1
|
Lu L, Huang X, Shi Y, Jiang Y, Han Y, Zhang Y. Mitochondrial dysfunction in pregnancy loss: a review. Mol Cell Biochem 2025; 480:2749-2764. [PMID: 39621222 DOI: 10.1007/s11010-024-05171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/18/2024] [Indexed: 05/03/2025]
Abstract
A receptive endometrium, a healthy embryo, and harmonious communication between the mother and the embryo/fetus are necessary for a healthy and successful pregnancy. Pregnancy loss (PL) can be the outcome if there is a flaw in any of these critical developmental processes. Multiple risk factors contribute to PL, including genetic predispositions, uterine abnormalities, immune imbalances, endocrine dysfunctions, and environmental exposures, among others. Despite extensive investigations, more than half of women with recurrent pregnancy loss (RPL) lack identifiable risk factors, and causes of RPL remain elusive. To date, an accumulating body of evidence indicates that mitochondrial dysfunction in reproductive organs or cells is a potential underlying factor that may trigger PL. In this comprehensive review, we delve into the intricate relationship between mitochondrial dysfunction and PL, examining studies that focus on this connection in the context of diverse reproductive organs and cells, to unravel the interwoven links between these factors and gain a deeper understanding of their interconnectedness.
Collapse
Affiliation(s)
- Lingjing Lu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xinyue Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yuqian Shi
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yanhua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yuehui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.
| |
Collapse
|
2
|
Kobayashi H, Imanaka S. Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes. Int J Mol Sci 2024; 25:13144. [PMID: 39684855 DOI: 10.3390/ijms252313144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The efficacy of assisted reproductive technologies (ARTs) in older women remains constrained, largely due to an incomplete understanding of the underlying pathophysiology. This review aims to consolidate the current knowledge on age-associated mitochondrial alterations and their implications for ovarian aging, with an emphasis on the causes of mitochondrial DNA (mtDNA) mutations, their repair mechanisms, and future therapeutic directions. Relevant articles published up to 30 September 2024 were identified through a systematic search of electronic databases. The free radical theory proposes that reactive oxygen species (ROS) inflict damage on mtDNA and impair mitochondrial function essential for ATP generation in oocytes. Oocytes face prolonged pressure to repair mtDNA mutations, persisting for up to five decades. MtDNA exhibits limited capacity for double-strand break repair, heavily depending on poly ADP-ribose polymerase 1 (PARP1)-mediated repair of single-strand breaks. This process depletes nicotinamide adenine dinucleotide (NAD⁺) and ATP, creating a detrimental cycle where continued mtDNA repair further compromises oocyte functionality. Interventions that interrupt this destructive cycle may offer preventive benefits. In conclusion, the cumulative burden of mtDNA mutations and repair demands can lead to ATP depletion and elevate the risk of aneuploidy, ultimately contributing to ART failure in older women.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
3
|
Winstanley YE, Stables JS, Gonzalez MB, Umehara T, Norman RJ, Robker RL. Emerging therapeutic strategies to mitigate female and male reproductive aging. NATURE AGING 2024; 4:1682-1696. [PMID: 39672895 DOI: 10.1038/s43587-024-00771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
People today are choosing to have children later in life, often in their thirties and forties, when their fertility is in decline. We sought to identify and compile effective methods for improving either male or female fertility in this context of advanced reproductive age. We found few clinical studies with strong evidence for therapeutics that mitigate reproductive aging or extend fertility; however, this Perspective summarizes the range of emerging experimental strategies under development. Preclinical studies, in mouse models of aging, have identified pharmaceutical candidates that improve egg and sperm quality. Further, a diverse array of medically assisted reproduction methodologies, including those that stimulate rare ovarian follicles and rejuvenate egg quality using mitochondria, may have future utility for older patients. Finally, we highlight the many knowledge gaps and possible future directions in the field of therapeutics to extend the age of healthy human reproduction.
Collapse
Affiliation(s)
- Yasmyn E Winstanley
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer S Stables
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Macarena B Gonzalez
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Takashi Umehara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Robert J Norman
- Robinson Research Institute, Adelaide Medical School; The University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
4
|
Sawado A, Ezoe K, Miki T, Ohata K, Amagai A, Shimazaki K, Okimura T, Kato K. Fatty acid supplementation during warming improves pregnancy outcomes after frozen blastocyst transfers: a propensity score-matched study. Sci Rep 2024; 14:9343. [PMID: 38653766 PMCID: PMC11039611 DOI: 10.1038/s41598-024-60136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
This study aimed to examine the viability of human blastocysts after warming with fatty acids (FAs) using an in vitro outgrowth model and to assess pregnancy outcomes after a single vitrified-warmed blastocyst transfer (SVBT). For the experimental study, we used 446 discarded vitrified human blastocysts donated for research purposes by consenting couples. The blastocysts were warmed using FA-supplemented (FA group) or non-FA-supplemented (control group) solutions. The outgrowth area was significantly larger in the FA group (P = 0.0428), despite comparable blastocyst adhesion rates between the groups. Furthermore, the incidence of outgrowth degeneration was significantly lower in the FA group than in the control group (P = 0.0158). For the clinical study, we retrospectively analyzed the treatment records of women who underwent SVBT in natural cycles between January and August 2022. Multiple covariates that affected the outcomes were used for propensity score matching as follows: 1342 patients in the FA group were matched to 2316 patients in the control group. Pregnancy outcomes were compared between the groups. The rates of implantation, clinical pregnancy, and ongoing pregnancy significantly increased in the FA group after SVBTs (P = 0.0091-0.0266). These results indicate that warming solutions supplemented with FAs improve blastocyst outgrowth and pregnancy outcomes after SVBTs.
