1
|
Lan K, Shen C, Li J, Zhang S, Lan X, Pan C, Wang Y. A novel indel within the bovine SEPT7 gene is associated with ovary length. Anim Biotechnol 2023; 34:8-14. [PMID: 34097585 DOI: 10.1080/10495398.2021.1929272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The ovary can generate oocytes and secrete female hormones and thus is of great significance to animal fertility. In turn, the functioning of this organ has an effect on the profit margins of the livestock breeding industry. As the development-regulating gene and target gene of miR-202, SEPT7 might play an important role in ovarian growth. Therefore, we hypothesized that SEPT7 is related to ovarian traits owing to the regulation of gonad-specific miR-202. To further investigate the connection between bovine SEPT7 and ovarian development, we analyzed data from 408 samples. After genotyping and analyzing three selected loci, we found that two out of the three loci (L1 and L5) were polymorphic, of which the minimum allelic frequencies were 0.417 (L1) and 0.094 (L5). Moreover, one novel indel L1 of SEPT7 was associated with ovarian length (p < 0.05). More specifically, individuals with II and ID genotypes have longer ovaries than those with the DD genotype. Our work shows that SEPT7 can be selected as a testing marker gene for animal fertility. Our findings contribute to improving the prospects of the cattle industry and the wider use of genetic techniques in breeding.
Collapse
Affiliation(s)
- Kangshu Lan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Chenglong Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shaowei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xinrui Lan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Pereira R, Sousa M. Morphological and Molecular Bases of Male Infertility: A Closer Look at Sperm Flagellum. Genes (Basel) 2023; 14:383. [PMID: 36833310 PMCID: PMC9956255 DOI: 10.3390/genes14020383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Infertility is a major health problem worldwide without an effective therapy or cure. It is estimated to affect 8-12% of couples in the reproductive age group, equally affecting both genders. There is no single cause of infertility, and its knowledge is still far from complete, with about 30% of infertile couples having no cause identified (named idiopathic infertility). Among male causes of infertility, asthenozoospermia (i.e., reduced sperm motility) is one of the most observed, being estimated that more than 20% of infertile men have this condition. In recent years, many researchers have focused on possible factors leading to asthenozoospermia, revealing the existence of many cellular and molecular players. So far, more than 4000 genes are thought to be involved in sperm production and as regulators of different aspects of sperm development, maturation, and function, and all can potentially cause male infertility if mutated. In this review, we aim to give a brief overview of the typical sperm flagellum morphology and compile some of the most relevant information regarding the genetic factors involved in male infertility, with a focus on sperm immotility and on genes related to sperm flagellum development, structure, or function.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Gönczi M, Ráduly Z, Szabó L, Fodor J, Telek A, Dobrosi N, Balogh N, Szentesi P, Kis G, Antal M, Trencsenyi G, Dienes B, Csernoch L. Septin7 is indispensable for proper skeletal muscle architecture and function. eLife 2022; 11:e75863. [PMID: 35929607 PMCID: PMC9355566 DOI: 10.7554/elife.75863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Today septins are considered as the fourth component of the cytoskeleton, with the Septin7 isoform playing a critical role in the formation of higher-order structures. While its importance has already been confirmed in several intracellular processes of different organs, very little is known about its role in skeletal muscle. Here, using Septin7 conditional knockdown (KD) mouse model, the C2C12 cell line, and enzymatically isolated adult muscle fibers, the organization and localization of septin filaments are revealed, and an ontogenesis-dependent expression of Septin7 is demonstrated. KD mice displayed a characteristic hunchback phenotype with skeletal deformities, reduction in in vivo and in vitro force generation, and disorganized mitochondrial networks. Furthermore, knockout of Septin7 in C2C12 cells resulted in complete loss of cell division while KD cells provided evidence that Septin7 is essential for proper myotube differentiation. These and the transient increase in Septin7 expression following muscle injury suggest that it may be involved in muscle regeneration and development.
