang Z, Shi Y, Xiao L. Recent Implementations of Hydrogel-Based Microbial Electrochemical Technologies (METs) in Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:641. [PMID: 36679438 PMCID: PMC9866333 DOI: 10.3390/s23020641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Hydrogel materials have been used extensively in microbial electrochemical technology (MET) and sensor development due to their high biocompatibility and low toxicity. With an increasing demand for sensors across different sectors, it is crucial to understand the current state within the sectors of hydrogel METs and sensors. Surprisingly, a systematic review examining the application of hydrogel-based METs to sensor technologies has not yet been conducted. This review aimed to identify the current research progress surrounding the incorporation of hydrogels within METs and sensors development, with a specific focus on microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). The manufacturing process/cost, operational performance, analysis accuracy and stability of typical hydrogel materials in METs and sensors were summarised and analysed. The current challenges facing the technology as well as potential direction for future research were also discussed. This review will substantially promote the understanding of hydrogel materials used in METs and benefit the development of electrochemical biosensors using hydrogel-based METs.
Collapse
Affiliation(s)
- Zeena Wang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Dunzhu Li
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yifan Sun
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Saviour I. Okeke
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Wen Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Zihan Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Yanqi Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- TrinityHaus, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
9
|
Massaglia G, Quaglio M. 3D Composite PDMS/MWCNTs Aerogel as High-Performing Anodes in Microbial Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4335. [PMID: 36500961 PMCID: PMC9736451 DOI: 10.3390/nano12234335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Porous 3D composite materials are interesting anode electrodes for single chamber microbial fuel cells (SCMFCs) since they exploit a surface layer that is able to achieve the correct biocompatibility for the proliferation of electroactive bacteria and have an inner charge transfer element that favors electron transfer and improves the electrochemical activity of microorganisms. The crucial step is to fine-tune the continuous porosity inside the anode electrode, thus enhancing the bacterial growth, adhesion, and proliferation, and the substrate's transport and waste products removal, avoiding pore clogging. To this purpose, a novel approach to synthetize a 3D composite aerogel is proposed in the present work. A 3D composite aerogel, based on polydimethylsiloxane (PDMS) and multi-wall carbon nanotubes (MWCNTs) as a conductive filler, was obtained by pouring this mixture over the commercial sugar, used as removable template to induce and tune the hierarchical continuous porosity into final nanostructures. In this scenario, the granularity of the sugar directly affects the porosities distribution inside the 3D composite aerogel, as confirmed by the morphological characterizations implemented. We demonstrated the capability to realize a high-performance bioelectrode, which showed a 3D porous structure characterized by a high surface area typical of aerogel materials, the required biocompatibility for bacterial proliferations, and an improved electron pathway inside it. Indeed, SCMFCs with 3D composite aerogel achieved current densities of (691.7 ± 9.5) mA m-2, three orders of magnitude higher than commercial carbon paper, (287.8 ± 16.1) mA m-2.