Collapse
Affiliation(s)
- Ayano Sawado
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Kenji Ezoe
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan.
| | - Tetsuya Miki
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Kazuki Ohata
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Ayumi Amagai
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Kiyoe Shimazaki
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Tadashi Okimura
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan
| | - Keiichi Kato
- Kato Ladies Clinic, 7-20-3 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
5
|
Ju W, Zhao Y, Yu Y, Zhao S, Xiang S, Lian F. Mechanisms of mitochondrial dysfunction in ovarian aging and potential interventions. Front Endocrinol (Lausanne) 2024; 15:1361289. [PMID: 38694941 PMCID: PMC11061492 DOI: 10.3389/fendo.2024.1361289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
Mitochondria plays an essential role in regulating cellular metabolic homeostasis, proliferation/differentiation, and cell death. Mitochondrial dysfunction is implicated in many age-related pathologies. Evidence supports that the dysfunction of mitochondria and the decline of mitochondrial DNA copy number negatively affect ovarian aging. However, the mechanism of ovarian aging is still unclear. Treatment methods, including antioxidant applications, mitochondrial transplantation, emerging biomaterials, and advanced technologies, are being used to improve mitochondrial function and restore oocyte quality. This article reviews key evidence and research updates on mitochondrial damage in the pathogenesis of ovarian aging, emphasizing that mitochondrial damage may accelerate and lead to cellular senescence and ovarian aging, as well as exploring potential methods for using mitochondrial mechanisms to slow down aging and improve oocyte quality.
Collapse
Affiliation(s)
- Wenhan Ju
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuewen Zhao
- CReATe Fertility Centre, Toronto, ON, Canada
| | - Yi Yu
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shan Xiang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Lian
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Butkiewicz AF, Amaral A, Cerveira-Pinto M, Kordowitzki P. Assessing the Influence of Maternal Age in Bovine Embryos and Oocytes: A Model for Human Reproductive Aging. Aging Dis 2024; 16:757-768. [PMID: 38916737 PMCID: PMC11964423 DOI: 10.14336/ad.2024.0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 06/26/2024] Open
Abstract
In the first weeks after fertilization, embryo mortality in cattle is significantly higher. It is well known that the age of the dam is one of the crucial factors affecting the quality of embryos and oocytes in many mammalian species. In older cattle, there are several evidences that embryo quality decreases, due to a decrease in ovarian reserve, a decrease in mtDNA and ATP, a decrease in progesterone levels, and due to susceptibility to genetic mutations. Herein, we intend to provide an updated summary of recent research on the effects of maternal age on embryos and oocytes of domestic cattle which are a widely used model species for human oocytes and early embryonic development.
Collapse
Affiliation(s)
- Aleksander Franciszek Butkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Ana Amaral
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.
| | - Marta Cerveira-Pinto
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.
| | - Pawel Kordowitzki
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité, Berlin, Germany.
| |
Collapse
|
7
|
Aburada N, Ito J, Inoue Y, Yamamoto T, Hayashi M, Teramoto N, Okada Y, Koshiishi Y, Shirasuna K, Iwata H. Effect of paternal aging and vitrification on mitochondrial DNA copy number and telomere length of mouse blastocysts. J Reprod Dev 2024; 70:65-71. [PMID: 38267053 PMCID: PMC11017102 DOI: 10.1262/jrd.2023-079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/31/2023] [Indexed: 01/26/2024] Open
Abstract
In this study, we examined the effects of paternal aging on the mitochondrial DNA copy number (mt-cn), telomere length (TL), and gene expression in mouse embryos. The effects of vitrification on the mt-cn and TL of the embryos derived from young and aged male parents (YF and AF, respectively) were examined. C57BL/6N male mice were used for embryo production at 13-23 and 50-55 weeks of age. Two-cell stage embryos were collected from the oviducts of superovulated female mice (8-15 weeks old) and cultured for 24 h until the 8-cell stage, followed by embryo vitrification. Fresh and vitrified-warmed embryos were incubated for 2 days until the blastocyst stage, and mt-cn and TL were investigated. The cell-free mitochondrial DNA copy number (cf-mt-cn) in the spent culture medium (SCM) of the embryos was then investigated. RNA sequencing of blastocysts revealed that metabolic pathways, including oxidative phosphorylation and mTOR pathways, were enriched in differentially expressed genes. The mt-cn and TL of AF-derived blastocysts were lower and shorter, respectively, than those of YF-derived blastocysts. Paternal aging did not affect the blastocyst rate after vitrification. Vitrification of the 8-cell stage embryos did not affect the mt-cn of the blastocysts. However, it increased the cf-mt-cn (cell-free mt-cn) in the SCM of both YF- and AF-derived embryos. Vitrification did not affect the TL of either YF- or AF-derived embryos. Thus, paternal aging affected the mt-cn and TL of the embryos, but vitrification did not affect these parameters in either age groups.
Collapse
Affiliation(s)
- Nao Aburada
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Jun Ito
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yuki Inoue
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | | | | | - Noko Teramoto
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | - Yuri Okada
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | | | | | - Hisataka Iwata
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| |
Collapse
|
8
|
Ozturk S. The close relationship between oocyte aging and telomere shortening, and possible interventions for telomere protection. Mech Ageing Dev 2024; 218:111913. [PMID: 38307343 DOI: 10.1016/j.mad.2024.111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
As women delay childbearing due to socioeconomic reasons, understanding molecular mechanisms decreasing oocyte quantity and quality during ovarian aging becomes increasingly important. The ovary undergoes biological aging at a higher pace when compared to other organs. As is known, telomeres play crucial roles in maintaining genomic integrity, and their shortening owing to increased reactive oxygen species, consecutive cellular divisions, genetic and epigenetic alterations is associated with loss of developmental competence of oocytes. Novel interventions such as antioxidant treatments and regulation of gene expression are being investigated to prevent or rescue telomere attrition and thereby oocyte aging. Herein, potential factors and molecular mechanisms causing telomere shortening in aging oocytes were comprehensively reviewed. For the purpose of extending reproductive lifespan, possible therapeutic interventions to protect telomere length were also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey.