Collapse
Affiliation(s)
- Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Andrea Telek
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - György Trencsenyi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| |
Collapse
|
4
|
Pan Z, Zhu C, Chang G, Wu N, Ding H, Wang H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:565-581. [PMID: 33523351 DOI: 10.1007/s10695-021-00932-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The Ussuri catfish (Pseudobagrus ussuriensis) has an XX/XY sex determination system but its sex determination gene(s) remain unknown. To better understand the molecular sex determination mechanism, transcriptome analysis was conducted to obtain sex-related gene expression profiles. Transcriptome analyses were made of male and female developing/differentiating gonads by high-throughput RNA sequencing, including gonads from fish given an estradiol-induced sex reversal treatment. A total of 81,569 unigenes were assembled and 39,904 were significantly matched to known unique proteins by comparison with public databases. Twenty specifically expressed and 142 differentially expressed sex-related genes were extracted from annotated data by comparing the treatment groups. These genes are involved in spermatogenesis (e.g., Dnali1, nectin3, klhl10, mybl1, Katnal1, Eno4, Mns1, Spag6, Tsga10, Septin7), oogenesis (e.g., Lagr5, Fmn2, Npm2, zar1, Fbxo5, Fbxo43, Prdx4, Nrip1, Lfng, Atrip), gonadal development/differentiation (e.g., Cxcr4b, Hmgb2, Cftr, Ch25h, brip1, Prdm9, Tdrd1, Star, dmrt1, Tut4, Hsd17b12a, gdf9, dnd, arf1, Spata22), and estradiol response (e.g., Mmp14, Lhcgr, vtg1, vtg2, esr2b, Piwil1, Aifm1, Hsf1, gdf9). Dmrt1 and gdf9 may play an essential role in sex determination in P. ussuriensis. The expression patterns of six random genes were validated by quantitative real-time PCR, which confirmed the reliability and accuracy of the RNA-seq results. These data provide a valuable resource for future studies of gene expression and for understanding the molecular mechanism of sex determination/differentiation and gonadal development/differentiation (including hormone-induced sexual reversal) in Ussuri catfish. This has the potential to assist in producing monosex Ussuri catfish to increase aquacultural productivity.
Collapse
Affiliation(s)
- ZhengJun Pan
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China.
| | - ChuanKun Zhu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - GuoLiang Chang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Nan Wu
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - HuaiYu Ding
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| | - Hui Wang
- School of Life Sciences, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
5
|
Lin YH, Huang CY, Ke CC, Wang YY, Lai TH, Liu HC, Ku WC, Chan CC, Lin YH. ACTN4 Mediates SEPT14 Mutation-Induced Sperm Head Defects. Biomedicines 2020; 8:biomedicines8110518. [PMID: 33228246 PMCID: PMC7699536 DOI: 10.3390/biomedicines8110518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Septins (SEPTs) are highly conserved GTP-binding proteins and the fourth component of the cytoskeleton. Polymerized SEPTs participate in the modulation of various cellular processes, such as cytokinesis, cell polarity, and membrane dynamics, through their interactions with microtubules, actin, and other cellular components. The main objective of this study was to dissect the molecular pathological mechanism of SEPT14 mutation-induced sperm head defects. To identify SEPT14 interactors, co-immunoprecipitation (co-IP) and nano-liquid chromatography-mass spectrometry/mass spectrometry were applied. Immunostaining showed that SEPT14 was significantly localized to the manchette structure. The SEPT14 interactors were identified and classified as (1) SEPT-, (2) microtubule-, (3) actin-, and (4) sperm structure-related proteins. One interactor, ACTN4, an actin-holding protein, was selected for further study. Co-IP experiments showed that SEPT14 interacts with ACTN4 in a male germ cell line. SEPT14 also co-localized with ACTN4 in the perinuclear and manchette regions of the sperm head in early elongating spermatids. In the cell model, mutated SEPT14 disturbed the localization pattern of ACTN4. In a clinical aspect, sperm with mutant SEPT14, SEPT14A123T (p.Ala123Thr), and SEPT14I333T (p.Ile333Thr), have mislocalized and fragmented ACTN4 signals. Sperm head defects in donors with SEPT14 mutations are caused by disruption of the functions of ACTN4 and actin during sperm head formation.
