1
|
Neves JG, Liberato WF, Bim-Junior O, Jing SX, Chen SN, Pauli GF, Bedran-Russo AK. Optimization of dental adhesive interfaces using tissue biomodulation with DESIGNER biopolymers. Dent Mater 2025:S0109-5641(25)00303-3. [PMID: 40316470 DOI: 10.1016/j.dental.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/28/2025] [Accepted: 03/27/2025] [Indexed: 05/04/2025]
Abstract
OBJECTIVE To investigate the modulatory effects of four proanthocyanidin-DESIGNERS (PAC-DESIGNERs) on the long-term bond strength of the resin-adhesive interface, the degree of conversion of resin monomers, the chemical-mechanical properties of dentin matrix, and cell biocompatibility. METHODS Standardized formulations of PACs with a dominant degree of polymerization - DP (trimers: PM-AB and CV-AB; tetramers: PM-ABA and CV-ABB) were prepared from two sources of AB-Type PACs using a DESIGNER approach. Resin-dentin interface was assessed after 24 hours and 1 year using a microtensile bond strength (µTBS) test. The degree of conversion (DC) of resin monomers and chemical analysis of the dentin matrix were analyzed by ATR-FTIR spectroscopy. The viscoelastic properties of the dentin matrix were assessed by dynamic mechanical analysis (DMA). Cell viability was analyzed using a 3D cell culture model. Data analysis using two- and one-way ANOVA and post-hoc tests (α = 0.05). RESULTS All PAC-DESIGNER biomodulation increased the µTBS when compared to control (p < 0.05), regardless of source, DP, and aging. The DC of resin adhesive was not negatively impacted, and an increase in DC was observed with the incorporation of PM-AB and PM-ABA DESIGNERs (p < 0.05). PAC-DESIGNER treatment also increased the dentin matrix complex modulus (153-79 MPa) and storage modulus (151-78 MPa) when compared to control (∼9 MPa, p < 0.05). All DESIGNERs decreased the intensity of amide II/CH2 ratio; a decrease in the amide III/CH2 ratio was observed for CV-ABB (p < 0.05). Moreover, PAC-DESIGNERs exhibited good cell biocompatibility and healthy cell morphology. SIGNIFICANCE All PAC-DESIGNERs optimized the dentin-resin µTBS. The different molecular structures played a modulatory role in the chemical-mechanical properties of the dentin matrix, the degree of conversion of adhesive, and cell biocompatibility.
Collapse
Affiliation(s)
- José Guilherme Neves
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Walleska Feijó Liberato
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Odair Bim-Junior
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Shu-Xi Jing
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Shao-Nong Chen
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Guido F Pauli
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Ana K Bedran-Russo
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Badami A, Esmaeili J, Mirtalaie H. Employing Polymer and Gel to Fabricate Scaffold-like Cancellous Orthopedic Screw: Polycaprolactone/Chitosan/Hydroxyapatite. Gels 2025; 11:28. [PMID: 39851999 PMCID: PMC11765406 DOI: 10.3390/gels11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Using metallic/polymeric orthopedic screws causes cavities in bone trauma after the attachment of broken bones, which prolongs the healing. Yet, it remains unknown how to overcome such a challenge. The main aim of this research was to use both polymers and gels to fabricate and study a new PCL/chitosan/hydroxyapatite scaffold-like orthopedic screw for cancellous bone trauma. This screw, because of its low stiffness and its scaffold-based matrix (due to the gel part), can facilitate bone healing. Different concentrations of PCL (60-95% w/v) and chitosan (0-5% w/v) were blended according to the Response Surface Methodology using the Central Composite Design. The screws were fabricated using the freeze-drying technique. The screws were assessed mechanically, physically, and biologically (cell viability, cell attachment, DAPI, ALP staining, and Alizarin Red staining), and in vivo (a rat subcutaneous implantation model). Based on the results, screws depending on the PCL and gel content depicted different but notable mechanical behavior (10-60 MPa of compressive strength and 100-600 N force). The gel part could affect the physical properties of screws including water uptake (120%), degradation (18% after 21 days), porosities (23%), and mechanical strength (elastic modulus = 59.47 Mpa). The results also demonstrated no cytotoxicity towards MC3T3 cells (>80% cell viability) with good cell attachment, cell concentration, and mineralization (>90%) that was justified by the gel content. The results also showed good in vivo biocompatibility. To sum up, fabricated scaffold-like screws with gel content can be a good candidate for cancellous-bone-based orthopedic purposes. However, more in vitro and in vivo studies are required to optimize the PCL:gel ratio.
Collapse
Affiliation(s)
- AmirHossein Badami
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8543131, Iran;
| | - Javad Esmaeili
- Department of Tissue Engineering, TISSUEHUB Co., Tehran 1956854977, Iran;
- Department of Applied Science, UQAC University, Quebec, QC G7H 4V8, Canada
| | - Hasan Mirtalaie
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad 8543131, Iran;
| |
Collapse
|
3
|
Luss AL, Bobrova MM, Kulikov PP, Keskinov AA. Collagen-Based Scaffolds for Volumetric Muscle Loss Regeneration. Polymers (Basel) 2024; 16:3429. [PMID: 39684174 DOI: 10.3390/polym16233429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Volumetric muscle loss (VML) is a serious problem in healthcare that requires innovative solutions. Collagen and its derivatives are promising biomaterials for muscle tissue replacement due to their high biocompatibility, biodegradability, and lack of toxicity. This review comprehensively discusses collagen from various sources, its structural characteristics, cross-linking methods to obtain hydrogels, and approaches to incorporating various therapeutic molecules to create a biocomposite system with controlled release. Collagen-based scaffolds are promising constructs in tissue engineering and regenerative medicine. They can both perform their function independently and act as a depot for various biologically active substances (drugs, growth factors, genetic material, etc.). Collagen-based scaffolds for muscle volume restoration are three-dimensional constructs that support cell adhesion and proliferation and provide controlled release of therapeutic molecules. Various mechanical and biological properties of scaffolds can be achieved by cross-linking agents and bioactive molecules incorporated into the structure. This review highlights recent studies on collagen-based hydrogels for restoration of volumetric muscle loss.