| |
Collapse
|
9
|
Guo M, Wu J, Chen C, Wang X, Gong A, Guan W, Karvas RM, Wang K, Min M, Wang Y, Theunissen TW, Gao S, Silva JCR. Self-renewing human naïve pluripotent stem cells dedifferentiate in 3D culture and form blastoids spontaneously. Nat Commun 2024; 15:668. [PMID: 38253551 PMCID: PMC10803796 DOI: 10.1038/s41467-024-44969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Human naïve pluripotent stem cells (hnPSCs) can generate integrated models of blastocysts termed blastoids upon switch to inductive medium. However, the underlying mechanisms remain obscure. Here we report that self-renewing hnPSCs spontaneously and efficiently give rise to blastoids upon three dimensional (3D) suspension culture. The spontaneous blastoids mimic early stage human blastocysts in terms of structure, size, and transcriptome characteristics and are capable of progressing to post-implantation stages. This property is conferred by the glycogen synthase kinase-3 (GSK3) signalling inhibitor IM-12 present in 5iLAF self-renewing medium. IM-12 upregulates oxidative phosphorylation-associated genes that underly the capacity of hnPSCs to generate blastoids spontaneously. Starting from day one of self-organization, hnPSCs at the boundary of all 3D aggregates dedifferentiate into E5 embryo-like intermediates. Intermediates co-express SOX2/OCT4 and GATA6 and by day 3 specify trophoblast fate, which coincides with cavity and blastoid formation. In summary, spontaneous blastoid formation results from 3D culture triggering dedifferentiation of hnPSCs into earlier embryo-like intermediates which are then competent to segregate blastocyst fates.
Collapse
Affiliation(s)
- Mingyue Guo
- Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Jinyi Wu
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Chuanxin Chen
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinggu Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - An Gong
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- Bioland Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Wei Guan
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Rowan M Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kexin Wang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Mingwei Min
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Yixuan Wang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - José C R Silva
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China.
| |
Collapse
|
10
|
Pinto S, Guerra-Carvalho B, Crisóstomo L, Rocha A, Barros A, Alves MG, Oliveira PF. Metabolomics Integration in Assisted Reproductive Technologies for Enhanced Embryo Selection beyond Morphokinetic Analysis. Int J Mol Sci 2023; 25:491. [PMID: 38203668 PMCID: PMC10778973 DOI: 10.3390/ijms25010491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Embryo quality evaluation during in vitro development is a crucial factor for the success of assisted reproductive technologies (ARTs). However, the subjectivity inherent in the morphological evaluation by embryologists can introduce inconsistencies that impact the optimal embryo choice for transfer. To provide a more comprehensive evaluation of embryo quality, we undertook the integration of embryo metabolomics alongside standardized morphokinetic classification. The culture medium of 55 embryos (derived from 21 couples undergoing ICSI) was collected at two timepoints (days 3 and 5). Samples were split into Good (n = 29), Lagging (n = 19), and Bad (n = 10) according to embryo morphokinetic evaluation. Embryo metabolic performance was assessed by monitoring the variation in specific metabolites (pyruvate, lactate, alanine, glutamine, acetate, formate) using 1H-NMR. Adjusted metabolite differentials were observed during the first 3 days of culture and found to be discriminative of embryo quality at the end of day 5. Pyruvate, alanine, glutamine, and acetate were major contributors to this discrimination. Good and Lagging embryos were found to export and accumulate pyruvate and glutamine in the first 3 days of culture, while Bad embryos consumed them. This suggests that Bad embryos have less active metabolic activity than Good and Lagging embryos, and these two metabolites are putative biomarkers for embryo quality. This study provides a more comprehensive evaluation of embryo quality and can lead to improvements in ARTs by enabling the selection of the best embryos. By combining morphological assessment and metabolomics, the selection of high-quality embryos with the potential to result in successful pregnancies may become more accurate and consistent.
Collapse
Affiliation(s)
- Soraia Pinto
- Centre for Reproductive Genetics Alberto Barros, 4100-012 Porto, Portugal; (S.P.); (A.B.)
| | | | - Luís Crisóstomo
- Institute of Biomedicine, University of Turku, 20014 Turku, Finland;
| | - António Rocha
- CECA/ICETA–Centro de Estudos de Ciência Animal, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4200-135 Porto, Portugal;
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, 4100-012 Porto, Portugal; (S.P.); (A.B.)
