1
|
Kyvelidou C, Haselrieder S, von Gierke M, Gostner JM, Biasio W, Wirleitner B, Heufler C, Toth B, Hofer-Tollinger S. Dendritic cells under the control of the preimplantation embryo secretome: an in vitro study. Reprod Biol Endocrinol 2024; 22:150. [PMID: 39578791 PMCID: PMC11585248 DOI: 10.1186/s12958-024-01319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVE To study the crosstalk between maternal immune cells and the developing embryo by investigating the immunogenic properties of human blastocyst spent media (SM) on dendritic cells. METHODS In this prospective multicenter experimental study, human preimplantation embryo spent media were collected after blastocyst formation, grouped based on successful or unsuccessful implantation, and analyzed by protein array or used to stimulate monocyte derived dendritic cells (moDC). The immunomodulatory properties of SM on moDC were investigated by analyzing changes in phenotype, cytokine secretion, indoleamine 2,3-dioxygenase (IDO) activity, and ability to activate T cells. RESULTS A plethora of cytokines and growth factors secreted from preimplantation embryos was detected. Exposure to embryo SM altered the phenotype of moDC in a manner dependent on the implantation outcome. Specifically, SM from non-implanted embryos increased the expression of co-stimulatory molecules and activation markers on moDC. Furthermore, SM treated dendritic cells secreted low levels of cytokines and growth factors and were able to stimulate naïve T cells. Activation of IDO was decreased in moDC after stimulation with SM. CONCLUSIONS Our findings show that human preimplantation embryos secrete an abundance of molecules with the ability to significantly affect and even regulate immune cells in their environment.
Collapse
Affiliation(s)
- Christiana Kyvelidou
- Department of Gynaecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Sofia Haselrieder
- Department of Gynaecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Maria von Gierke
- Department of Gynaecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biochemical Immunotoxicology Group, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Biasio
- Department of Gynaecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | | | - Christine Heufler
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Toth
- Department of Gynaecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria
| | - Susanne Hofer-Tollinger
- Department of Gynaecological Endocrinology and Reproductive Medicine, Medical University of Innsbruck, Anichstraße 35, Innsbruck, 6020, Austria.
| |
Collapse
|
2
|
Shan G, Abdalla K, Liu H, Dai C, Tan J, Law J, Steinberg C, Li A, Kuznyetsova I, Zhang Z, Librach C, Sun Y. Non-invasively predicting euploidy in human blastocysts via quantitative 3D morphology measurement: a retrospective cohort study. Reprod Biol Endocrinol 2024; 22:132. [PMID: 39468586 PMCID: PMC11514912 DOI: 10.1186/s12958-024-01302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Blastocyst morphology has been demonstrated to be associated with ploidy status. Existing artificial intelligence models use manual grading or 2D images as the input for euploidy prediction, which suffer from subjectivity from observers and information loss due to incomplete features from 2D images. Here we aim to predict euploidy in human blastocysts using quantitative morphological parameters obtained by 3D morphology measurement. METHODS Multi-view images of 226 blastocysts on Day 6 were captured by manually rotating blastocysts during the preparation stage of trophectoderm biopsy. Quantitative morphological parameters were obtained by 3D morphology measurement. Six machine learning models were trained using 3D morphological parameters as the input and PGT-A results as the ground truth outcome. Model performance, including sensitivity, specificity, precision, accuracy and AUC, was evaluated on an additional test dataset. Model interpretation was conducted on the best-performing model. RESULTS All the 3D morphological parameters were significantly different between euploid and non-euploid blastocysts. Multivariate analysis revealed that three of the five parameters including trophectoderm cell number, trophectoderm cell size variance and inner cell mass area maintained statistical significance (P < 0.001, aOR = 1.054, 95% CI 1.034-1.073; P = 0.003, aOR = 0.994, 95% CI 0.991-0.998; P = 0.010, aOR = 1.003, 95% CI 1.001-1.006). The accuracy of euploidy prediction by the six machine learning models ranged from 80 to 95.6%, and the AUCs ranged from 0.881 to 0.984. Particularly, the decision tree model achieved the highest accuracy of 95.6% (95% CI 84.9-99.5%) with the AUC of 0.978 (95% CI 0.882-0.999), and the extreme gradient boosting model achieved the highest AUC of 0.984 (95% CI 0.892-1.000) with the accuracy of 93.3% (95% CI 81.7-98.6%). No significant difference was found between different age groups using either decision tree or extreme gradient boosting to predict euploid blastocysts. The quantitative criteria extracted from the decision tree imply that euploid blastocysts have a higher number of trophectoderm cells, larger inner cell mass area, and smaller trophectoderm cell size variance compared to non-euploid blastocysts. CONCLUSIONS Using quantitative morphological parameters obtained by 3D morphology measurement, the decision tree-based machine learning model achieved an accuracy of 95.6% and AUC of 0.978 for predicting euploidy in Day 6 human blastocysts. TRIAL REGISTRATION N/A.
Collapse
Affiliation(s)
- Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Khaled Abdalla
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Hang Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Changsheng Dai
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Justin Tan
- CReATe Fertility Centre, Toronto, ON, M5G 1N8, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | | | - Ang Li
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
| | | | - Zhuoran Zhang
- School of Science and Engineering, The Chinese University of Hong Kong Shenzhen, Shenzhen, 518172, China.
| | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, M5G 1N8, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, M5G 1E2, Canada.
- Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada.