Collapse
Affiliation(s)
- Anna L Luss
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| | - Maria M Bobrova
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| | - Pavel P Kulikov
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| | - Anton A Keskinov
- Federal State Budgetary Institution «Centre for Strategic Planning and Management of Biomedical Health Risks» of the Federal Medical and Biological Agency, Pogodinskaya st., b.10/1, 119121 Moscow, Russia
| |
Collapse
|
4
|
Zhu J, Xu H, Hu Q, Yang Y, Ni S, Peng F, Jin X. High stretchable and tough xylan-g-gelatin hydrogel via the synergy of chemical cross-linking and salting out for strain sensors. Int J Biol Macromol 2024; 261:129759. [PMID: 38281523 DOI: 10.1016/j.ijbiomac.2024.129759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Stretchable and tough hydrogels have been extensively used in tissue engineering scaffolds and flexible electronics. However, it is still a significant challenge to prepare hydrogels with both tensile strength and toughness by utilizing xylan, which is abundant in nature. Herein, we present a novel hydrogel of carboxymethyl xylan(CMX) graft gelatin (G) and doped with conductive hydroxyl carbon nanotubes (OCNT). CMX and G are combined through amide bonding as well as intermolecular hydrogen bonding to form a semi-interpenetrating hydrogel network. The hydrogel was further subjected to salting-out treatment, which induced the aggregation of the CMX-g-G molecular chain and the formation of chain bundles to toughen the hydrogel, the tensile strain, tensile stress, and toughness of CMX-g-G hydrogels were 1.547 MPa, 324 %, and 2.31 MJ m-3, respectively. In addition, OCNT was used as a conductive filler to impart electrical conductivity and further improve the mechanical properties of CMX-g-G/OCNT hydrogel, and a tensile strength of 1.62 MPa was obtained. Thus, the synthesized CMX-g-G/OCNT hydrogel can be used as a reliable and sensitive strain sensor for monitoring human activity. This study opens up new horizons for the preparation of xylan-based high-performance hydrogels.
Collapse
Affiliation(s)
- Jingqiao Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Hanping Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Qiangli Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Yujia Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Siyang Ni
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Jin
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Sharma A, Moore E, Williams LN. An in vitro study of micromechanics, cellular proliferation and viability on both decellularized porcine dura grafts and native porcine dura grafts. BIOMEDICAL ENGINEERING ADVANCES 2023; 6:100108. [PMID: 38259430 PMCID: PMC10803071 DOI: 10.1016/j.bea.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Damage to the dura mater may occur during intracranial or spinal surgeries, which can result in cerebrospinal fluid leakage and other potentially fatal physiological changes. As a result, biological and synthetic derived scaffolds are typically used to repair dura mater post intracranial or spinal surgeries. The extracellular matrix of xenogeneic dura scaffolds has been shown to exhibit increased cell infiltration and regeneration than synthetic dura materials. In this study, we investigated the biocompatibility of native and decellularized porcine dura by seeding rat fibroblast cells onto the constructs. Cell proliferation, cell viability, and the mechanical properties of these dural grafts were evaluated post-re-seeding on days 3,7 and 14. Live-dead staining and resazurin salts were used to quantify cell viability and cell proliferation, respectively. Micro indentation was conducted to quantify the mechanical integrity of the native and acellular dura graft. The findings indicate that the acellular porcine dura graft creates a beneficial setting for infiltrating rat fibroblast cells. Cell viability, proliferation, and micro indentation results on the acellular grafts are comparable with the native control porcine dura tissue. In conclusion, the porcine scaffold material showed increased cell viability at each time point evaluated. The sustained mechanical response and favorable viability of the cells on the decellularized grafts provide promising insight into the potential use of porcine dura in clinical cranial dura mater graft applications.
Collapse
Affiliation(s)
- Ashma Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Erika Moore
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Lakiesha N. Williams
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
An Overview of Collagen-Based Composite Scaffold for Bone Tissue Engineering. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04318-y. [PMID: 36652090 DOI: 10.1007/s12010-023-04318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Bone regeneration or restoration is a series of well-ordered physiological activities that occur throughout a person's life, they are continuously being repaired and remodeled. A conventional bone repair procedure, such as autograft and allograft bone transplant, has failed to address bone reconstruction disputes and complexity. On the other hand, Tissue Engineering is a potential therapy option for repairing rather than replacing the damaged tissue. Biomaterials in bone tissue engineering (BTE) help pave the way for damaged tissues as an artificial extracellular matrix, facilitating new tissue growth. Collagen-based biomaterials for repair and replacement have inspired much interest in the hunt for versatile biomaterials compatible with human tissue. It is a major organic component of extracellular matrix in bone and has been employed as scaffolding material in BTE for decades. In this review, we documented the role of collagen in BTE, focusing on collagen type I, its crosslinking capability, collagen-based biomaterials, and fabrication methods. It also considers osteoblast citration a critical process in bone formation, a unique perspective for an old relationship.