Collapse
Affiliation(s)
- Giulia Massaglia
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Center for Sustainable Future Technologies@ POLITO, Istituto Italiano di Tecnologia, 10100 Torino, Italy
| | - Marzia Quaglio
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
- Center for Sustainable Future Technologies@ POLITO, Istituto Italiano di Tecnologia, 10100 Torino, Italy
| |
Collapse
|
10
|
V VP, Kumar N, Rajendran HK, Ray J, Narayanasamy S. Sequestration and toxicological assessment of emerging contaminants with polypyrrole modified carboxymethyl cellulose (CMC/PPY): Case of ibuprofen pharmaceutical drug. Int J Biol Macromol 2022; 221:547-557. [PMID: 36089084 DOI: 10.1016/j.ijbiomac.2022.09.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 12/17/2022]
Abstract
Ibuprofen (IBU) is a non-steroidal anti-inflammatory drug released into water bodies causing toxic biological effects on living organisms. The current study aims to eliminate IBU from aqueous solutions by a novel carboxymethylcellulose/polypyrrole (CMC/PPY) composite with high removal efficiency. Pyrrole was polymerized to polypyrrole whose average size was about 20 nm on the CMC surface. The maximum removal percentage of IBU by CMC/PPY composite was optimized at initial concentration 10 mg/L, dosage 0.02 g, and pH 7 with adsorption capacity of 72.30 (mg/g) and removal of 83.17 %. IBU adsorption onto CMC/PPY theoretically fits into the Langmuir isotherm and Elovich-kinetic models. Fish and Phytotoxicity assessment were performed with zebrafish and seeds of Vigna mungo (VM) and Vigna radiata (VR). The toxicity study reveals that before adsorption, IBU shows high toxicity towards the zebrafish mortality (33 %), growth inhibition (58.52 % for VM, 60.84 % for VR), and germination (86.66 % for VM and 90 % for VR). As CMC/PPY adsorbs IBU, toxicity drastically decreases. Before adsorption, LC50 was 233.02 mg/L. After adsorption, the LC50 increases to 2325.07 mg/L as IBU molecules get adsorbed by CMC/PPY. These findings show the feasibility of preparing CMC/PPY composite to effectively remove pharmaceutical pollutant IBU from aqueous solutions with their toxicological assessment.
Collapse
Affiliation(s)
- Vishnu Priyan V
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Nitesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Harish Kumar Rajendran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Jyotiprakash Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039
| | - Selvaraju Narayanasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India, 781039.
| |
Collapse
|
11
|
Abuali M, Arsalani N, Ahadzadeh I. On the effect of polypyrrole on electrochemical performance of micro-sized hollow spheres of NiCo2S4 and CuCo2S4 nanoparticles. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Dwivedi KA, Huang SJ, Wang CT. Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: A review. CHEMOSPHERE 2022; 287:132248. [PMID: 34543899 DOI: 10.1016/j.chemosphere.2021.132248] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/14/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The conflict between climate change and growing global energy demand is an immense sustainability challenge that requires noteworthy scientific and technological developments. Recently the importance of microbial fuel cell (MFC) on this issue has seen profound investigation due to its inherent ability of simultaneous wastewater treatment, and power production. However, the challenges of economy-related manufacturing and operation costs should be lowered to achieve positive field-scale demonstration. Also, a variety of different field deployments will lead to improvisation. Hence, this review article discusses the possibility of integration of MFC technology with various technologies of recent times leading to advanced sustainable MFC technology. Technological innovation in the field of nanotechnology, genetic engineering, additive manufacturing, artificial intelligence, adaptive control, and few other hybrid systems integrated with MFCs is discussed. This comprehensive and state-of-the-art study elaborates hybrid MFCs integrated with various technology and its working principles, modified electrode material, complex and easy to manufacture reactor designs, and the effects of various operating parameters on system performances. Although integrated systems are promising, much future research work is needed to overcome the challenges and commercialize hybrid MFC technology.
Collapse
Affiliation(s)
- Kavya Arun Dwivedi
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, Taiwan
| | - Song-Jeng Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, Taiwan
| | - Chin-Tsan Wang
- Department of Mechanical and Electromechanical Engineering, National I Lan University, I Lan, Taiwan; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India.
| |
Collapse
|
13
|
Pankratova G, Bollella P, Pankratov D, Gorton L. Supercapacitive biofuel cells. Curr Opin Biotechnol 2021; 73:179-187. [PMID: 34481244 DOI: 10.1016/j.copbio.2021.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
Supercapacitive biofuel cells' (SBFCs) most recent advancements are herein disclosed. In conventional SBFCs the biocomponent is employed as the pseudocapacitive component, while in self-charging biodevices it also works as the biocatalyst. The performance of different types of SBFCs are summarized according to the categorization based on the biocatalyst employed: supercapacitive microbial fuel cells (s-MFCs), supercapacitive biophotovoltaics (SBPV) and supercapacitive enzymatic fuel cells (s-EFCs). SBFCs could be considered as promising 'alternative' energy devices (low-cost, environmentally friendly, and technically undemanding electric power sources etc.) being suitable for powering a new generation of miniaturized electronic applications.