| |
Collapse
|
3
|
Caamaño D, Cabezas J, Aguilera C, Martinez I, Wong YS, Sagredo DS, Ibañez B, Rodriguez S, Castro FO, Rodriguez-Alvarez L. DNA Content in Embryonic Extracellular Vesicles Is Independent of the Apoptotic Rate in Bovine Embryos Produced In Vitro. Animals (Basel) 2024; 14:1041. [PMID: 38612280 PMCID: PMC11011075 DOI: 10.3390/ani14071041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pre-implantation embryos release extracellular vesicles containing different molecules, including DNA. The presence of embryonic DNA in E-EVs released into the culture medium during in vitro embryo production could be useful for genetic diagnosis. However, the vesicles containing DNA might be derived from embryos suffering from apoptosis, i.e., embryos of bad quality. This work intended to confirm that embryos release DNA that is useful for genotyping by evaluating the effect of embryonic apoptosis on DNA content in E-EVs. Bovine embryos were produced by parthenogenesis and in vitro fertilization (IVF). On Day 5, morulae were transferred to individual cultures in an EV-depleted SOF medium. On Day 7, embryos were used to evaluate cellular apoptosis, and each culture medium was collected to evaluate E-EV concentration, characterization, and DNA quantification. While no effect of the origin of the embryo on the apoptotic rate was found, arrested morulae had a higher apoptotic rate. E-EVs containing DNA were identified in all samples, and the concentration of those vesicles was not affected by the origin or quality of the embryos. However, the concentration of DNA was higher in EVs released by the arrested parthenogenetic embryos. There was a correlation between the concentration of E-EVs, the concentration of DNA-positive E-EVs, and the concentration of DNA. There was no negative effect of apoptotic rate on DNA-positive E-EVs and DNA concentration; however, embryos of the best quality with a low apoptotic rate still released EVs containing DNA. This study confirms that the presence of DNA in E-EVs is independent of embryo quality. Therefore, E-EVs could be used in liquid biopsy for noninvasive genetic diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lleretny Rodriguez-Alvarez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillán 3780000, Chile; (D.C.); (J.C.); (C.A.); (I.M.); (Y.S.W.); (D.S.S.); (B.I.); (S.R.); (F.O.C.)
| |
Collapse
|
4
|
Makieva S, Giacomini E, Scotti GM, Lazarevic D, Pavone V, Ottolina J, Bartiromo L, Schimberni M, Morelli M, Alteri A, Minetto S, Tonon G, Candiani M, Papaleo E, Viganò P. Extracellular vesicles secreted by human aneuploid embryos present a distinct transcriptomic profile and upregulate MUC1 transcription in decidualised endometrial stromal cells. Hum Reprod Open 2024; 2024:hoae014. [PMID: 38559895 PMCID: PMC10980593 DOI: 10.1093/hropen/hoae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
STUDY QUESTION Do extracellular vesicles (EVs) secreted by aneuploid human embryos possess a unique transcriptomic profile that elicits a relevant transcriptomic response in decidualized primary endometrial stromal cells (dESCs)? SUMMARY ANSWER Aneuploid embryo-derived EVs contain transcripts of PPM1J, LINC00561, ANKRD34C, and TMED10 with differential abundance from euploid embryo-derived EVs and induce upregulation of MUC1 transcript in dESCs. WHAT IS KNOWN ALREADY We have previously reported that IVF embryos secrete EVs that can be internalized by ESCs, conceptualizing that successful implantation to the endometrium is facilitated by EVs. Whether these EVs may additionally serve as biomarkers of ploidy status is unknown. STUDY DESIGN SIZE DURATION Embryos destined for biopsy for preimplantation genetic testing for aneuploidy (PGT-A) were grown under standard conditions. Spent media (30 μl) were collected from euploid (n = 175) and aneuploid (n = 140) embryos at cleavage (Days 1-3) stage and from euploid (n = 187) and aneuploid (n = 142) embryos at blastocyst (Days 3-5) stage. Media samples from n = 35 cleavage-stage embryos were pooled in order to obtain five euploid and four aneuploid pools. Similarly, media samples from blastocysts were pooled to create one euploid and one aneuploid pool. ESCs were obtained from five women undergoing diagnostic laparoscopy. PARTICIPANTS/MATERIALS SETTING METHODS EVs were isolated from pools of media by differential centrifugation and EV-RNA sequencing was performed following a single-cell approach that circumvents RNA extraction. ESCs were decidualized (estradiol: 10 nM, progesterone: 1 µM, cAMP: 0.5 mM twice every 48 h) and incubated for 24 h with EVs (50 ng/ml). RNA sequencing was performed on ESCs. MAIN RESULTS AND THE ROLE OF CHANCE Aneuploid cleavage stage embryos secreted EVs that were less abundant in RNA fragments originating from the genes PPM1J (log2fc = -5.13, P = 0.011), LINC00561 (log2fc = -7.87, P = 0.010), and ANKRD34C (log2fc = -7.30, P = 0.017) and more abundant in TMED10 (log2fc = 1.63, P = 0.025) compared to EVs of euploid embryos. Decidualization per se induced downregulation of MUC1 (log2fc = -0.54, P = 0.0028) in ESCs as a prerequisite for the establishment of receptive endometrium. The expression of MUC1 transcript in decidualized ESCs was significantly increased following treatment with aneuploid compared to euploid embryo-secreted EVs (log2fc = 0.85, P = 0.0201). LARGE SCALE DATA Raw data have been uploaded to GEO (accession number GSE234338). LIMITATIONS REASONS FOR CAUTION The findings of the study will require validation utilizing a second cohort of EV samples. WIDER IMPLICATIONS OF THE FINDINGS The discovery that the transcriptomic profile of EVs secreted from aneuploid cleavage stage embryos differs from that of euploid embryos supports the possibility to develop a non-invasive methodology for PGT-A. The upregulation of MUC1 in dESCs following aneuploid embryo EV treatment proposes a new mechanism underlying implantation failure. STUDY FUNDING/COMPETING INTERESTS The study was supported by a Marie Skłodowska-Curie Actions fellowship awarded to SM by the European Commission (CERVINO grant agreement ID: 79620) and by a BIRTH research grant from Theramex HQ UK Ltd. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Sofia Makieva
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Giacomini
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Maria Scotti
- Centre for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Centre for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Pavone
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jessica Ottolina
- Centro Scienze della Natalità, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ludovica Bartiromo
- Department of Obstetrics and Gynaecology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Matteo Schimberni
- Department of Obstetrics and Gynaecology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Marco Morelli
- Centre for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Alteri
- Centro Scienze della Natalità, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabrina Minetto
- Centro Scienze della Natalità, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Centre for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Candiani
- Department of Obstetrics and Gynaecology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Enrico Papaleo
- Centro Scienze della Natalità, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
5
|
Lacconi V, Massimiani M, Carriero I, Bianco C, Ticconi C, Pavone V, Alteri A, Muzii L, Rago R, Pisaturo V, Campagnolo L. When the Embryo Meets the Endometrium: Identifying the Features Required for Successful Embryo Implantation. Int J Mol Sci 2024; 25:2834. [PMID: 38474081 DOI: 10.3390/ijms25052834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Evaluation of the optimal number of embryos, their quality, and the precise timing for transfer are critical determinants in reproductive success, although still remaining one of the main challenges in assisted reproduction technologies (ART). Indeed, the success of in vitro fertilization (IVF) treatments relies on a multitude of events and factors involving both the endometrium and the embryo. Despite concerted efforts on both fronts, the overall success rates of IVF techniques continue to range between 25% and 30%. The role of the endometrium in implantation has been recently recognized, leading to the hypothesis that both the "soil" and the "seed" play a central role in a successful pregnancy. In this respect, identification of the molecular signature of endometrial receptivity together with the selection of the best embryo for transfer become crucial in ART. Currently, efforts have been made to develop accurate, predictive, and personalized tests to identify the window of implantation and the best quality embryo. However, the value of these tests is still debated, as conflicting results are reported in the literature. The purpose of this review is to summarize and critically report the available criteria to optimize the success of embryo transfer and to better understand current limitations and potential areas for improvement.