Collapse
|
7
|
Nath PC, Debnath S, Sharma M, Sridhar K, Nayak PK, Inbaraj BS. Recent Advances in Cellulose-Based Hydrogels: Food Applications. Foods 2023; 12:foods12020350. [PMID: 36673441 PMCID: PMC9857633 DOI: 10.3390/foods12020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
In the past couple of years, cellulose has attracted a significant amount of attention and research interest due to the fact that it is the most abundant and renewable source of hydrogels. With increasing environmental issues and an emerging demand, researchers around the world are focusing on naturally produced hydrogels in particular due to their biocompatibility, biodegradability, and abundance. Hydrogels are three-dimensional (3D) networks created by chemically or physically crosslinking linear (or branching) hydrophilic polymer molecules. Hydrogels have a high capacity to absorb water and biological fluids. Although hydrogels have been widely used in food applications, the majority of them are not biodegradable. Because of their functional characteristics, cellulose-based hydrogels (CBHs) are currently utilized as an important factor for different aspects in the food industry. Cellulose-based hydrogels have been extensively studied in the fields of food packaging, functional food, food safety, and drug delivery due to their structural interchangeability and stimuli-responsive properties. This article addresses the sources of CBHs, types of cellulose, and preparation methods of the hydrogel as well as the most recent developments and uses of cellulose-based hydrogels in the food processing sector. In addition, information regarding the improvement of edible and functional CBHs was discussed, along with potential research opportunities and possibilities. Finally, CBHs could be effectively used in the industry of food processing for the aforementioned reasons.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
- Correspondence: (P.K.N.); or (B.S.I.)
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (P.K.N.); or (B.S.I.)
| |
Collapse
|
8
|
Xu F, Dawson C, Lamb M, Mueller E, Stefanek E, Akbari M, Hoare T. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Front Bioeng Biotechnol 2022; 10:849831. [PMID: 35600900 PMCID: PMC9119391 DOI: 10.3389/fbioe.2022.849831] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Graphical Abstract
Collapse
Affiliation(s)
- Fei Xu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Chloe Dawson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Makenzie Lamb
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Eva Mueller
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Evan Stefanek
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| |
Collapse
|
9
|
Drug Delivery Strategies and Biomedical Significance of Hydrogels: Translational Considerations. Pharmaceutics 2022; 14:pharmaceutics14030574. [PMID: 35335950 PMCID: PMC8950534 DOI: 10.3390/pharmaceutics14030574] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels are a promising and attractive option as polymeric gel networks, which have immensely fascinated researchers across the globe because of their outstanding characteristics such as elevated swellability, the permeability of oxygen at a high rate, good biocompatibility, easy loading, and drug release. Hydrogels have been extensively used for several purposes in the biomedical sector using versatile polymers of synthetic and natural origin. This review focuses on functional polymeric materials for the fabrication of hydrogels, evaluation of different parameters of biocompatibility and stability, and their application as carriers for drugs delivery, tissue engineering and other therapeutic purposes. The outcome of various studies on the use of hydrogels in different segments and how they have been appropriately altered in numerous ways to attain the desired targeted delivery of therapeutic agents is summarized. Patents and clinical trials conducted on hydrogel-based products, along with scale-up translation, are also mentioned in detail. Finally, the potential of the hydrogel in the biomedical sector is discussed, along with its further possibilities for improvement for the development of sophisticated smart hydrogels with pivotal biomedical functions.
Collapse
|
10
|
Dynamic process enhancement on chitosan/gelatin/nano-hydroxyapatite-bone derived multilayer scaffold for osteochondral tissue repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112662. [DOI: 10.1016/j.msec.2022.112662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
|
11
|
Reis M, Zhou B, Alania Y, Leme-Kraus AA, Jing S, McAlpine JB, Chen SN, Pauli GF, Bedran-Russo AK. Unveiling structure-activity relationships of proanthocyanidins with dentin collagen. Dent Mater 2021; 37:1633-1644. [PMID: 34563363 PMCID: PMC8791559 DOI: 10.1016/j.dental.2021.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To elucidate the structure-activity relationships (SARs) of proanthocyanidins (PACs) with type I collagen using sixteen chemically defined PACs with degree of polymerization (DP) 2-6. METHODS Under a dentin model, the biomimicry of PACs with type I collagen was investigated by dynamic mechanical analysis (DMA) and infrared spectroscopy. The dentin matrix was modified with PACs from Pinus massoniana [monomers (Mon-1 and Mon-2), dimers (Dim-1-Dim-4), trimers (Tri-1-Tri-4), tetramers (Tet-1-Tet-5), and hexamer (Hex-1)]. A strain sweep method in a 3-point bending submersion clamp was used to assess the viscoelastic properties [storage (E'), loss (E"), and complex moduli (E*) and tan δ] of the dentin matrix before and after biomodification. Biochemical analysis of the dentin matrix was assessed with FTIR spectroscopy. Data were statistically analyzed using one-way ANOVA and post-hoc tests (α = 0.05). RESULTS DP had a significant effect on modified dentin moduli (tetramers ≈ trimers > hexamers ≈ dimers > monomers ≈ control, p < 0.001). Trimers and tetramers yielded 6- to 8-fold increase in the mechanical properties of modified dentin and induced conformational changes to the secondary structure of collagen. Modifications to the tertiary structure of collagen was shown in all PAC modified-dentin matrices. SIGNIFICANCE Findings establish three key SARs: (i) increasing DP generally enhances biomimicry potential of PACs in modulating the mechanical and chemical properties of dentin (ii) the secondary structure of dentin collagen is affected by the position of B-type inter-flavanyl linkages (4β → 6 and 4β → 8); and (iii) the terminal monomeric flavan-3-ol unit plays a modulatory role in the viscoelasticity of dentin.