Collapse
Affiliation(s)
- Yu-Hua Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City 231, Taiwan
| | - Chia-Yen Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan;
- Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (T.-H.L.); (W.-C.K.)
| | - Chih-Chun Ke
- PhD Program in Nutrition & Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
- Department of Urology, En Chu Kong Hospital, New Taipei City 237, Taiwan
| | - Ya-Yun Wang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (H.-C.L.)
| | - Tsung-Hsuan Lai
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (T.-H.L.); (W.-C.K.)
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei 106, Taiwan
| | - Hsuan-Che Liu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (H.-C.L.)
| | - Wei-Chi Ku
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; (T.-H.L.); (W.-C.K.)
| | - Chying-Chyuan Chan
- Department of Obstetrics and Gynecology, Taipei City Hospital, Renai Branch, Taipei 106, Taiwan;
| | - Ying-Hung Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; (Y.-Y.W.); (H.-C.L.)
- Correspondence:
| |
Collapse
|
6
|
Geng D, Yang X, Zhang H, Liu X, Yu Y, Jiang Y, Liu R, Zhang G. Association of single nucleotide polymorphism c.673C>A/p.Gln225Lys in SEPT12 gene with spermatogenesis failure in male idiopathic infertility in Northeast China. J Int Med Res 2018; 47:992-998. [PMID: 30488758 PMCID: PMC6381467 DOI: 10.1177/0300060518811770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Male infertility is a complex multifactorial disease affecting approximately 10% of couples who want to have children. Some cases of infertility can be explained by genetic factors. Septins are members of the GTPase superfamily, which are involved in diverse biological processes including morphogenesis, compartmentalization, cytokinesis, and apoptosis. The septin 12 gene, SEPT12, is expressed exclusively in post-meiotic male germ cells and is considered as a critical gene for spermatogenesis. In this study, we evaluated 200 patients with non-obstructive azoospermia and detected mutations of 25 spermatogenesis-associated genes by targeted exome sequencing. We report a missense SEPT12 variant, c.673C>A/p.Gln225Lys, in an infertile man with non-obstructive azoospermia. The variation was located inside the GTPase domain and had a SIFT score of 0.02 (<0.50) and was considered to be 'probably damaging' by PolyPhen. This case may provide clues to help establish the relationship between SEPT12 gene alterations and some cases of idiopathic male infertility. The role of this variant should thus be investigated further.