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Marco G. Alves
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
11
|
Ferreira AF, Soares M, Almeida-Santos T, Ramalho-Santos J, Sousa AP. Aging and oocyte competence: A molecular cell perspective. WIREs Mech Dis 2023; 15:e1613. [PMID: 37248206 DOI: 10.1002/wsbm.1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Follicular microenvironment is paramount in the acquisition of oocyte competence, which is dependent on two interconnected and interdependent processes: nuclear and cytoplasmic maturation. Extensive research conducted in human and model systems has provided evidence that those processes are disturbed with female aging. In fact, advanced maternal age (AMA) is associated with a lower chance of pregnancy and live birth, explained by the age-related decline in oocyte quality/competence. This decline has largely been attributed to mitochondria, essential for oocyte maturation, fertilization, and embryo development; with mitochondrial dysfunction leading to oxidative stress, responsible for nuclear and mitochondrial damage, suboptimal intracellular energy levels, calcium disturbance, and meiotic spindle alterations, that may result in oocyte aneuploidy. Nuclear-related mechanisms that justify increased oocyte aneuploidy include deoxyribonucleic acid (DNA) damage, loss of chromosomal cohesion, spindle assembly checkpoint dysfunction, meiotic recombination errors, and telomere attrition. On the other hand, age-dependent cytoplasmic maturation failure is related to mitochondrial dysfunction, altered mitochondrial biogenesis, altered mitochondrial morphology, distribution, activity, and dynamics, dysmorphic smooth endoplasmic reticulum and calcium disturbance, and alterations in the cytoskeleton. Furthermore, reproductive somatic cells also experience the effects of aging, including mitochondrial dysfunction and DNA damage, compromising the crosstalk between granulosa/cumulus cells and oocytes, also affected by a loss of gap junctions. Old oocytes seem therefore to mature in an altered microenvironment, with changes in metabolites, ribonucleic acid (RNA), proteins, and lipids. Overall, understanding the mechanisms implicated in the loss of oocyte quality will allow the establishment of emerging biomarkers and potential therapeutic anti-aging strategies. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - Maria Soares
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Sousa
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
12
|
Sills ES, Wood SH. Multichannel Recovery Potential with Activated Autologous Intraovarian Platelet-Rich Plasma and Its Derivatives. MEDICINES (BASEL, SWITZERLAND) 2023; 10:40. [PMID: 37505061 PMCID: PMC10384573 DOI: 10.3390/medicines10070040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Platelet-rich plasma (PRP) is an 'orthobiologic' with recognized roles in plastic surgery, musculoskeletal disorders, dentistry, dermatology, and more recently, 'ovarian rejuvenation'. Intraovarian PRP involves a complex secretome discharged after platelet activation, comprising multiple cytokine mediators delivered surgically to older or inactive ovarian tissue. Loss of oocyte meiotic fidelity and impaired fertilization accompanying advanced maternal age are already managed by IVF, but only with eggs provided by younger donors. However, if the observed effect of rectifying embryo ploidy error can be proven beyond case reports and small series, activated PRP (or its condensed plasma cytokines) would deliver a welcome therapeutic disruption that is difficult to overstate. Because shortcomings in ovarian function are presently addressed mainly by pharmacological approaches (i.e., via recombinant gonadotropins, GnRH analogs, or luteal support), autologous PRP would represent an unusual departure from these interventions. Given the diversity of platelet cargo proteins, the target response of intraovarian PRP is probably not confined to oocytes or follicles. For example, PRP manipulates signal networks driving improved perfusion, HOX regulation, N-glycan post-translational modification, adjustment of voltage-gated ion channels, telomere stabilization, optimization of SIRT3, and ribosome and mitochondria recovery in older oocytes. While multichannel signals operating on various pathways are not unique to reproductive biology, in intraovarian PRP this feature has received little study and may help explain why its standardization has been difficult. Against this background, our report examines the research themes considered most likely to shape clinical practice.
Collapse
Affiliation(s)
- E Scott Sills
- Regenerative Biology Group, FertiGen CAG, San Clemente, CA 92673, USA
- Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA 92029, USA
| | - Samuel H Wood
- Department of Obstetrics & Gynecology, Palomar Medical Center, Escondido, CA 92029, USA
- Gen 5 Fertility Center, San Diego, CA 92121, USA
| |
Collapse
|
13
|
Ahn D, Go RE, Choi KC. Oxygen consumption rate to evaluate mitochondrial dysfunction and toxicity in cardiomyocytes. Toxicol Res 2023; 39:333-339. [PMID: 37398565 PMCID: PMC10313613 DOI: 10.1007/s43188-023-00183-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
The increase in the types and complexity of diseases has led to significant advances in diagnostic techniques and the availability of effective therapies. Recent studies have focused on the role of mitochondrial dysfunction in the pathogenesis of cardiovascular diseases (CVDs). Mitochondria are important organelles in cells that generate energy. Besides the production of adenosine triphosphate (ATP), the energy currency of cells, mitochondria are also involved in thermogenesis, control of intracellular calcium ions (Ca2+), apoptosis, regulation of reactive oxygen species (ROS), and inflammation. Mitochondrial dysfunction has been implicated in several diseases including cancer, diabetes, some genetic diseases, and neurogenerative and metabolic diseases. Furthermore, the cardiomyocytes of the heart are rich in mitochondria due to the large energy requirement for optimal cardiac function. One of the main causes of cardiac tissue injuries is believed to be mitochondrial dysfunction, which occurs via complicated pathways which have not yet been completely elucidated. There are various types of mitochondrial dysfunction including mitochondrial morphological change, unbalanced levels of substances to maintain mitochondria, mitochondrial damage by drugs, and mitochondrial deletion and synthesis errors. Most of mitochondrial dysfunctions are linked with symptoms and diseases, thus we focus on parts of mitochondrial dysfunction about fission and fusion in cardiomyocytes, and ways to understand the mechanism of cardiomyocyte damage by detecting oxygen consumption levels in the mitochondria.