Collapse
Affiliation(s)
- Mariana Reis
- Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, WI, 53233, United States; Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Bin Zhou
- Pharmacognosy Institute and Department of Pharmaceutical Sciences (PSCI), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Yvette Alania
- Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, WI, 53233, United States; Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Ariene A Leme-Kraus
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Shuxi Jing
- Pharmacognosy Institute and Department of Pharmaceutical Sciences (PSCI), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - James B McAlpine
- Pharmacognosy Institute and Department of Pharmaceutical Sciences (PSCI), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Shao-Nong Chen
- Pharmacognosy Institute and Department of Pharmaceutical Sciences (PSCI), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Guido F Pauli
- Pharmacognosy Institute and Department of Pharmaceutical Sciences (PSCI), College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Ana K Bedran-Russo
- Department of General Dental Sciences, School of Dentistry, Marquette University, Milwaukee, WI, 53233, United States; Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, United States.
| |
Collapse
|
12
|
Huang R, Xu L, Wang Y, Zhang Y, Lin B, Lin Z, Li J, Li X. Efficient fabrication of stretching hydrogels with programmable strain gradients as cell sheet delivery vehicles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112415. [PMID: 34579924 DOI: 10.1016/j.msec.2021.112415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 01/21/2023]
Abstract
Fabricating functional cell sheets with excellent mechanical strength for tissue regeneration remains challenging. Therefore, we devised a novel 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide/N-hydroxy-succinimide crosslinked hydrogel carrier composed of gelatin (Ge) and beta-cyclodextrin (β-CD) that promoted the adhesion and proliferation of keratinocytes (Kcs) compared with those cultured on a Ge hydrogel due to significantly higher pore size, porosity, and stiffness, as confirmed using field emission scanning electron microscopy (FE-SEM) and shear wave elastography (SWE). Upon exposure to a programmable gradient microenvironment, cells displayed a stress/strain-dependent spatial-temporal distribution of extended cellular phenotypes and cytoskeletons. The promoted proliferation of Kcs and the increased retention of the undifferentiated cell phenotype on Ge-β-CD composite hydrogels under a 15% strain led to the accelerated detachment of cell sheets with retained cell-cell junctions. Moreover, the stretch-triggered upregulated expression of phosphorylated yes-associated protein (YAP) 1 suggested that this effect might be associated with the mechanical stimulation-induced activation of the YAP pathway.
Collapse
Affiliation(s)
- Rong Huang
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Lirong Xu
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Yan Wang
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Yuheng Zhang
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Bin Lin
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Zhixiao Lin
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China
| | - Jinqing Li
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.
| | - Xueyong Li
- Department of Burn and Plastic Surgery, Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
13
|
Sommer A, Dederko-Kantowicz P, Staroszczyk H, Sommer S, Michalec M. Enzymatic and Chemical Cross-Linking of Bacterial Cellulose/Fish Collagen Composites-A Comparative Study. Int J Mol Sci 2021; 22:ijms22073346. [PMID: 33805875 PMCID: PMC8037045 DOI: 10.3390/ijms22073346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/21/2023] Open
Abstract
This article compares the properties of bacterial cellulose/fish collagen composites (BC/Col) after enzymatic and chemical cross-linking. In our methodology, two transglutaminases are used for enzymatic cross-linking—one recommended for the meat and the other proposed for the fish industry—and pre-oxidated BC (oxBC) is used for chemical cross-linking. The structure of the obtained composites is characterized by scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy, and their functional properties by mechanical and water barrier tests. While polymer chains in uncross-linked BC/Col are intertwined by H-bonds, new covalent bonds in enzymatically cross-linked ones are formed—resulting in increased thermal stability and crystallinity of the material. The C2–C3 bonds cleavage in D-glucose units, due to BC oxidation, cause secondary alcohol groups to vanish in favor of the carbonyl groups’ formation, thus reducing the number of H-bonded OHs. Thermal stability and crystallinity of oxBC/Col remain lower than those of BC/Col. The BC/Col formation did not affect tensile strength and water vapor permeability of BC, but enzymatic cross-linking with TGGS improved them significantly.
Collapse
Affiliation(s)
- Agata Sommer
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
| | - Paulina Dederko-Kantowicz
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
- Laboratory of Molecular Diagnostics and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, Bonin Research Center, Bonin 3, 76-009 Bonin, Poland
| | - Hanna Staroszczyk
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
- Correspondence:
| | - Sławomir Sommer
- Department of Automotive Engineering, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland;
| | - Marek Michalec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| |
Collapse
|
14
|
Borrelli C, Buckley CT. Injectable Disc-Derived ECM Hydrogel Functionalised with Chondroitin Sulfate for Intervertebral Disc Regeneration. Acta Biomater 2020; 117:142-155. [PMID: 33035694 DOI: 10.1016/j.actbio.2020.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Low back pain resulting from intervertebral disc (IVD) degeneration is a significant socioeconomic burden. The main effect of the degeneration process involves the alteration of the nucleus pulposus (NP) via cell-mediated enzymatic breakdown of key extracellular matrix (ECM) components. Thus, the development of injectable and biomimetic biomaterials that can instruct the regenerative cell component to produce tissue-specific ECM is pivotal for IVD repair. Chondroitin sulfate (CS) and type II collagen are the primary components of NP tissue and together create the ideal environment for cells to deposit de-novo matrix. Given their high matrix synthesis capacity potential post-expansion, nasal chondrocytes (NC) have been proposed as a potential cell source to promote NP repair. The overall goal of this study was to assess the effects of CS incorporation into disc derived self-assembled ECM hydrogels on the matrix deposition of NCs. Results showed an increased sGAG production with higher amounts of CS in the gel composition and that its presence was found to be critical for the synthesis of collagen type II. Taken together, our results demonstrate how the inclusion of CS into the composition of the material aids the preservation of a rounded cell morphology for NCs in 3D culture and enhances their ability to synthesise NP-like matrix.