Collapse
Affiliation(s)
- Dongfeng Geng
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Yang
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongguo Zhang
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaojun Liu
- 2 Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Yang Yu
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuting Jiang
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ruizhi Liu
- 1 Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, Jilin, China.,*These authors contributed equally to this work
| | - Guirong Zhang
- 2 Peking Medriv Academy of Genetics and Reproduction, Peking, China.,*These authors contributed equally to this work
| |
Collapse
|
7
|
Wang X, Fei F, Qu J, Li C, Li Y, Zhang S. The role of septin 7 in physiology and pathological disease: A systematic review of current status. J Cell Mol Med 2018; 22:3298-3307. [PMID: 29602250 PMCID: PMC6010854 DOI: 10.1111/jcmm.13623] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Septins are a conserved family of cytoskeletal GTPases present in different organisms, including yeast, drosophila, Caenorhabditis elegans and humans. In humans, septins are involved in various cellular processes, including exocytosis, apoptosis, leukemogenesis, carcinogenesis and neurodegeneration. Septin 7 is unique out of 13 human septins. Mammalian septin 6, septin 7, septin 2 and septin 9 coisolate together in complexes to form the core unit for the generation of the septin filaments. Physiological septin filaments are hetero-oligomeric complexes consisting of core septin hexamers and octamers. Furthermore, septin 7 plays a crucial role in cytokinesis and mitosis. Septin 7 is localized to the filopodia and branches of developing hippocampal neurons, and is the most abundant septin in the adult rat forebrain as well as a structural component of the human and mouse sperm annuli. Septin 7 is crucial to the spine morphogenesis and dendrite growth in neurons, and is also a structural constituent of the annulus in human and mouse sperm. It can suppress growth of some tumours such as glioma and papillary thyroid carcinoma. However, the molecular mechanisms of involvement of septin 7 in human disease, especially in the development of cancer, remain unclear. This review focuses on the structure, function and mechanism of septin 7 in vivo, and summarizes the role of septin 7 in cell proliferation, cytokinesis, nervous and reproductive systems, as well as the underlying molecular events linking septin 7 to various diseases, such as Alzheimer's disease, schizophrenia, neuropsychiatric systemic lupus erythematosus, tumour and so on.
Collapse
Affiliation(s)
- Xinlu Wang
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Fei Fei
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Jie Qu
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Chunyuan Li
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Yuwei Li
- Department of Colorectal SurgeryTianjin Union Medical CenterTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
8
|
Shen YR, Wang HY, Kuo YC, Shih SC, Hsu CH, Chen YR, Wu SR, Wang CY, Kuo PL. SEPT12 phosphorylation results in loss of the septin ring/sperm annulus, defective sperm motility and poor male fertility. PLoS Genet 2017; 13:e1006631. [PMID: 28346465 PMCID: PMC5386304 DOI: 10.1371/journal.pgen.1006631] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/10/2017] [Accepted: 02/10/2017] [Indexed: 01/22/2023] Open
Abstract
Septins are critical for numerous cellular processes through the formation of heteromeric filaments and rings indicating the importance of structural regulators in septin assembly. Several posttranslational modifications (PTMs) mediate the dynamics of septin filaments in yeast. However, little is known about the role of PTMs in regulating mammalian septin assembly, and the in vivo significance of PTMs on mammalian septin assembly and function remains unknown. Here, we showed that SEPT12 was phosphorylated on Ser198 using mass spectrometry, and we generated SEPT12 phosphomimetic knock-in (KI) mice to study its biological significance. The homozygous KI mice displayed poor male fertility due to deformed sperm with defective motility and loss of annulus, a septin-based ring structure. Immunohistochemistry of KI testicular sections suggested that SEPT12 phosphorylation inhibits septin ring assembly during annulus biogenesis. We also observed that SEPT12 was phosphorylated via PKA, and its phosphorylation interfered with SEPT12 polymerization into complexes and filaments. Collectively, our data indicate that SEPT12 phosphorylation inhibits SEPT12 filament formation, leading to loss of the sperm annulus/septin ring and poor male fertility. Thus, we provide the first in vivo genetic evidence characterizing importance of septin phosphorylation in the assembly, cellular function and physiological significance of septins.
Collapse
Affiliation(s)
- Yi-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Han-Yu Wang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Che Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chuan Shih
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Abstract
The genetic bases and molecular mechanisms involved in the assembly and function of the flagellum components as well as in the regulation of the flagellar movement are not fully understood, especially in humans. There are several causes for sperm immotility, of which some can be avoided and corrected, whereas other are related to genetic defects and deserve full investigation to give a diagnosis to patients. This review was performed after an extensive literature search on the online databases PubMed, ScienceDirect, and Web of Science. Here, we review the involvement of regulatory pathways responsible for sperm motility, indicating possible causes for sperm immotility. These included the calcium pathway, the cAMP-dependent protein kinase pathway, the importance of kinases and phosphatases, the function of reactive oxygen species, and how the regulation of cell volume and osmolarity are also fundamental components. We then discuss main gene defects associated with specific morphological abnormalities. Finally, we slightly discuss some preventive and treatments approaches to avoid development of conditions that are associated with unspecified sperm immotility. We believe that in the near future, with the development of more powerful techniques, the genetic causes of sperm immotility and the regulatory mechanisms of sperm motility will be better understand, thus enabling to perform a full diagnosis and uncover new therapies.