Collapse
Affiliation(s)
- Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| |
Collapse
|
14
|
Ezoe K, Miki T, Akaike H, Shimazaki K, Takahashi T, Tanimura Y, Amagai A, Sawado A, Mogi M, Kaneko S, Ueno S, Coticchio G, Cimadomo D, Borini A, Rienzi L, Kato K. Maternal age affects pronuclear and chromatin dynamics, morula compaction and cell polarity, and blastulation of human embryos. Hum Reprod 2023; 38:387-399. [PMID: 36644923 DOI: 10.1093/humrep/dead001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2022] [Indexed: 01/17/2023] Open
Abstract
STUDY QUESTION Does maternal ageing impact early and late morphokinetic and cellular processes of human blastocyst formation? SUMMARY ANSWER Maternal ageing significantly affects pronuclear size and intra- and extra-nuclear dynamics during fertilization, dysregulates cell polarity during compaction, and reduces blastocoel expansion. WHAT IS KNOWN ALREADY In ART, advanced maternal age (AMA) affects oocyte yield, fertilization, and overall developmental competence. However, with the exception of chromosome segregation errors occurring during oocyte meiosis, the molecular and biochemical mechanisms responsible for AMA-related subfertility and reduced embryo developmental competence remain unclear. In particular, studies reporting morphokinetics and cellular alterations during the fertilization and pre-implantation period in women of AMA remain limited. STUDY DESIGN, SIZE, DURATION A total of 2058 fertilized oocytes were stratified by maternal age according to the Society for Assisted Reproductive Technology classification (<35, 35-37, 38-40, 41-42, and >42 years) and retrospectively analysed. AMA effects were assessed in relation to: embryo morphokinetics and morphological alterations; and the presence and distribution of cell polarity markers-Yes-associated protein (YAP) and protein kinase C-ζ (PKC-ζ)-involved in blastocyst morphogenesis. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 1050 cycles from 1050 patients met the inclusion criteria and were analysed. Microinjected oocytes were assessed using a time-lapse culture system. Immature oocytes at oocyte retrieval and mature oocytes not suitable for time-lapse monitoring, owing to an excess of residual corona cells or inadequate orientation for correct observation, were not analysed. Phenomena relevant to meiotic resumption, pronuclear dynamics, cytoplasmic/cortical modifications, cleavage patterns and embryo quality were annotated and compared among groups. Furthermore, 20 human embryos donated for research by consenting couples were used for immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE Static microscopic observation revealed that blastocyst formation and expansion were impaired in the 41-42 and >42-year groups (P < 0.0001). The morphological grades of the inner cell mass and trophectoderm were poorer in the >42-year group than those in the <35-year group (P = 0.0022 and P < 0.0001, respectively). Time-lapse microscopic observation revealed a reduction in nucleolus precursor body alignment in female pronuclei in the 41-42 and >42-year groups (P = 0.0010). Female pronuclear area decreased and asynchronous pronuclear breakdown increased in the >42-year group (P = 0.0027 and P < 0.0122, respectively). Developmental speed at cleavage stage, incidence of irregularity of first cleavage, type and duration of blastomere movement, and number of multinucleated cells were comparable among age groups. Delayed embryonic compaction and an increased number of extruded blastomeres were observed in the >42-year group (P = 0.0002 and P = 0.0047, respectively). Blastulation and blastocyst expansion were also delayed in the 41-42 and >42-year groups (P < 0.0001 for both). YAP positivity rate in the outer cells of morulae and embryo PKC-ζ immunoflourescence decreased in the >42-year group (P < 0.0001 for both). LIMITATIONS, REASONS FOR CAUTION At the cellular level, the investigation was limited to cell polarity markers. Cell components of other developmental pathways should be studied in relation to AMA. WIDER IMPLICATIONS OF THE FINDINGS The study indicates that maternal ageing affects the key functions of embryo morphogenesis, irrespective of the well-established influence on the fidelity of oocyte meiosis. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the participating institutions. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mai Mogi
- Kato Ladies Clinic, Tokyo, Japan
| | | | | | | | | | | | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Rome, Italy.,Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | | |
Collapse
|
15
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
16
|
Carnitines as Mitochondrial Modulators of Oocyte and Embryo Bioenergetics. Antioxidants (Basel) 2022; 11:antiox11040745. [PMID: 35453430 PMCID: PMC9024607 DOI: 10.3390/antiox11040745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Recently, the importance of bioenergetics in the reproductive process has emerged. For its energetic demand, the oocyte relies on numerous mitochondria, whose activity increases during embryo development under a fine regulation to limit ROS production. Healthy oocyte mitochondria require a balance of pyruvate and fatty acid oxidation. Transport of activated fatty acids into mitochondria requires carnitine. In this regard, the interest in the role of carnitines as mitochondrial modulators in oocyte and embryos is increasing. Carnitine pool includes the un-esterified l-carnitine (LC) and carnitine esters, such as acetyl-l-carnitine (ALC) and propionyl-l-carnitine (PLC). In this review, carnitine medium supplementation for counteracting energetic and redox unbalance during in vitro culture and cryopreservation is reported. Although most studies have focused on LC, there is new evidence that the addition of ALC and/or PLC may boost LC effects. Pathways activated by carnitines include antiapoptotic, antiglycative, antioxidant, and antiinflammatory signaling. Nevertheless, the potential of carnitine to improve energetic metabolism and oocyte and embryo competence remains poorly investigated. The importance of carnitine as a mitochondrial modulator may suggest that this molecule may exert a beneficial role in ovarian disfunctions associated with metabolic and mitochondrial alterations, including PCOS and reproductive aging.