Collapse
Affiliation(s)
- Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Micol Massimiani
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Ilenia Carriero
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Claudia Bianco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carlo Ticconi
- Department of Surgical Sciences, Section of Gynaecology and Obstetrics, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Pavone
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Alteri
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Rocco Rago
- Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini 385/389, 00157 Rome, Italy
| | - Valerio Pisaturo
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
6
|
Cheng HYH, Chow JFC, Lam KKW, Lai SF, Yeung WSB, Ng EHY. Randomised double-blind controlled trial of non-invasive preimplantation genetic testing for aneuploidy in in vitro fertilisation: a protocol paper. BMJ Open 2023; 13:e072557. [PMID: 37500277 PMCID: PMC10387641 DOI: 10.1136/bmjopen-2023-072557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
INTRODUCTION The success rate of in vitro fertilisation (IVF) treatment for couples with infertility remains low due to lack of a reliable tool in selecting euploid embryos for transfer. This study aims to compare the efficacy in embryo selection based on morphology alone compared with non-invasive preimplantation genetic testing for aneuploidy (niPGT-A) and morphology in infertile women undergoing IVF. METHODS AND ANALYSIS This is a randomised double-blind controlled trial conducted in two tertiary assisted reproduction centres. A total of 500 infertile women will be recruited and undergo IVF as indicated. They will be randomly assigned on day 6 after oocyte retrieval into two groups: the intervention group using morphology and niPGT-A and the control group based on morphology alone. In the control group, blastocysts with the best quality morphology will be replaced first. In the intervention group, blastocysts with the best morphology and euploid result of spent culture medium will be replaced first. The primary outcome is a live birth per the first embryo transfer. The statistical analysis will be performed with the intention to treat and per protocol. ETHICS AND DISSEMINATION Ethics approval was sought from the institutional review board of the two participating units. All participants will provide written informed consent before joining the study. The results of the study will be submitted to scientific conferences and peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04474522.
Collapse
Affiliation(s)
- Hiu Yee Heidi Cheng
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
| | - Judy F C Chow
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
| | - Shui Fan Lai
- Department of Obstetrics and Gynaecology, Kwong Wah Hospital, Hong Kong, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Jiang VS, Kandula H, Thirumalaraju P, Kanakasabapathy MK, Cherouveim P, Souter I, Dimitriadis I, Bormann CL, Shafiee H. The use of voting ensembles to improve the accuracy of deep neural networks as a non-invasive method to predict embryo ploidy status. J Assist Reprod Genet 2023; 40:301-308. [PMID: 36640251 PMCID: PMC9935776 DOI: 10.1007/s10815-022-02707-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To determine if creating voting ensembles combining convolutional neural networks (CNN), support vector machine (SVM), and multi-layer neural networks (NN) alongside clinical parameters improves the accuracy of artificial intelligence (AI) as a non-invasive method for predicting aneuploidy. METHODS A cohort of 699 day 5 PGT-A tested blastocysts was used to train, validate, and test a CNN to classify embryos as euploid/aneuploid. All embryos were analyzed using a modified FAST-SeqS next-generation sequencing method. Patient characteristics such as maternal age, AMH level, paternal sperm quality, and total number of normally fertilized (2PN) embryos were processed using SVM and NN. To improve model performance, we created voting ensembles using CNN, SVM, and NN to combine our imaging data with clinical parameter variations. Statistical significance was evaluated with a one-sample t-test with 2 degrees of freedom. RESULTS When assessing blastocyst images alone, the CNN test accuracy was 61.2% (± 1.32% SEM, n = 3 models) in correctly classifying euploid/aneuploid embryos (n = 140 embryos). When the best CNN model was assessed as a voting ensemble, the test accuracy improved to 65.0% (AMH; p = 0.1), 66.4% (maternal age; p = 0.06), 65.7% (maternal age, AMH; p = 0.08), 66.4% (maternal age, AMH, number of 2PNs; p = 0.06), and 71.4% (maternal age, AMH, number of 2PNs, sperm quality; p = 0.02) (n = 140 embryos). CONCLUSIONS By combining CNNs with patient characteristics, voting ensembles can be created to improve the accuracy of classifying embryos as euploid/aneuploid from CNN alone, allowing for AI to serve as a potential non-invasive method to aid in karyotype screening and selection of embryos.
Collapse
Affiliation(s)
- Victoria S Jiang
- Division of Reproductive Endocrinology and Infertility, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Suite 10A, VincentBoston, MA, 02114, USA
| | - Hemanth Kandula
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Prudhvi Thirumalaraju
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Manoj Kumar Kanakasabapathy
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Panagiotis Cherouveim
- Division of Reproductive Endocrinology and Infertility, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Suite 10A, VincentBoston, MA, 02114, USA
| | - Irene Souter
- Division of Reproductive Endocrinology and Infertility, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Suite 10A, VincentBoston, MA, 02114, USA
| | - Irene Dimitriadis
- Division of Reproductive Endocrinology and Infertility, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Suite 10A, VincentBoston, MA, 02114, USA
| | - Charles L Bormann
- Division of Reproductive Endocrinology and Infertility, Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Suite 10A, VincentBoston, MA, 02114, USA.