Collapse
Affiliation(s)
- Galina Pankratova
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Paolo Bollella
- Department of Chemistry, University of Bari A. Moro, Via E. Orabona 4, 70125 Bari, Italy.
| | - Dmitry Pankratov
- Department of Bioengineering, University of Antwerp, B-2020 Antwerp, Belgium
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
14
|
Gao X, Qiu S, Lin Z, Xie X, Yin W, Lu X. Carbon-Based Composites as Anodes for Microbial Fuel Cells: Recent Advances and Challenges. Chempluschem 2021; 86:1322-1341. [PMID: 34363342 DOI: 10.1002/cplu.202100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Owing to the low price, chemical stability and good conductivity, carbon-based materials have been extensively applied as the anode in microbial fuel cells (MFCs). In this review, apart from the charge storage mechanism and anode requirements, the major work focuses on five categories of carbon-based anode materials (traditional carbon, porous carbon, nano-carbon, metal/carbon composite and polymer/carbon composite). The relationship is demonstrated in depth between the physicochemical properties of the anode surface/interface/bulk (porosity, surface area, hydrophilicity, partical size, charge, roughness, etc.) and the bioelectrochemical performances (electron transfer, electrolyte diffusion, capacitance, toxicity, start-up time, current, power density, voltage, etc.). An outlook for future work is also proposed.
Collapse
Affiliation(s)
- Xingyuan Gao
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China.,MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Shuxian Qiu
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Ziting Lin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xiangjuan Xie
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Wei Yin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
15
|
Fontmorin JM, Izadi P, Li D, Lim SS, Farooq S, Bilal SS, Cheng S, Yu EH. Gas diffusion electrodes modified with binary doped polyaniline for enhanced CO2 conversion during microbial electrosynthesis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Gómez IJ, Vázquez Sulleiro M, Mantione D, Alegret N. Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers (Basel) 2021; 13:745. [PMID: 33673680 PMCID: PMC7957790 DOI: 10.3390/polym13050745] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Carbon nanomaterials are at the forefront of the newest technologies of the third millennium, and together with conductive polymers, represent a vast area of indispensable knowledge for developing the devices of tomorrow. This review focusses on the most recent advances in the field of conductive nanotechnology, which combines the properties of carbon nanomaterials with conjugated polymers. Hybrid materials resulting from the embedding of carbon nanotubes, carbon dots and graphene derivatives are taken into consideration and fully explored, with discussion of the most recent literature. An introduction into the three most widely used conductive polymers and a final section about the most recent biological results obtained using carbon nanotube hybrids will complete this overview of these innovative and beyond belief materials.
Collapse
Affiliation(s)
- I. Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| | | | - Daniele Mantione
- Laboratoire de Chimie des Polymères Organiques (LCPO-UMR 5629), Université de Bordeaux, Bordeaux INP, CNRS F, 33607 Pessac, France
| | - Nuria Alegret
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
17
|
Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. ENERGIES 2020. [DOI: 10.3390/en13246596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sustainable production of electricity from renewable sources by microorganisms is considered an attractive alternative to energy production from fossil fuels. In recent years, research on microbial fuel cells (MFCs) technology for electricity production has increased. However, there are problems with up-scaling MFCs due to the fairly low power output and high operational costs. One of the approaches to improving energy generation in MFCs is by modifying the existing anode materials to provide more electrochemically active sites and improve the adhesion of microorganisms. The aim of this review is to present the effect of anode modification with carbon compounds, metallic nanomaterials, and polymers and the effect that these modifications have on the structure of the microbiological community inhabiting the anode surface. This review summarizes the advantages and disadvantages of individual materials as well as possibilities for using them for environmentally friendly production of electricity in MFCs.
Collapse
|