Collapse
|
17
|
Venturas M, Shah JS, Yang X, Sanchez TH, Conway W, Sakkas D, Needleman DJ. Metabolic state of human blastocysts measured by fluorescence lifetime imaging microscopy. Hum Reprod 2022; 37:411-427. [PMID: 34999823 DOI: 10.1093/humrep/deab283] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/27/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Can non-invasive metabolic imaging via fluorescence lifetime imaging microscopy (FLIM) detect variations in metabolic profiles between discarded human blastocysts? SUMMARY ANSWER FLIM revealed extensive variations in the metabolic state of discarded human blastocysts associated with blastocyst development over 36 h, the day after fertilization and blastocyst developmental stage, as well as metabolic heterogeneity within individual blastocysts. WHAT IS KNOWN ALREADY Mammalian embryos undergo large changes in metabolism over the course of preimplantation development. Embryo metabolism has long been linked to embryo viability, suggesting its potential utility in ART to aid in selecting high quality embryos. However, the metabolism of human embryos remains poorly characterized due to a lack of non-invasive methods to measure their metabolic state. STUDY DESIGN, SIZE, DURATION We conducted a prospective observational study. We used 215 morphologically normal human embryos from 137 patients that were discarded and donated for research under an approved institutional review board protocol. These embryos were imaged using metabolic imaging via FLIM to measure the autofluorescence of two central coenzymes, nicotinamide adenine (phosphate) dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD+), which are essential for cellular respiration and glycolysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Here, we used non-invasive FLIM to measure the metabolic state of human blastocysts. We first studied spatial patterns in the metabolic state within human blastocysts and the association of the metabolic state of the whole blastocysts with stage of expansion, day of development since fertilization and morphology. We explored the sensitivity of this technique in detecting metabolic variations between blastocysts from the same patient and between patients. Next, we explored whether FLIM can quantitatively measure metabolic changes through human blastocyst expansion and hatching via time-lapse imaging. For all test conditions, the level of significance was set at P < 0.05 after correction for multiple comparisons using Benjamini-Hochberg's false discovery rate. MAIN RESULTS AND THE ROLE OF CHANCE We found that FLIM is sensitive enough to detect significant metabolic differences between blastocysts. We found that metabolic variations between blastocyst are partially explained by both the time since fertilization and their developmental expansion stage (P < 0.05), but not their morphological grade. Substantial metabolic variations between blastocysts from the same patients remain, even after controlling for these factors. We also observe significant metabolic heterogeneity within individual blastocysts, including between the inner cell mass and the trophectoderm, and between the portions of hatching blastocysts within and without the zona pellucida (P < 0.05). And finally, we observed that the metabolic state of human blastocysts continuously varies over time. LIMITATIONS, REASONS FOR CAUTION Although we observed significant variations in metabolic parameters, our data are taken from human blastocysts that were discarded and donated for research and we do not know their clinical outcome. Moreover, the embryos used in this study are a mixture of aneuploid, euploid and embryos of unknown ploidy. WIDER IMPLICATIONS OF THE FINDINGS This work reveals novel aspects of the metabolism of human blastocysts and suggests that FLIM is a promising approach to assess embryo viability through non-invasive, quantitative measurements of their metabolism. These results further demonstrate that FLIM can provide biologically relevant information that may be valuable for the assessment of embryo quality. STUDY FUNDING/COMPETING INTEREST(S) Supported by the Blavatnik Biomedical Accelerator Grant at Harvard University. Becker and Hickl GmbH and Boston Electronics sponsored research with the loaning of equipment for FLIM. D.J.N. is an inventor on patent US20170039415A1. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marta Venturas
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Jaimin S Shah
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Boston IVF, Waltham, MA, USA
| | - Xingbo Yang
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - William Conway
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Physics Department, Harvard University, Cambridge, MA, USA
| | | | - Dan J Needleman
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Physics Department, Harvard University, Cambridge, MA, USA.,Center for Computational Biology, Flatiron Institute, New York, NY, USA
| |
Collapse
|
18
|
Hashimoto S, Morimoto Y. Mitochondrial function of human embryo: Decline in their quality with maternal aging. Reprod Med Biol 2022; 21:e12491. [PMID: 36570768 PMCID: PMC9769491 DOI: 10.1002/rmb2.12491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background Female fertility declines with age, due to increased chromosomal aneuploidy and possible reduced mitochondrial function in the embryo. Methods This review outlines how mitochondrial function in human embryos, as predicted from oxygen consumption rate (OCR) measurements, changes in preimplantation stage, and what factors, particularly maternal age, affect mitochondrial function in embryos. Main findings The structure of the mitochondrial inner membrane and its respiratory function developed with embryo development, while the copy number of mitochondrial DNA per specimen was transiently reduced compared with that of the oocyte. The undifferentiated state of the inner cell mass cells appears to be associated with a low OCR. In contrast, the copy number of mitochondrial DNA increased in trophoblast cells and mitochondrial aerobic metabolism increased.The OCRs at morulae stage decreased with maternal age, but there was no relationship between maternal age and the copy number of mitochondrial DNA at any stages. The higher oxygen spent at the morula stage; the shorter time was needed for development to the mid-stage blastocyst. Conclusions The mitochondrial respiratory function of human embryos developed along with embryonic growth. Mitochondrial function at morula stage declined with their maternal age and reduced mitochondrial function decreased the rate of development from morula to blastocyst.
Collapse
Affiliation(s)
- Shu Hashimoto
- Graduate School of MedicineOsaka Metropolitan UniversityOsakaJapan
| | | |
Collapse
|
19
|
|
20
|
Zhang Y, Zheng W, Ren P, Hu H, Tong X, Zhang S, Li X, Wang H, Jiang J, Jin J, Yang W, Cao L, He Y, Ma Y, Zhang Y, Gu Y, Hu L, Luo K, Gong F, Lu G, Lin G, Fan H, Zhang S. Biallelic mutations in MOS cause female infertility characterized by human early embryonic arrest and fragmentation. EMBO Mol Med 2021; 13:e14887. [PMID: 34779126 PMCID: PMC8649871 DOI: 10.15252/emmm.202114887] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 01/26/2023] Open
Abstract
Early embryonic arrest and fragmentation (EEAF) is a common phenomenon leading to female infertility, but the genetic determinants remain largely unknown. The Moloney sarcoma oncogene (MOS) encodes a serine/threonine kinase that activates the ERK signaling cascade during oocyte maturation in vertebrates. Here, we identified four rare variants of MOS in three infertile female individuals with EEAF that followed a recessive inheritance pattern. These MOS variants encoded proteins that resulted in decreased phosphorylated ERK1/2 level in cells and oocytes, and displayed attenuated rescuing effects on cortical F-actin assembly. Using oocyte-specific Erk1/2 knockout mice, we verified that MOS-ERK signal pathway inactivation in oocytes caused EEAF as human. The RNA sequencing data revealed that maternal mRNA clearance was disrupted in human mature oocytes either with MOS homozygous variant or with U0126 treatment, especially genes relative to mitochondrial function. Mitochondrial dysfunction was observed in oocytes with ERK1/2 deficiency or inactivation. In conclusion, this study not only uncovers biallelic MOS variants causes EEAF but also demonstrates that MOS-ERK signaling pathway drives human oocyte cytoplasmic maturation to prevent EEAF.