| | - Hadi Shafiee
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Kakourou G, Mamas T, Vrettou C, Traeger-Synodinos J. An Update on Non-invasive Approaches for Genetic Testing of the Preimplantation Embryo. Curr Genomics 2022; 23:337-352. [PMID: 36778192 PMCID: PMC9878856 DOI: 10.2174/1389202923666220927111158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
Preimplantation Genetic Testing (PGT) aims to reduce the chance of an affected pregnancy or improve success in an assisted reproduction cycle. Since the first established pregnancies in 1990, methodological approaches have greatly evolved, combined with significant advances in the embryological laboratory. The application of preimplantation testing has expanded, while the accuracy and reliability of monogenic and chromosomal analysis have improved. The procedure traditionally employs an invasive approach to assess the nucleic acid content of embryos. All biopsy procedures require high technical skill, and costly equipment, and may impact both the accuracy of genetic testing and embryo viability. To overcome these limitations, many researchers have focused on the analysis of cell-free DNA (cfDNA) at the preimplantation stage, sampled either from the blastocoel or embryo culture media, to determine the genetic status of the embryo non-invasively. Studies have assessed the origin of cfDNA and its application in non-invasive testing for monogenic disease and chromosomal aneuploidies. Herein, we discuss the state-of-the-art for modern non-invasive embryonic genetic material assessment in the context of PGT. The results are difficult to integrate due to numerous methodological differences between the studies, while further work is required to assess the suitability of cfDNA analysis for clinical application.
Collapse
Affiliation(s)
- Georgia Kakourou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece,Address correspondence to this author at the Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece; Tel/Fax: +302107467467; E-mail:
| | - Thalia Mamas
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece
| | - Christina Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia's Children's Hospital, 11527, Athens, Greece
| |
Collapse
|
9
|
Navarro-Sánchez L, García-Pascual C, Rubio C, Simón C. Non-invasive PGT-A: An update. Reprod Biomed Online 2022; 44:817-828. [DOI: 10.1016/j.rbmo.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/09/2022]
|
10
|
Pan M, Shi H, Liu Z, Dong J, Cai L, Ge Q. The integrity of cfDNA in follicular fluid and spent medium from embryo culture is associated with embryo grade in patients undergoing in vitro fertilization. J Assist Reprod Genet 2021; 38:3113-3124. [PMID: 34820723 DOI: 10.1007/s10815-021-02357-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE This study was conducted to verify if the cfDNA integrity (cfDI) in follicular fluid and subsequent spent embryo medium (SEM) could serve as potential non-invasive biomarker for high-grade embryo selection during IVF/ICSI. METHODS Thirty-two follicular fluids, 32 subsequent corresponding cleavage embryo SEM, and 23 subsequent blastocyst SEM were collected from 11 patients undergoing IVF/ICSI. CfDI was measured by ALU gene amplicons with different sizes by qPCR, as the ratio of long to short fragments. RESULTS CfDI in follicular fluid corresponding to subsequent high-grade cleavage embryos and blastocysts was significantly lower than that related to low-grade embryos (p = 0.018). Conversely, cfDI in SEM was significantly and positively correlated with high-grade embryos at both stages (p = 0.009). ROC curves of the analysis of cfDI in follicular fluid showed great potential in predicting subsequent embryogenesis and embryo grade (AUC > 0.927). Regardless of the cleavage embryo grade by morphology, cfDI in day 3 SEM could predict if the cleavage embryo could develop to a high-grade blastocyst (AUC = 0.820). A concordant shift pattern of cfDI from follicular fluid to subsequent day 3 SEM and day 5 SEM was found in 81.82% participants featured by various clinical characteristics. CONCLUSION CfDI in follicular fluid and SEM was significantly correlated with embryogenesis and embryo grade and could serve as a potential non-invasive biomarker in high-grade embryo selection. Direct qPCR was proved as a labor-saving and sensitive method for the analysis of cfDI in low volume of SEM.
Collapse
Affiliation(s)
- Min Pan
- School of Medicine, Southeast University, Nanjing, China
| | - Huajuan Shi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhiyu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Juan Dong
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lingbo Cai
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
11
|
Luddi A, Pavone V, Governini L, Capaldo A, Landi C, Ietta F, Paccagnini E, Morgante G, De Leo V, Piomboni P. Emerging role of embryo secretome in the paracrine communication at the implantation site: a proof of concept. Fertil Steril 2021; 115:1054-1062. [PMID: 33500140 DOI: 10.1016/j.fertnstert.2020.10.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To assess the role of embryo secretome in modifying the molecular profile of glycodelin A (GdA) in endometrial organoids (ORG) mimicking the implantation window. To verify whether the use of embryo-conditioned culture medium at the time of the embryo transfer may increase in vitro fertilization outcome. DESIGN Molecular study with human endometrial ORG and embryo-conditioned culture medium. Retrospective study using prospectively recorded data. SETTING University hospital. PATIENT(S) For isolation and culture of endometrial glandular ORG, endometrial biopsy specimens from five white women of proven fertility undergoing laparoscopy for tubal sterilization. A total of 75 women undergoing intracytoplasmic sperm injection for tubal and/or male infertility factor. INTERVENTIONS(S) In vitro fertilization. MAIN OUTCOME MEASURE(S) Pinopodes presence in human endometrial ORG. Glycodelin A expression profile by means of two-dimensional electrophoresis. In vitro fertilization outcome. RESULT(S) This in vitro study demonstrated that the treatment of endometrial ORG with the secretome of medium conditioned by the growing embryo increased the GdA relative abundance and induced a different glycoform pattern. Biochemical and clinical pregnancy rate significantly increased when the spent medium was loaded during the transfer (17.5% vs. 36.6% and 16.5% vs. 35.1%, respectively). CONCLUSION(S) This study demonstrated that the secretome of implanting embryos is able to induce the expression as well as to determine the relative abundance and the glycosilation profile of endometrial GdA, a protein having a key role in the embryo-endometrial cross talk. Moreover, a significant increase in pregnancy rate was observed when the embryo transfer was performed by using the culture medium conditioned by the growing embryo.