Collapse
|
15
|
Sionkowska A, Adamiak K, Musiał K, Gadomska M. Collagen Based Materials in Cosmetic Applications: A Review. MATERIALS 2020; 13:ma13194217. [PMID: 32977407 PMCID: PMC7578929 DOI: 10.3390/ma13194217] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
This review provides a report on properties and recent advances in the application of collagen in cosmetics. Collagen is a structural protein found in animal organisms where it provides for the fundamental structural support. Most commonly it is extracted from mammalian and fish skin. Collagen has attracted significant academic interest as well as the attention of the cosmetic industry due to its interesting properties that include being a natural humectant and moisturizer for the skin. This review paper covers the biosynthesis of collagen, the sources of collagen used in the cosmetic industry, and the role played by this protein in cosmetics. Future aspects regarding applications of collagen-based materials in cosmetics have also been mentioned.
Collapse
Affiliation(s)
- Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 street, 87-100 Torun, Poland; (K.A.); (K.M.); (M.G.)
- Correspondence: ; Tel.: +48-56-611-4547
| | - Katarzyna Adamiak
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 street, 87-100 Torun, Poland; (K.A.); (K.M.); (M.G.)
- WellU sp.z.o.o, Wielkopolska 280 street, 81-531 Gdynia, Poland
| | - Katarzyna Musiał
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 street, 87-100 Torun, Poland; (K.A.); (K.M.); (M.G.)
| | - Magdalena Gadomska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 street, 87-100 Torun, Poland; (K.A.); (K.M.); (M.G.)
| |
Collapse
|
16
|
Kaczmarek B, Mazur O. Collagen-Based Materials Modified by Phenolic Acids-A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3641. [PMID: 32824538 PMCID: PMC7476000 DOI: 10.3390/ma13163641] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Collagen-based biomaterials constitute one of the most widely studied types of materials for biomedical applications. Low thermal and mechanical parameters are the main disadvantages of such structures. Moreover, they present low stability in the case of degradation by collagenase. To improve the properties of collagen-based materials, different types of cross-linkers have been researched. In recent years, phenolic acids have been studied as collagen modifiers. Mainly, tannic acid has been tested for collagen modification as it interacts with a polymeric chain by strong hydrogen bonds. When compared to pure collagen, such complexes show both antimicrobial activity and improved physicochemical properties. Less research reporting on other phenolic acids has been published. This review is a summary of the present knowledge about phenolic acids (e.g., tannic, ferulic, gallic, and caffeic acid) application as collagen cross-linkers. The studies concerning collagen-based materials with phenolic acids are summarized and discussed.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland;
| | | |
Collapse
|
17
|
Distler T, McDonald K, Heid S, Karakaya E, Detsch R, Boccaccini AR. Ionically and Enzymatically Dual Cross-Linked Oxidized Alginate Gelatin Hydrogels with Tunable Stiffness and Degradation Behavior for Tissue Engineering. ACS Biomater Sci Eng 2020; 6:3899-3914. [PMID: 33463325 DOI: 10.1021/acsbiomaterials.0c00677] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogels that allow for the successful long-term in vitro culture of cell-biomaterial systems to enable the maturation of tissue engineering constructs are highly relevant in regenerative medicine. Naturally derived polysaccharide-based hydrogels promise to be one material group with enough versatility and chemical functionalization capability to tackle the challenges associated with long-term cell culture. We report a marine derived oxidized alginate, alginate dialdehyde (ADA), and gelatin (GEL) system (ADA-GEL), which is cross-linked via ionic (Ca2+) and enzymatic (microbial transglutaminase, mTG) interaction to form dually cross-linked hydrogels. The cross-linking approach allowed us to tailor the stiffness of the hydrogels in a wide range (from <5 to 120 kPa), without altering the initial ADA and GEL hydrogel chemistry. It was possible to control the degradation behavior of the hydrogels to be stable for up to 30 days of incubation. Increasing concentrations of mTG cross-linker solutions allowed us to tune the degradation behavior of the ADA-GEL hydrogels from fast (<7 days) to moderate (14 days) and slow (>30 days) degradation kinetics. The cytocompatibility of mTG cross-linked ADA-GEL was assessed using NIH-3T3 fibroblasts and ATDC-5 mouse teratocarcinoma cells. Both cell types showed highly increased cellular attachment on mTG cross-linked ADA-GEL in comparison to Ca2+ cross-linked hydrogels. In addition, ATDC-5 cells showed a higher proliferation on mTG cross-linked ADA-GEL hydrogels in comparison to tissue culture polystyrene control substrates. Further, the attachment of human umbilical vein endothelial cells (HUVEC) on ADA-GEL (+) mTG was confirmed, proving the suitability of mTG+Ca2+ cross-linked ADA-GEL for several cell types. Summarizing, a promising platform to control the properties of ADA-GEL hydrogels is presented, with the potential to be applied in long-term cell culture investigations such as cartilage, bone, and blood-vessel engineering, as well as for biofabrication.
Collapse
Affiliation(s)
- Thomas Distler
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Kilian McDonald
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Susanne Heid
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Emine Karakaya
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| |
Collapse
|
18
|
Adamiak K, Sionkowska A. Current methods of collagen cross-linking: Review. Int J Biol Macromol 2020; 161:550-560. [PMID: 32534089 DOI: 10.1016/j.ijbiomac.2020.06.075] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023]
Abstract
This review provides a report on cross-linking methods used for collagen modifications. Collagen materials have attracted significant academic interest due to its biological properties in native state. However, in many cases the mechanical properties and degradation rate should be tailored to especial biomedical and cosmetic applications. In the proposed review paper, the structure, preparation, and properties of several collagen based materials have been discussed in general, and detailed examples of collagen cross-linking methods have been drawn from scientific literature and practical work. Both, physical and chemical methods of improvement of collagenous materials have been reviewed. In the review paper the cross-linking with glutaraldehyde, genipin, EDC-NHS, dialdehyde starch, chitosan, temperature, UV light and enzyme has been discussed. A critical comparison of currently available cross-linking methods has been shown.