Collapse
Affiliation(s)
- Yin‐Li Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Peipei Ren
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Huiling Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Xiaomei Tong
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Shuo‐Ping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Xiang Li
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Haichao Wang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | | | - Jiamin Jin
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Weijie Yang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Lanrui Cao
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Yuanlin He
- Department of EpidemiologyCenter for Global HealthSchool of Public HealthNanjing Medical UniversityNanjingChina
| | - Yerong Ma
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Yingyi Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| | - Yifan Gu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Liang Hu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Keli Luo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Fei Gong
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Guang‐Xiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC‐XiangyaChangshaChina
- Laboratory of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive EngineeringCentral South UniversityChangshaChina
| | - Heng‐Yu Fan
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
- Life Sciences InstituteZhejiang UniversityHangzhouChina
| | - Songying Zhang
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
21
|
Biphasic (5-2%) oxygen concentration strategy significantly improves the usable blastocyst and cumulative live birth rates in in vitro fertilization. Sci Rep 2021; 11:22461. [PMID: 34789773 PMCID: PMC8599669 DOI: 10.1038/s41598-021-01782-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Oxygen (O2) concentration is approximately 5% in the fallopian tube and 2% in the uterus in humans. A "back to nature" approach could increase in vitro fertilization (IVF) outcomes. This hypothesis was tested in this monocentric observational retrospective study that included 120 couples who underwent two IVF cycles between 2014 and 2019. Embryos were cultured at 5% from day 0 (D0) to D5/6 (monophasic O2 concentration strategy) in the first IVF cycle, and at 5% O2 from D0 to D3 and 2% O2 from D3 to D5/6 (biphasic O2 concentration strategy) in the second IVF cycle. The total and usable blastocyst rates (44.4% vs. 54.8%, p = 0.049 and 21.8% vs. 32.8%, p = 0.002, respectively) and the cumulative live birth rate (17.9% vs. 44.1%, p = 0.027) were significantly higher with the biphasic (5%-2%) O2 concentration strategy. Whole transcriptome analysis of blastocysts donated for research identified 707 RNAs that were differentially expressed in function of the O2 strategy (fold-change > 2, p value < 0.05). These genes are mainly involved in embryo development, DNA repair, embryonic stem cell pluripotency, and implantation potential. The biphasic (5-2%) O2 concentration strategy for preimplantation embryo culture could increase the "take home baby rate", thus improving IVF cost-effectiveness and infertility management.
Collapse
|
22
|
Benammar A, Derisoud E, Vialard F, Palmer E, Ayoubi JM, Poulain M, Chavatte-Palmer P. The Mare: A Pertinent Model for Human Assisted Reproductive Technologies? Animals (Basel) 2021; 11:2304. [PMID: 34438761 PMCID: PMC8388489 DOI: 10.3390/ani11082304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
Although there are large differences between horses and humans for reproductive anatomy, follicular dynamics, mono-ovulation, and embryo development kinetics until the blastocyst stage are similar. In contrast to humans, however, horses are seasonal animals and do not have a menstrual cycle. Moreover, horse implantation takes place 30 days later than in humans. In terms of artificial reproduction techniques (ART), oocytes are generally matured in vitro in horses because ovarian stimulation remains inefficient. This allows the collection of oocytes without hormonal treatments. In humans, in vivo matured oocytes are collected after ovarian stimulation. Subsequently, only intra-cytoplasmic sperm injection (ICSI) is performed in horses to produce embryos, whereas both in vitro fertilization and ICSI are applied in humans. Embryos are transferred only as blastocysts in horses. In contrast, four cells to blastocyst stage embryos are transferred in humans. Embryo and oocyte cryopreservation has been mastered in humans, but not completely in horses. Finally, both species share infertility concerns due to ageing and obesity. Thus, reciprocal knowledge could be gained through the comparative study of ART and infertility treatments both in woman and mare, even though the horse could not be used as a single model for human ART.
Collapse
Affiliation(s)
- Achraf Benammar
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Emilie Derisoud
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - François Vialard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| | - Eric Palmer
- Académie d’Agriculture de France, 75007 Paris, France;
| | - Jean Marc Ayoubi
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Marine Poulain
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
- Department of Gynaecology and Obstetrics, Foch Hospital, 92150 Suresnes, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; (A.B.); (E.D.); (F.V.); (J.M.A.); (M.P.)