Collapse
Affiliation(s)
- Rute Pereira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| | - Rosália Sá
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, Av. do Bessa, 240, 1° Dto. Frente, 4100-012 Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal and Institute of Health Research an Innovation (I3S), University of Porto, Portugal
| | - Mário Sousa
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal and Multidisciplinary Unit for Biomedical Research-UMIB, ICBAS-UP, Portugal
| |
Collapse
|
10
|
Yeh CH, Kuo PL, Wang YY, Wu YY, Chen MF, Lin DY, Lai TH, Chiang HS, Lin YH. SEPT12/SPAG4/LAMINB1 complexes are required for maintaining the integrity of the nuclear envelope in postmeiotic male germ cells. PLoS One 2015; 10:e0120722. [PMID: 25775403 PMCID: PMC4361620 DOI: 10.1371/journal.pone.0120722] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
Male infertility affects approximately 50% of all infertile couples. The male-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile or immature sperm, and sperm with structural defects such as those caused by premature chromosomal condensation and DNA damage. Our previous studies based on a knockout mice model indicated that SEPT12 proteins are critical for the terminal morphological formation of sperm. SEPT12 mutations in men result in teratozospermia and oligozospermia. In addition, the spermatozoa exhibit morphological defects of the head and tail, premature chromosomal condensation, and nuclear damage. However, the molecular functions of SEPT12 during spermatogenesis remain unclear. To determine the molecular functions of SEPT12, we applied a yeast 2-hybrid system to identify SEPT12 interactors. Seven proteins that interact with SEPT12 were identified: SEPT family proteins (SEPT4 and SEPT6), nuclear or nuclear membrane proteins (protamine 2, sperm-associated antigen 4, and NDC1 transmembrane nucleoproine), and sperm-related structural proteins (pericentriolar material 1 and obscurin-like 1). Sperm-associated antigen 4 (SPAG4; also known as SUN4) belongs to the SUN family of proteins and acts as a linker protein between nucleoskeleton and cytoskeleton proteins and localizes in the nuclear membrane. We determined that SEPT12 interacts with SPAG4 in a male germ cell line through coimmunoprecipitation. During human spermiogenesis, SEPT12 is colocalized with SPAG4 near the nuclear periphery in round spermatids and in the centrosome region in elongating spermatids. Furthermore, we observed that SEPT12/SPAG4/LAMINB1 formed complexes and were coexpressed in the nuclear periphery of round spermatids. In addition, mutated SEPT12, which was screened from an infertile man, affected the integration of these nuclear envelope complexes through coimmunoprecipitation. This was the first study that suggested that SEPT proteins link to the SUN/LAMIN complexes during the formation of nuclear envelopes and are involved in the development of postmeiotic germ cells.