Collapse
Affiliation(s)
| | - Alina Sionkowska
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Biomaterials and Cosmetics Chemistry, Gagarin 7 street, 87-100 Torun, Poland.
| |
Collapse
|
19
|
S. N, Easwaramoorthi S, Rao JR, Thanikaivelan P. Probing visible light induced photochemical stabilization of collagen in green solvent medium. Int J Biol Macromol 2019; 131:779-786. [DOI: 10.1016/j.ijbiomac.2019.03.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022]
|
20
|
Bioengineering of microbial transglutaminase for biomedical applications. Appl Microbiol Biotechnol 2019; 103:2973-2984. [PMID: 30805670 DOI: 10.1007/s00253-019-09669-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.
Collapse
|
21
|
Foidl BM, Ucar B, Schwarz A, Rebelo AL, Pandit A, Humpel C. Nerve growth factor released from collagen scaffolds protects axotomized cholinergic neurons of the basal nucleus of Meynert in organotypic brain slices. J Neurosci Methods 2017; 295:77-86. [PMID: 29221639 DOI: 10.1016/j.jneumeth.2017.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimeŕs disease is accompanied by cell death of cholinergic neurons, resulting in cognitive impairment and memory loss. Nerve growth factor (NGF) is the most potent protein to support survival of cholinergic neurons. NEW METHOD Organotypic brain slices of the basal nucleus of Meynert (nBM) are a valuable tool to study cell death of axotomized cholinergic neurons, as well as protective effects of NGF added into the medium. The aim of the present study is to use collagen scaffolds crosslinked with polyethyleneglycole and load with NGF to target delivery of NGF to organotypic nBM brain slices. RESULTS Collagen scaffolds (visualized by incorporating AlexaFluor 488 antibodies) slowly degraded when applied onto organotypic brain slices within 2 weeks in culture. GFAP reactive astrocytes and Iba1+ microglia became visible around the collagen scaffolds 7days after incubation, showing reactive gliosis. Cholinergic neurons of the nBM survived (201±21, n=8) when incubated with 100ng/ml NGF in the medium compared to NGF-free medium (69±12, n=7). Collagen scaffolds loaded with NGF (1ng/2μl scaffold) significantly rescued cholinergic cell death in the nBM brain slices (175±12, n=10), which was counteracted by an anti-NGF antibody (77±5, n=5). COMPARISON WITH EXISTING METHODS The combination of coronal brain slices with biomaterial is a novel and potent tool to selectively study neuroprotective effects. CONCLUSIONS Collagen scaffolds loaded with low amounts of a protein/drug of interest can be easily applied directly onto organotypic brain slices, allowing slow targeted release of a protective molecule. Such an approach is highly useful to optimize CollScaff for further in vivo applications.
Collapse
Affiliation(s)
- Bettina M Foidl
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Buket Ucar
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Alina Schwarz
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria
| | - Ana L Rebelo
- Centre for Research in Medical Devices, Biomedical Sciences National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices, Biomedical Sciences National University of Ireland Galway, Galway, Ireland
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
22
|
Maisani M, Pezzoli D, Chassande O, Mantovani D. Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? J Tissue Eng 2017; 8:2041731417712073. [PMID: 28634532 PMCID: PMC5467968 DOI: 10.1177/2041731417712073] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering is a promising alternative to autografts or allografts for the regeneration of large bone defects. Cell-free biomaterials with different degrees of sophistication can be used for several therapeutic indications, to stimulate bone repair by the host tissue. However, when osteoprogenitors are not available in the damaged tissue, exogenous cells with an osteoblast differentiation potential must be provided. These cells should have the capacity to colonize the defect and to participate in the building of new bone tissue. To achieve this goal, cells must survive, remain in the defect site, eventually proliferate, and differentiate into mature osteoblasts. A critical issue for these engrafted cells is to be fed by oxygen and nutrients: the transient absence of a vascular network upon implantation is a major challenge for cells to survive in the site of implantation, and different strategies can be followed to promote cell survival under poor oxygen and nutrient supply and to promote rapid vascularization of the defect area. These strategies involve the use of scaffolds designed to create the appropriate micro-environment for cells to survive, proliferate, and differentiate in vitro and in vivo. Hydrogels are an eclectic class of materials that can be easily cellularized and provide effective, minimally invasive approaches to fill bone defects and favor bone tissue regeneration. Furthermore, by playing on their composition and processing, it is possible to obtain biocompatible systems with adequate chemical, biological, and mechanical properties. However, only a good combination of scaffold and cells, possibly with the aid of incorporated growth factors, can lead to successful results in bone regeneration. This review presents the strategies used to design cellularized hydrogel-based systems for bone regeneration, identifying the key parameters of the many different micro-environments created within hydrogels.