- Ecole Nationale Vétérinaire d’Alfort, BREED, 94700 Maisons-Alfort, France
| |
Collapse
|
23
|
Catandi GD, Obeidat YM, Broeckling CD, Chen TW, Chicco AJ, Carnevale EM. Equine maternal aging affects oocyte lipid content, metabolic function and developmental potential. Reproduction 2021; 161:399-409. [PMID: 33539317 PMCID: PMC7969451 DOI: 10.1530/rep-20-0494] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
Advanced maternal age is associated with a decline in fertility and oocyte quality. We used novel metabolic microsensors to assess effects of mare age on single oocyte and embryo metabolic function, which has not yet been similarly investigated in mammalian species. We hypothesized that equine maternal aging affects the metabolic function of oocytes and in vitro-produced early embryos, oocyte mitochondrial DNA (mtDNA) copy number, and relative abundance of metabolites involved in energy metabolism in oocytes and cumulus cells. Samples were collected from preovulatory follicles from young (≤14 years) and old (≥20 years) mares. Relative abundance of metabolites in metaphase II oocytes (MII) and their respective cumulus cells, detected by liquid and gas chromatography coupled to mass spectrometry, revealed that free fatty acids were less abundant in oocytes and more abundant in cumulus cells from old vs young mares. Quantification of aerobic and anaerobic metabolism, respectively measured as oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in a microchamber containing oxygen and pH microsensors, demonstrated reduced metabolic function and capacity in oocytes and day-2 embryos originating from oocytes of old when compared to young mares. In mature oocytes, mtDNA was quantified by real-time PCR and was not different between the age groups and not indicative of mitochondrial function. Significantly more sperm-injected oocytes from young than old mares resulted in blastocysts. Our results demonstrate a decline in oocyte and embryo metabolic activity that potentially contributes to the impaired developmental competence and fertility in aged females.
Collapse
Affiliation(s)
- Giovana D Catandi
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Road, Fort Collins, CO 80521, USA
| | - Yusra M Obeidat
- Electronic Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, P.O. 21163, Jordan
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas W Chen
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 8523, USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Elaine M Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Road, Fort Collins, CO 80521, USA
| |
Collapse
|
24
|
Wu FSY, Weng SP, Shen MS, Ma PC, Wu PK, Lee NC. Suboptimal trophectoderm mitochondrial DNA level is associated with delayed blastocyst development. J Assist Reprod Genet 2021; 38:587-594. [PMID: 33471230 DOI: 10.1007/s10815-020-02045-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To provide a comprehensive analysis of mtDNA quantity in D5 and D6 blastocysts, as well as a further insight to the origin of delayed blastocyst development. METHODS A retrospective cohort analysis of 829 D5 and 472 D6 blastocysts from 460 patients who underwent in vitro fertilization (IVF) with next-generation sequencing (NGS)-based preimplantation genetic testing for aneuploidy (PGT-A). The quantity of trophectoderm mtDNA was extrapolated from the NGS data, followed by the analysis of mean mtDNA levels between D5 and D6 blastocysts of the same ploidy (aneuploid/euploid) and transfer outcomes (positive/negative clinical pregnancy). RESULTS D5 blastocysts had significantly higher euploidy rate and clinical pregnancy rate when compared with D6 blastocysts. The proportion of blastocysts derived from patients ≧ 40 years old were similar between the D5 and D6 cohorts. When blastocysts with identical ploidy were analyzed, the D5 cohorts all had significantly higher mean mtDNA levels than their D6 counterparts. Similarly, when embryo transfers with identical outcome were analyzed, the D5 cohorts also had significantly higher mean mtDNA levels than the D6 cohorts. Trophectoderm mtDNA level was independent of maternal age and blastocyst morphology grades. CONCLUSIONS Our data provided further evidence D5 blastocysts contained significantly greater mtDNA quantity than D6 blastocysts, and mtDNA quantity could be a key factor that affects the development rate of blastocysts. Furthermore, one must avoid using an arbitrary threshold when incorporating mtDNA quantity into the embryo selection criteria, as the observed value may have vastly different clinical implication when blastulation rate is also considered.
Collapse
Affiliation(s)
- Frank Shao-Ying Wu
- IHMED Fertility Center, Taipei City, Taiwan.,Taipei City Hospital, Heping-Fuyou Branch, Taipei City, Taiwan
| | | | | | | | - Po-Kuan Wu
- IHMED Fertility Center, Taipei City, Taiwan.,Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics, National Taiwan University Hospital, Taipei City, Taiwan. .,Department of Pediatrics, National Taiwan University College of Medicine, Taipei City, Taiwan.
| |
Collapse
|
25
|
Morimoto N, Hashimoto S, Yamanaka M, Satoh M, Nakaoka Y, Fukui A, Morimoto Y, Shibahara H. Treatment with Laevo (L)-carnitine reverses the mitochondrial function of human embryos. J Assist Reprod Genet 2020; 38:71-78. [PMID: 33070223 DOI: 10.1007/s10815-020-01973-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Laevo (l)-carnitine plays important roles in reducing the cytotoxic effects of free fatty acids by forming acyl-carnitine and promoting beta-oxidation, leading to alleviation of cell damage. Recently, the mitochondrial functions in morula has been shown to decrease with the maternal age. Here, we assessed the effect of l-carnitine on mitochondrial function in human embryos and embryo development. METHODS To examine the effect of L-carnitine on mitochondrial function in morulae, 38 vitrified-thawed embryos at the 6-11-cell stage on day 3 after ICSI were donated from 19 couples. Each couple donated two embryos. Two siblings from each couple were divided randomly into two groups and were cultured in medium with or without 1 mM L-carnitine. The oxygen consumption rates (OCRs) were measured at morula stage. The development of 1029 zygotes cultured in medium with or without L-carnitine was prospectively analyzed. RESULTS Addition of L-carnitine to the culture medium significantly increased the OCRs of morulae and improved the morphologically-good blastocyst formation rate per zygote compared with sibling embryos. Twenty healthy babies were born from embryos cultured in L-carnitine-supplemented medium after single embryo transfers. CONCLUSION(S) L-carnitine is a promising culture medium supplement that might be able to counteract the decreased mitochondrial function in human morula stage embryos.
Collapse
Affiliation(s)
- Naoharu Morimoto
- IVF Namba Clinic, Osaka, 550-0015, Japan
- Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Shu Hashimoto
- Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan.
| | | | | | | | - Atsushi Fukui
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | | | - Hiroaki Shibahara
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| |
Collapse
|