Collapse
Affiliation(s)
- Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Valentina Pavone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Angela Capaldo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Claudia Landi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Giuseppe Morgante
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
12
|
Cimadomo D, Rienzi L, Capalbo A, Rubio C, Innocenti F, García-Pascual CM, Ubaldi FM, Handyside A. The dawn of the future: 30 years from the first biopsy of a human embryo. The detailed history of an ongoing revolution. Hum Reprod Update 2020; 26:453-473. [PMID: 32441746 DOI: 10.1093/humupd/dmaa019] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/25/2020] [Indexed: 01/20/2023] Open
Abstract
Following early studies showing no adverse effects, cleavage stage biopsy by zona drilling using acid Tyrode's solution, and removal of single blastomeres for preimplantation genetic testing (PGT) and identification of sex in couples at risk of X-linked disease, was performed by Handyside and colleagues in late 1989, and pregnancies reported in 1990. This method was later used for specific diagnosis of monogenic conditions, and a few years later also for chromosomal structural and/or numerical impairments, thereby establishing a valuable alternative option to prenatal diagnosis. This revolutionary approach in clinical embryology spread worldwide, and several other embryo biopsy strategies developed over three decades in a process that is still ongoing. The rationale of this narrative review is to outline the different biopsy approaches implemented across the years in the workflow of the IVF clinics that provided PGT: their establishment, the first clinical experiences, their downsides, evolution, improvement and standardization. The history ends with a glimpse of the future: minimally/non-invasive PGT and experimental embryo micromanipulation protocols. This grand theme review outlines a timeline of the evolution of embryo biopsy protocols, whose implementation is increasing worldwide together with the increasing application of PGT techniques in IVF. It represents a vade mecum especially for the past, present and upcoming operators and experts in this field to (re)live this history from its dawn to its most likely future.
Collapse
Affiliation(s)
- Danilo Cimadomo
- Clinica Valle Giulia, Genera Center for Reproductive Medicine, Rome, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, Genera Center for Reproductive Medicine, Rome, Italy
| | - Antonio Capalbo
- Igenomix Italy, Marostica, Italy.,Dipartimento di Scienze Anatomiche, Istologiche, Medico Legali e dell'Apparato Locomotore, Sezione Istologia ed Embriologia Medica, University of Rome 'Sapienza', Rome, Italy
| | - Carmen Rubio
- R&D Department, Igenomix and Incliva, Valencia, Spain
| | - Federica Innocenti
- Clinica Valle Giulia, Genera Center for Reproductive Medicine, Rome, Italy
| | | | | | - Alan Handyside
- School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
13
|
Rubio C, Navarro-Sánchez L, García-Pascual CM, Ocali O, Cimadomo D, Venier W, Barroso G, Kopcow L, Bahçeci M, Kulmann MIR, López L, De la Fuente E, Navarro R, Valbuena D, Sakkas D, Rienzi L, Simón C. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am J Obstet Gynecol 2020; 223:751.e1-751.e13. [PMID: 32470458 DOI: 10.1016/j.ajog.2020.04.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The recent identification of embryonic cell-free DNA in spent blastocyst media has opened a new era of possibilities for noninvasive embryo aneuploidy testing in assisted reproductive technologies. Yet, previous studies assessing a limited number of embryos reported variable concordance between embryonic cell-free DNA and trophectoderm biopsies, thus questioning the validity of this approach. OBJECTIVE This study aimed to evaluate the concordance and reproducibility of testing embryonic cell-free DNA vs trophectoderm DNA obtained from the same embryo in a large sample of human blastocysts and to assess the contribution of the inner cell mass and trophectoderm to embryonic cell-free DNA released to the culture media. STUDY DESIGN This is an interim analysis of a prospective, observational study among 8 in vitro fertilization centers in 4 continents to assess consistency between noninvasive embryo aneuploidy testing of embryonic cell-free DNA and conventional trophectoderm biopsy. The analysis included 1301 day-6/7 blastocysts obtained in 406 in vitro fertilization cycles from 371 patients aged 20-44 years undergoing preimplantation genetic testing for aneuploidy. Fresh oocytes underwent intracytoplasmic sperm injection or in vitro fertilization. No previous assisted hatching or vitrification was allowed before media collection. Individual spent blastocyst medium was collected from embryos cultured at least 40 hours from day 4. After media collection, conventional preimplantation genetic testing for aneuploidy, comprising trophectoderm biopsy and blastocyst vitrification, was performed. Embryonic cell-free DNA was analyzed blindly after embryo transfer. Inner cell mass and trophectoderm biopsies were also performed in a subset of 81 aneuploid blastocysts donated for research. RESULTS Embryonic cell-free DNA analyses were 78.2% (866/1108) concordant with the corresponding trophectoderm biopsies. No significant differences were detected among centers ranging from 72.5% to 86.3%. Concordance rates exceeded 86% when all defined steps in the culture laboratory were controlled to minimize the impact of maternal and operator contamination. Sensitivity per center ranged from 76.5% to 91.3% and specificity from 64.7% to 93.3%. The false-negative rate was 8.3% (92/1108), and false-positive rate was 12.4% (137/1108). The 2 fertilization techniques provided similar sensitivity (80.9% vs 87.9%) and specificity (78.6% vs 69.9%). Multivariate analysis did not reveal any bias from patient clinical background, ovarian stimulation protocols, culture conditions, or embryo quality on testing accuracy of concordance. Moreover, concordances of embryonic cell-free DNA with trophectoderm and inner cell mass suggest that the embryonic cell-free DNA originates from both compartments of the human embryo. CONCLUSION Noninvasive analysis of embryonic cell-free DNA in spent blastocyst culture media demonstrates high concordance with trophectoderm biopsy results in this large multicenter series. A noninvasive approach for prioritizing embryo euploidy offers important advantages such as avoiding invasive embryo biopsy and decreased cost, potentially increasing accessibility for a wider patient population.