Collapse
Affiliation(s)
- Chung-Hsin Yeh
- Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ya-Yun Wang
- Department of Obstetrics & Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ying-Yu Wu
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, New Taipei City, Taiwan
| | - Mei-Feng Chen
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Ding-Yen Lin
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hsuan Lai
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei City, Taiwan
- Institute of Systems Biology and Bioinformatics, National Central University, Zhongli City, Taoyuan County, Taiwan
| | - Han-Sun Chiang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, New Taipei City, Taiwan
| | - Ying-Hung Lin
- Graduate Institute of Basic Medicine, Fu Jen Catholic University, College of Medicine, New Taipei City, Taiwan
| |
Collapse
|
11
|
Hosseinifar H, Shafipour M, Modarresi T, Azad M, Sadighi Gilani MA, Shahhosseini M, Sabbaghian M. Relationship between absence of annulus and asthenozoospermia in Iranian men. J Assist Reprod Genet 2014; 31:1681-5. [PMID: 25301271 DOI: 10.1007/s10815-014-0353-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To find a relationship between absence of annulus and asthenozoospermia in Iranian men. METHODS In the present study, semen samples from 100 asthenozoospermic and 20 normozospermic patients were analyzed for sperm concentration and motility. Spermatozoa were immunostained for the two septin subunits Sept4 and Sept7. The absence of the annulus structure was confirmed by transmission electron microscopy and western blot analysis for septin 4. DNA sequencing for all coding exons of SEPT12 was performed for a patient using peripheral blood sample. RESULTS Specific antibodies for SEPT4 and SEPT7 consistently labeled the annuli in spermatozoa from all of the 20 normozospermic men, while in one of 100 patients with asthenozoospermia, 75% of sperms lacking septin 4 or septin 7 proteins at the annulus. It was shown that the structural defect in annulus formation is not caused by point mutation of SEPT12 gene. CONCLUSIONS In conclusion, the results of this study demonstrated that the frequency of the absence of annulus in asthenozoospermic sample of Iranian population has a low frequency and could not be assume as a diagnostic marker for classifying asthenozoospermic patients.
Collapse
Affiliation(s)
- Hani Hosseinifar
- Department of Andrology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
12
|
Shafipour M, Sabbaghian M, Shahhoseini M, Sadighi Gilani MA. Comparative expression analysis of Septin 14 in testes of infertile men with normal spermatogenesis and spermatogenic failure. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2014; 12:205-8. [PMID: 24799881 PMCID: PMC4009572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/18/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Septins are an evolutionary conserved group of GTP-binding and filament-forming proteins that have diverse cellular roles. An increasing body of data implicates the septin family in the pathogenesis of diverse states including cancers, neurodegeneration, and male infertility. OBJECTIVE The objective of the study was to evaluate the expression pattern of Septin14 in testis tissue of men with and without spermatogenic failure. MATERIALS AND METHODS The samples retrieved accessible random between infertile men who underwent diagnostic testicular biopsy in Royan institute. 10 infertile men with obstructive azoospermia and normal spermatogenesis and 20 infertile men with non-obstructive azoospermia were recruited for real-time reverse transcription (RT)-PCR analysis of the testicular tissue. Total RNA was extracted with trizol reagent. RESULTS Comparison of the mRNA level of septin14 revealed that in tissues with partial (n=10) or complete spermatogenesis (n=10), the expression of septin 14 was significantly higher than sertoli cell only tissues. CONCLUSION The testicular tissues of men with hypospermatogenesis, maturation arrest and sertoli cell only had lower levels of septin 14 transcripts than normal men. These data indicates that Septin 14 expression level is critical for human spermatogenesis.
Collapse
Affiliation(s)
- Maryam Shafipour
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Tehran, Iran.
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Tehran, Iran.
| | - Maryam Shahhoseini
- Department of Reproductive Genetics, Reproductive Biomedicine Research Center, Royan Institute, ACECR, Tehran, Iran.