Collapse
Affiliation(s)
- Mathieu Maisani
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
- Laboratoire BioTis, Inserm U1026, Université de Bordeaux, Bordeaux, France
| | - Daniele Pezzoli
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
| | - Olivier Chassande
- Laboratoire BioTis, Inserm U1026, Université de Bordeaux, Bordeaux, France
| | - Diego Mantovani
- Laboratory for Biomaterials & Bioengineering (CRC-I), Department Min-Met-Materials Engineering & Research Center CHU de Québec, Laval University, Québec City, QC, Canada
| |
Collapse
|
23
|
Tuan-Mu HY, Lu PC, Lee PY, Lin CC, Chen CJ, Huang LLH, Lin JH, Hu JJ. Rapid Fabrication of a Cell-Seeded Collagen Gel-Based Tubular Construct that Withstands Arterial Pressure : Rapid Fabrication of a Gel-Based Media Equivalent. Ann Biomed Eng 2016; 44:3384-3397. [PMID: 27216824 DOI: 10.1007/s10439-016-1645-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/07/2016] [Indexed: 11/25/2022]
Abstract
Based on plastically compressed cell-seeded collagen gels, we fabricated a small-diameter tubular construct that withstands arterial pressure without prolonged culture in vitro. Specifically, to mimic the microstructure of vascular media, the cell-seeded collagen gel was uniaxially stretched prior to plastic compression to align collagen fibers and hence cells in the gel. The resulting gel sheet was then wrapped around a custom-made multi-layered braided tube to form aligned tubular constructs whereas the gel sheet prepared similarly but without uniaxial stretching formed control constructs. With the braided tube, fluid in the gel construct was further removed by vacuum suction aiming to consolidate the concentric layers of the construct. The construct was finally treated with transglutaminase. Both SEM and histology confirmed the absence of gaps in the wall of the construct. Particularly, cells in the wall of the aligned tubular construct were circumferentially aligned. The enzyme-mediated crosslinking increased burst pressure of both the constructs significantly; the extent of the increase of burst pressure for the aligned tubular construct was greater than that for the control counterpart. Increasing crosslinking left the compliance of the aligned tubular construct unchanged but reduced that of the control construct. Cells remained viable in transglutaminase-treated plastically compressed gels after 6 days in culture. This study demonstrated that by combining stretch-induced fiber alignment, plastic compression, and enzyme-mediated crosslinking, a cell-seeded collagen gel-based tubular construct with potential to be used as vascular media can be made within 3 days.
Collapse
Affiliation(s)
- Ho-Yi Tuan-Mu
- Department of Biomedical Engineering, National Cheng Kung University, #1 University Road, Tainan, 701, Taiwan
| | - Po-Ching Lu
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan
| | - Pei-Yuan Lee
- Department of Biomedical Engineering, National Cheng Kung University, #1 University Road, Tainan, 701, Taiwan
- Orthopedic Department, Showchwan Memorial Hospital, Changhua, Taiwan
| | - Chien-Chih Lin
- Scientific Research Division, Life Science Group, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chun-Jung Chen
- Scientific Research Division, Life Science Group, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Lynn L H Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Horng Lin
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan
| | - Jin-Jia Hu
- Department of Biomedical Engineering, National Cheng Kung University, #1 University Road, Tainan, 701, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
24
|
|
25
|
Ullah F, Othman MBH, Javed F, Ahmad Z, Md Akil H. Classification, processing and application of hydrogels: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:414-33. [PMID: 26354282 DOI: 10.1016/j.msec.2015.07.053] [Citation(s) in RCA: 730] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/23/2015] [Accepted: 07/25/2015] [Indexed: 01/11/2023]
Abstract
This article aims to review the literature concerning the choice of selectivity for hydrogels based on classification, application and processing. Super porous hydrogels (SPHs) and superabsorbent polymers (SAPs) represent an innovative category of recent generation highlighted as an ideal mould system for the study of solution-dependent phenomena. Hydrogels, also termed as smart and/or hungry networks, are currently subject of considerable scientific research due to their potential in hi-tech applications in the biomedical, pharmaceutical, biotechnology, bioseparation, biosensor, agriculture, oil recovery and cosmetics fields. Smart hydrogels display a significant physiochemical change in response to small changes in the surroundings. However, such changes are reversible; therefore, the hydrogels are capable of returning to its initial state after a reaction as soon as the trigger is removed.
Collapse
Affiliation(s)
- Faheem Ullah
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Muhammad Bisyrul Hafi Othman
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Fatima Javed
- Department of Chemistry, Quaid-e-Azam University Islamabad, 45320 Islamabad, Pakistan
| | - Zulkifli Ahmad
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Hazizan Md Akil
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
26
|
Cui C, Wang S, Myneni VD, Hitomi K, Kaartinen MT. Transglutaminase activity arising from Factor XIIIA is required for stabilization and conversion of plasma fibronectin into matrix in osteoblast cultures. Bone 2014; 59:127-38. [PMID: 24246248 DOI: 10.1016/j.bone.2013.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/19/2022]
Abstract
Circulating plasma fibronectin (pFN), produced by hepatocytes, is a major component of the noncollagenous bone matrix where it was recently shown in vivo in mice to control the biomechanical quality as well as the mineral-to-matrix ratio in bone. FN fibrillogenesis is a process generally requiring FN binding to cellular integrins, and cellular tension to elongate and assemble the molecule. Whether soluble pFN undergoes cell-mediated assembly in bone is not fully established. FN is a well-known substrate for transglutaminases (TGs), which are protein-crosslinking enzymes capable of stabilizing macromolecular structures. The role of this modification regarding the function of FN in bone matrix has remained unknown. Osteoblasts express two TGs-transglutaminase 2 and Factor XIIIA-and we have shown that Factor XIIIA is the main TG active during osteoblast differentiation. In the present study, conducted using MC3T3-E1 osteoblast cultures and bone marrow stromal cells, we demonstrate that pFN requires a TG-mediated crosslinking step to form osteoblast matrix in vitro. This modification step is specific for pFN; cellular FN (EDA-FN) does not serve as a TG substrate. Inhibition of pFN assembly using a TG inhibitor, or depletion of pFN from cell culture serum, dramatically decreased total FN matrix assembly in the osteoblast cultures and affected both the quantity and quality of the type I collagen matrix, and decreased lysyl oxidase and alkaline phosphatase levels, resulting in decreased mineralization. Experiments with isozyme-specific substrate peptides showed that FXIIIA is responsible for the crosslinking of pFN. Addition of exogenous preactivated FXIIIA to osteoblast cultures promoted pFN assembly from the media into matrix. Exogenous TG2 had no effect. Analysis of pFN and EDA-FN fibrils by immunofluorescence microscopy demonstrated that they form distinct matrix network, albeit with minor overlap, suggesting different functions for the two FN forms. Further analysis using EDA-FN blocking antibody showed that it regulated preosteoblast proliferation whereas pFN depletion from the serum had no effect on this process. In conclusion, our study shows that pFN assembly into bone matrix in vitro requires FXIIIA transglutaminase activity making pFN assembly an active, osteoblast-mediated process.