Collapse
Affiliation(s)
| | | | | | - Olcay Ocali
- IVF Laboratory, Boston IVF Fertility Clinic, Boston, MA
| | - Danilo Cimadomo
- GENERA Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - William Venier
- IVF Laboratory, San Diego Fertility Center, San Diego, CA
| | - Gerardo Barroso
- IVF Clinical Department, Escuela Superior de Medicina Instituto Politécnico Nacional y Centro de Reproducción Arcos S.C. NASCERE, CDMX, Mexico
| | - Laura Kopcow
- Department of Reproductive Genetics, Pregna Medicina Reproductiva, Buenos Aires, Argentina
| | | | | | - Lourdes López
- IVF Laboratory, ProcreaTec International Fertility Clinic, Madrid, Spain
| | | | - Roser Navarro
- Bioinformatics Department, Igenomix, Valencia, Spain
| | | | - Denny Sakkas
- IVF Laboratory, Boston IVF Fertility Clinic, Boston, MA
| | - Laura Rienzi
- GENERA Center for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Carlos Simón
- Igenomix Foundation/Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA) and Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, Valencia, Spain, and Department of Obstetrics and Gynecology, BIDMC, Harvard University, Cambridge, MA
| |
Collapse
|
14
|
Zhou W, Dimitriadis E. Secreted MicroRNA to Predict Embryo Implantation Outcome: From Research to Clinical Diagnostic Application. Front Cell Dev Biol 2020; 8:586510. [PMID: 33072767 PMCID: PMC7537741 DOI: 10.3389/fcell.2020.586510] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Embryo implantation failure is considered a leading cause of infertility and a significant bottleneck for in vitro fertilization (IVF) treatment. Confirmed factors that lead to implantation failure involve unhealthy embryos, unreceptive endometrium, and asynchronous development and communication between the two. The quality of embryos is further dependent on sperm parameters, oocyte quality, and early embryo development after fertilization. The extensive involvement of such different factors contributes to the variability of implantation potential across different menstrual cycles. An ideal approach to predict the implantation outcome should not compromise embryo implantation. The use of clinical material, including follicular fluid, cumulus cells, sperm, seminal exosomes, spent blastocyst culture medium, blood, and uterine fluid, that can be collected relatively non-invasively without compromising embryo implantation in a transfer cycle opens new perspectives for the diagnosis of embryo implantation potential. Compositional comparison of these samples between fertile women and women or couples with implantation failure has identified both quantitative and qualitative differences in the expression of microRNAs (miRs) that hold diagnostic potential for implantation failure. Here, we review current findings of secreted miRs that have been identified to potentially be useful in predicting implantation outcome using material that can be collected relatively non-invasively. Developing non-invasive biomarkers of implantation potential would have a major impact on implantation failure and infertility.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, The Royal Women's Hospital, Parkville, VIC, Australia
| |
Collapse
|
15
|
Bartolucci AF, Peluso JJ. Necessity is the mother of invention and the evolutionary force driving the success of in vitro fertilization. Biol Reprod 2020; 104:255-273. [PMID: 32975285 DOI: 10.1093/biolre/ioaa175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/21/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
During the last few decades, millions of healthy children have been born with the aid of in vitro fertilization (IVF). This success belies the fact that IVF treatment is comprised of a complex series of interventions starting with a customized control ovarian stimulation protocol. This is followed by the induction of oocyte maturation, the retrieval of mature oocytes and in vitro fertilization, which often involves the microinjection of a single sperm into the oocyte. After fertilization, the resulting embryos are cultured for up to 7 days. The best embryos are transferred into the uterus where the embryo implants and hopefully develops into a healthy child. However, frequently the best embryos are biopsied and frozen. The biopsied cells are analyzed to identify those embryos without chromosomal abnormalities. These embryos are eventually thawed and transferred with pregnancy rates as good if not better than embryos that are not biopsied and transferred in a fresh cycle. Thus, IVF treatment requires the coordinated efforts of physicians, nurses, molecular biologists and embryologists to conduct each of these multifaceted phases in a seamless and flawless manner. Even though complex, IVF treatment may seem routine today, but it was not always the case. In this review the evolution of human IVF is presented as a series of innovations that resolved a technical hurdle in one component of IVF while creating challenges that eventually lead to the next major advancement. This step-by-step evolution in the treatment of human infertility is recounted in this review.
Collapse
Affiliation(s)
- Alison F Bartolucci
- Department of Obstetrics and Gynecology, University of Connecticut Health Center.,The Center for Advanced Reproductive Services, Farmington, CT, USA
| | - John J Peluso
- Department of Obstetrics and Gynecology, University of Connecticut Health Center.,Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
16
|
Cornelisse S, Zagers M, Kostova E, Fleischer K, van Wely M, Mastenbroek S. Preimplantation genetic testing for aneuploidies (abnormal number of chromosomes) in in vitro fertilisation. Cochrane Database Syst Rev 2020; 9:CD005291. [PMID: 32898291 PMCID: PMC8094272 DOI: 10.1002/14651858.cd005291.pub3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND In in vitro fertilisation (IVF) with or without intracytoplasmic sperm injection (ICSI), selection of the most competent embryo(s) for transfer is based on morphological criteria. However, many women do not achieve a pregnancy even after 'good quality' embryo transfer. One of the presumed causes is that such morphologically normal embryos have an abnormal number of chromosomes (aneuploidies). Preimplantation genetic testing for aneuploidies (PGT-A), formerly known as preimplantation genetic screening (PGS), was therefore developed as an alternative method to select embryos for transfer in IVF. In PGT-A, the polar body or one or a few cells of the embryo are obtained by biopsy and tested. Only polar bodies and embryos that show a normal number of chromosomes are transferred. The first generation of PGT-A, using cleavage-stage biopsy and fluorescence in situ hybridisation (FISH) for the genetic analysis, was demonstrated to be ineffective in improving live birth rates. Since then, new PGT-A methodologies have been developed that perform the biopsy procedure at other stages of development and use different methods for genetic analysis. Whether or not PGT-A improves IVF outcomes and is beneficial to patients has remained controversial. OBJECTIVES To evaluate the effectiveness and safety of PGT-A in women undergoing an IVF treatment. SEARCH METHODS We searched the Cochrane Gynaecology and Fertility (CGF) Group Trials Register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL, and two trials registers in September 2019 and checked the references of appropriate papers. SELECTION CRITERIA All randomised controlled trials (RCTs) reporting data on clinical outcomes in participants undergoing IVF with PGT-A versus IVF without PGT-A were eligible for inclusion. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies for inclusion, assessed risk of bias, and extracted study data. The primary outcome was the cumulative live birth rate (cLBR). Secondary outcomes were live birth rate (LBR) after the first embryo transfer, miscarriage rate, ongoing pregnancy rate, clinical pregnancy rate, multiple pregnancy rate, proportion of women reaching an embryo transfer, and mean number of embryos per transfer. MAIN RESULTS We included 13 trials involving 2794 women. The quality of the evidence ranged from low to moderate. The main limitations were imprecision, inconsistency, and risk of publication bias. IVF with PGT-A versus IVF without PGT-A with the use of genome-wide analyses Polar body biopsy One trial used polar body biopsy with array comparative genomic hybridisation (aCGH). It is uncertain whether the addition of PGT-A by polar body biopsy increases the cLBR compared to IVF without PGT-A (odds ratio (OR) 1.05, 95% confidence interval (CI) 0.66 to 1.66, 1 RCT, N = 396, low-quality evidence). The evidence suggests that for the observed cLBR of 24% in the control group, the chance of live birth following the results of one IVF cycle with PGT-A is between 17% and 34%. It is uncertain whether the LBR after the first embryo transfer improves with PGT-A by polar body biopsy (OR 1.10, 95% CI 0.68 to 1.79, 1 RCT, N = 396, low-quality evidence). PGT-A with polar body biopsy may reduce miscarriage rate (OR 0.45, 95% CI 0.23 to 0.88, 1 RCT, N = 396, low-quality evidence). No data on ongoing pregnancy rate were available. The effect of PGT-A by polar body biopsy on improving clinical pregnancy rate is uncertain (OR 0.77, 95% CI 0.50 to 1.16, 1 RCT, N = 396, low-quality evidence). Blastocyst stage biopsy One trial used blastocyst stage biopsy with next-generation sequencing. It is uncertain whether IVF with the addition of PGT-A by blastocyst stage biopsy increases cLBR compared to IVF without PGT-A, since no data were available. It is uncertain if LBR after the first embryo transfer improves with PGT-A with blastocyst stage biopsy (OR 0.93, 95% CI 0.69 to 1.27, 1 RCT, N = 661, low-quality evidence). It is uncertain whether PGT-A with blastocyst stage biopsy reduces miscarriage rate (OR 0.89, 95% CI 0.52 to 1.54, 1 RCT, N = 661, low-quality evidence). No data on ongoing pregnancy rate or clinical pregnancy rate were available. IVF with PGT-A versus IVF without PGT-A with the use of FISH for the genetic analysis Eleven trials were included in this comparison. It is uncertain whether IVF with addition of PGT-A increases cLBR (OR 0.59, 95% CI 0.35 to 1.01, 1 RCT, N = 408, low-quality evidence). The evidence suggests that for the observed average cLBR of 29% in the control group, the chance of live birth following the results of one IVF cycle with PGT-A is between 12% and 29%. PGT-A performed with FISH probably reduces live births after the first transfer compared to the control group (OR 0.62, 95% CI 0.43 to 0.91, 10 RCTs, N = 1680, I² = 54%, moderate-quality evidence). The evidence suggests that for the observed average LBR per first transfer of 31% in the control group, the chance of live birth after the first embryo transfer with PGT-A is between 16% and 29%. There is probably little or no difference in miscarriage rate between PGT-A and the control group (OR 1.03, 95%, CI 0.75 to 1.41; 10 RCTs, N = 1680, I² = 16%; moderate-quality evidence). The addition of PGT-A may reduce ongoing pregnancy rate (OR 0.68, 95% CI 0.51 to 0.90, 5 RCTs, N = 1121, I² = 60%, low-quality evidence) and probably reduces clinical pregnancies (OR 0.60, 95% CI 0.45 to 0.81, 5 RCTs, N = 1131; I² = 0%, moderate-quality evidence). AUTHORS' CONCLUSIONS There is insufficient good-quality evidence of a difference in cumulative live birth rate, live birth rate after the first embryo transfer, or miscarriage rate between IVF with and IVF without PGT-A as currently performed. No data were available on ongoing pregnancy rates. The effect of PGT-A on clinical pregnancy rate is uncertain. Women need to be aware that it is uncertain whether PGT-A with the use of genome-wide analyses is an effective addition to IVF, especially in view of the invasiveness and costs involved in PGT-A. PGT-A using FISH for the genetic analysis is probably harmful. The currently available evidence is insufficient to support PGT-A in routine clinical practice.
Collapse
Affiliation(s)
- Simone Cornelisse
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Miriam Zagers
- Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Elena Kostova
- Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Kathrin Fleischer
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
- MVZ TFP-VivaNeo Kinderwunschzentrum, Düsseldorf, Germany
| | - Madelon van Wely
- Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sebastiaan Mastenbroek
- Center for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Wu B, Yan B, Hu R, Tian S, Ni Y, Liang Y, Wang Y, Zhang Y. Comparison between embryos transferred with self-spent and fresh medium on reproductive outcomes: a prospective randomized trial. Syst Biol Reprod Med 2020; 66:322-328. [PMID: 32475262 DOI: 10.1080/19396368.2020.1764132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
As the final and critical step in in vitro fertilization (IVF), embryo transfer has always received much attention and deserves continuous optimization. In the present study, to explore the role of autocrine factors in embryo self-spent culture media, we prospectively compared embryo transfer with self-spent culture medium and fresh medium on clinical pregnancy outcomes. A total of 318 fresh IVF/intracytoplasmic sperm injection (ICSI) cycles were randomly allocated into two subgroups based on their transfer media (using a self-spent culture medium or new pre-equilibrated culture media), and the clinical outcomes were compared between groups. The implantation rates, clinical pregnancy rates and live birth rates for transfer using self-spent medium instead of new pre-equilibrated culture medium were slightly improved without statistical significance. Interestingly, however, biochemical pregnancy rate was found to be significantly decreased after transfer using self-spent medium for Day 3 embryos compared with new pre-equilibrated culture media. In short, embryo transfer with self-spent culture medium has shown some advantages, and large sample size studies are still needed to confirm these observations. ABBREVIATIONS ART: assisted reproductive technologies; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; ET: embryo transfer.