| | | |
Collapse
|
13
|
Li S, Ou XH, Wei L, Wang ZB, Zhang QH, Ouyang YC, Hou Y, Schatten H, Sun QY. Septin 7 is required for orderly meiosis in mouse oocytes. Cell Cycle 2012; 11:3211-8. [PMID: 22895176 DOI: 10.4161/cc.21553] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Septin 7 is a conserved GTP-binding protein. In this study, we examined the localization and functions of Septin 7 during mouse oocyte meiotic maturation. Immunofluorescent analysis showed that intrinsic Septin 7 localized to the spindles from the pro-MI stage to the MII stage. Knockdown of Septin 7 by siRNA microinjection caused abnormal spindles and affected extrusion of the first polar body. Septin 7 mRNA tagged with myc was injected into GV stage oocytes to overexpress Septin 7. Overexpressed Myc-Septin 7 localized to the spindle and beneath the plasma membrane displaying long filaments. Fluorescence intensity of spindle α-tubulin in myc-Septin 7-injected oocytes was weaker than that of the control group, demonstrating that Septin 7 may influence recruitment of α-tubulin to spindles. MII oocytes injected with myc-Septin 7 exhibited abnormal chromosome alignment, and parthenogenetic activation failed to allow extrusion of the second polar body, suggesting that overexpression of Septin 7 may affect extrusion of the polar body by disturbing the alignment of chromosomes and regulating α-tubulin recruitment to spindles. In summary, Septin 7 may regulate meiotic cell cycle progression by affecting microtubule cytoskeletal dynamics in mouse oocytes.
Collapse
Affiliation(s)
- Sen Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Reproductive Medicine Center, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lin YH, Kuo YC, Chiang HS, Kuo PL. The role of the septin family in spermiogenesis. SPERMATOGENESIS 2011; 1:298-302. [PMID: 22332113 DOI: 10.4161/spmg.1.4.18326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/08/2023]
Abstract
SEPTINS (FULL NAME: Septin; symbol name: SEPT) belong to a family of polymerizing GTP-binding proteins that are required for many cellular functions, including membrane compartmentalization, vesicle trafficking, mitosis and cytoskeletal remodeling. Two of the 14 family members in the mammalian species, Septin12 and 14 are expressed specifically in the testis. In the mouse, knockout of Septin4 and Septin12 leads to male sterility with distinctive sperm pathology (defective annulus or bent neck). In humans, sperm with abnormal expression patterns of SEPT4, 7 and 12 are more prevalent in infertile men. How septin filament is assembled/dissembled and how the SEPT-related complex regulates spermatogenesis still await further investigation.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Basic Medicine; Fu Jen Catholic University; Taipei, Taiwan
| | | | | | | |
Collapse
|
15
|
Iyengar PV, Hirota T, Hirose S, Nakamura N. Membrane-associated RING-CH 10 (MARCH10 protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella. J Biol Chem 2011; 286:39082-90. [PMID: 21937444 DOI: 10.1074/jbc.m111.256875] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spermiogenesis is a complex and dynamic process of the metamorphosis of spermatids into spermatozoa. There is a great deal that is still unknown regarding the regulatory mechanisms for the formation of the sperm flagellum. In this study, we determined that the membrane-associated RING-CH 10 (March10) gene is predominantly expressed in rat testis. We isolated two March10 isoforms encoding MARCH10a and MARCH10b, which are generated by alternative splicing. MARCH10a is a long RING finger protein, and MARCH10b is a short RING finger-less protein. Immunohistochemical staining revealed that the MARCH10 proteins are specifically expressed in elongating and elongated spermatids, and the expression is absent in epididymal spermatozoa. MARCH10 immunoreactivity was observed in the cytoplasmic lobes as well as the principal piece and annulus of the flagella. When overexpressed in COS7 cells, MARCH10a was localized along the microtubules, whereas MARCH10b was distributed throughout the cytoplasm. An in vitro microtubule cosedimentation assay showed that MARCH10a is directly associated with microtubules. An in vitro ubiquitination assay demonstrated that the RING finger domain of MARCH10a exhibits an E3 ubiquitin ligase activity along with the E2 ubiquitin-conjugating enzyme UBE2B. Moreover, MARCH10a undergoes proteasomal degradation by autoubiquitination in transfected COS7 cells, but this activity was abolished upon microtubule disassembly. These results suggest that MARCH10 is involved in spermiogenesis by regulating the formation and maintenance of the flagella in developing spermatids.
Collapse
Affiliation(s)
- Prasanna Vasudevan Iyengar
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B-19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|