Collapse
Affiliation(s)
- Bin Wu
- Reproductive Medicine Department, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, China.,Reproductive Medicine Department, Jinan Central Hospital Affiliated to Shandong University , Jinan, China.,Cheeloo College of Medicine, Shandong University , Jinan, China.,Department of Obstetrics & Gynecology, College of Medicine, Howard University , Washington, DC, USA
| | - Bo Yan
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-Care Hospital , Lanzhou, China
| | - Rui Hu
- Reproductive Medicine Department, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, China.,Reproductive Medicine Department, Jinan Central Hospital Affiliated to Shandong University , Jinan, China
| | - Shan Tian
- Reproductive Medicine Department, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, China.,Reproductive Medicine Department, Jinan Central Hospital Affiliated to Shandong University , Jinan, China
| | - Yali Ni
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-Care Hospital , Lanzhou, China
| | - Yu Liang
- School of Life Science, Shandong University , Jinan, China
| | - Yunshan Wang
- Cheeloo College of Medicine, Shandong University , Jinan, China.,Clinical Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University , Jinan, China
| | - Yingchun Zhang
- Reproductive Medicine Department, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, China.,Reproductive Medicine Department, Jinan Central Hospital Affiliated to Shandong University , Jinan, China
| |
Collapse
|
18
|
Kuznyetsov V, Madjunkova S, Abramov R, Antes R, Ibarrientos Z, Motamedi G, Zaman A, Kuznyetsova I, Librach CL. Minimally Invasive Cell-Free Human Embryo Aneuploidy Testing (miPGT-A) Utilizing Combined Spent Embryo Culture Medium and Blastocoel Fluid -Towards Development of a Clinical Assay. Sci Rep 2020; 10:7244. [PMID: 32350403 PMCID: PMC7190856 DOI: 10.1038/s41598-020-64335-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/14/2020] [Indexed: 01/08/2023] Open
Abstract
Preimplantation genetic testing for aneuploidies (PGT-A) using trophectoderm (TE) biopsy samples is labour intensive, invasive, and subject to sampling bias. In this study, we report on the efficacy and factors affecting accuracy of a technique we pioneered for minimally invasive preimplantation genetic testing for aneuploidy (miPGT-A). Our technique uses cell-free embryonic DNA (cfeDNA) in spent embryo culture medium (SEM) combined with blastocoel fluid (BF) to increase the amount of assayable cfeDNA. We compared miPGT-A results (n = 145 embryos) with standard PGT-A analysis of the corresponding trophectoderm biopsy. We found that accuracy of miPGT was not related to blastocyst morphological grade. The overall concordance rate per sample for euploidy/aneuploidy status between miPGT-A and TE biopsy samples was 88/90 (97.8%), and was not different between good 47/48 (97.9%) and moderate/low quality blastocysts 41/42 (97.9%) (p > 0.05). Importantly, we also discovered that for cfeDNA analysis, the SurePlex whole genome amplification (WGA) kit can be utilized without an additional cell lysis/extraction DNA step; this efficiency likely reduces the risk of maternal contamination. Regarding origin of embryonic cfeDNA, the average amount of miPGT-A WGA-DNA we obtained from blastocysts with different morphological grades, as well as the size miPGT-A WGA-DNA fragments, suggest that it is unlikely that apoptosis and necrosis are only mechanisms of DNA release from the inner cell mass (ICM) and TE into BF and SEM.
Collapse
Affiliation(s)
| | | | | | - Ran Antes
- CReATe Fertility Centre, Toronto, Canada
| | | | | | | | | | - Clifford L Librach
- CReATe Fertility Centre, Toronto, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.,Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Gynecology, Women's College Hospital, Toronto, ON, Canada
| |
Collapse
|
19
|
Ji H, Shi X, Wang J, Cao S, Ling X, Zhang J, Shen R, Zhao C. Peptidomic analysis of blastocyst culture medium and the effect of peptide derived from blastocyst culture medium on blastocyst formation and viability. Mol Reprod Dev 2019; 87:191-201. [PMID: 31828871 DOI: 10.1002/mrd.23308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/23/2019] [Indexed: 12/22/2022]
Abstract
High-quality in vitro human embryo culture medium can improve the blastocyst formation rate and blastocyst quality and be beneficial for the clinical application of single blastocyst transfer. Mammalian embryos can secrete protein products into the surrounding medium. As a group of bioactive molecules and degraded proteins, peptides have been shown to participate in various biological processes. Using liquid chromatography-tandem mass spectrometry, we performed comparative peptidomic analysis of human culture medium in blastocyst formation and nonblastocyst-formation groups. A total of 201 differentially expressed peptides originating from 157 precursor proteins were identified. Among these, a peptide derived from HERC2 (peptide derived from blastocyst culture medium [PDBCM]) passed through the zona pellucida, was distributed on the perivitelline space, was absent in arrest embryos and highly expressed in high-quality blastocysts compared with low-quality blastocysts, and significantly promoted blastocyst formation in a concentration-dependent manner. These results indicate that PDBCM may be a novel biomarker for predicting blastocyst formation and viability. The mechanism remains unclear and needs to be explored in the future.
Collapse
Affiliation(s)
- Hui Ji
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaodan Shi
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayi Wang
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shanren Cao
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiufeng Ling
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junqiang Zhang
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Zhao
- Department of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Less-invasive chromosome screening of embryos and embryo assessment by genetic studies of DNA in embryo culture medium. J Assist Reprod Genet 2019; 36:2505-2513. [PMID: 31728811 DOI: 10.1007/s10815-019-01603-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To perform a preliminary exploration of a new embryo rank in clinical practice by combining the embryo chromosome copy number and mitochondrial copy number analysis of DNA extracted from embryo culture medium and blastocoel fluid. METHOD Eighty-three ICSI embryos from day 2 or day 3 were cultured to day 5 or day 6. Thirty-two blastocysts of 3 cc or above were obtained. Culture medium and blastocoel fluid were collected at 24 h before blastocyst formation. The genomic DNA and mitochondrial DNA (mtDNA) from the culture medium combined with blastocoel fluid and the whole blastocyst were amplified and sequenced by MALBAC-NGS. We compared the chromosomal information generated by the new protocol from the culture medium and the information employed by the whole embryo method. A multivariable linear regression was performed to study the impact of the blastocyst morphological score, chromosomal abnormality, embryo mtDNA copy number, and female age on the culture medium mtDNA copy number. RESULTS (1) The DNA from 31 blastocysts was successfully amplified, and the successful amplification rate was 96.9% (31/32). The success rate of the amplification of genomic DNA extracted from the culture medium was 87.5% (28/32). (2) There were 18 blastocysts in which the less invasive method and the whole embryo method revealed the same results. The consistency rate was 66.7% (18/27). (3) The culture medium mitochondrial DNA copy number (MCN) had a significantly positive correlation with the blastocyst mitochondrial DNA copy number (P = 0.001), female age (P = 0.012), and blastocyst score (P = 0.014), but there was no obvious correlation with blastocyst chromosome (P = 0.138). CONCLUSIONS The preliminary exploration result of the less invasive approach for having an embryo rank was not satisfying, which still awaits further long-term evaluation.
Collapse
|