Collapse
Affiliation(s)
- Cui Cui
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Shuai Wang
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Vamsee D Myneni
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Kiyotaka Hitomi
- Department of Applied Molecular Biosciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Mari T Kaartinen
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
27
|
Monaghan M, Browne S, Schenke-Layland K, Pandit A. A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling. Mol Ther 2014; 22:786-96. [PMID: 24402185 PMCID: PMC3983959 DOI: 10.1038/mt.2013.288] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/11/2013] [Indexed: 12/16/2022] Open
Abstract
Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 μg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury.
Collapse
Affiliation(s)
- Michael Monaghan
- 1] Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland [2] Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany [3] University Women's Hospital, Eberhard Karls University, Tübingen, Germany
| | - Shane Browne
- Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| | - Katja Schenke-Layland
- 1] Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany [2] University Women's Hospital, Eberhard Karls University, Tübingen, Germany [3] Department of Medicine/Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA, USA
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| |
Collapse
|
28
|
Staroszczyk H, Sztuka K, Wolska J, Wojtasz-Pająk A, Kołodziejska I. Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 117:707-12. [PMID: 24140742 DOI: 10.1016/j.saa.2013.09.044] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 05/24/2023]
Abstract
Films based on fish gelatin, chitosan and blend of fish gelatin and chitosan before and after cross-linking with EDC have been characterized by FT-IR spectroscopy. The FT-IR spectrum of fish gelatin film showed the characteristic amide I, amide II and amide III bands, and the FT-IR spectrum of chitosan film confirmed that the polymer was only a partially deacetylated product, and included CH3-C=O and NH2 groups, the latter both in their free -NH2 and protonated -NH3(+) form. Analysis of FT-IR spectra of two-component, fish gelatin-chitosan film revealed the formation not only of hydrogen bonds within and between chains of polymers, but also of electrostatic interactions between -COO(-) of gelatin and -NH3(+) of chitosan. Modification with EDC provided cross-linking of composites of the film. New iso-peptide bonds formed between activated carboxylic acid groups of glutamic or aspartic acid residue of gelatin and amine groups of gelatin or/and chitosan.
Collapse
Affiliation(s)
- Hanna Staroszczyk
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | | | | | | | | |
Collapse
|
29
|
Whitney J, DeWitt M, Whited BM, Carswell W, Simon A, Rylander CG, Rylander MN. 3D viability imaging of tumor phantoms treated with single-walled carbon nanohorns and photothermal therapy. NANOTECHNOLOGY 2013; 24:275102. [PMID: 23780336 PMCID: PMC3786715 DOI: 10.1088/0957-4484/24/27/275102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A new image analysis method called the spatial phantom evaluation of cellular thermal response in layers (SPECTRL) is presented for assessing spatial viability response to nanoparticle enhanced photothermal therapy in tissue representative phantoms. Sodium alginate phantoms seeded with MDA-MB-231 breast cancer cells and single-walled nanohorns were laser irradiated with an ytterbium fiber laser at a wavelength of 1064 nm and irradiance of 3.8 W cm(-2) for 10-80 s. SPECTRL quantitatively assessed and correlated 3D viability with spatiotemporal temperature. Based on this analysis, kill and transition zones increased from 3.7 mm(3) and 13 mm(3) respectively to 44.5 mm(3) and 44.3 mm(3) as duration was increased from 10 to 80 s. SPECTRL provides a quantitative tool for measuring precise spatial treatment regions, providing information necessary to tailor therapy protocols.
Collapse
Affiliation(s)
- Jon Whitney
- Department of Mechanical Engineering, Virgina Tech., Blacksburg, VA 24061, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Piercy-Kotb SA, Mousa A, Al-Jallad HF, Myneni VD, Chicatun F, Nazhat SN, Kaartinen MT. Factor XIIIA transglutaminase expression and secretion by osteoblasts is regulated by extracellular matrix collagen and the MAP kinase signaling pathway. J Cell Physiol 2012; 227:2936-46. [DOI: 10.1002/jcp.23040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Hsieh J, Pan P. Proteomic profiling of microbial transglutaminase-induced polymerization of milk proteins. J Dairy Sci 2012; 95:580-9. [DOI: 10.3168/jds.2011-4773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/23/2011] [Indexed: 11/19/2022]
|
32
|
Staroszczyk H, Pielichowska J, Sztuka K, Stangret J, Kołodziejska I. Molecular and structural characteristics of cod gelatin films modified with EDC and TGase. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.047] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Monaghan M, Pandit A. RNA interference therapy via functionalized scaffolds. Adv Drug Deliv Rev 2011; 63:197-208. [PMID: 21241760 DOI: 10.1016/j.addr.2011.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/16/2010] [Accepted: 01/05/2011] [Indexed: 12/27/2022]
Abstract
Tissue engineering aims to provide structural and biomolecular cues to compromised tissues through scaffolds. An emerging biomolecular cue is that of RNA interference by which the expression of genes can be silenced through a potent endogenous pathway. Recombinant viral-based approaches in RNAi delivery exist; however non-viral strategies offer many opportunities to exploit this mechanism of regulation in a safer way. Current RNAi therapies in clinical trials are without a vector (naked) or have slightly modified structures. Modification of these molecules with efficient backbone moieties for improved stability and potency, protecting and buffering them with delivery vehicles, and using scaffolds as reservoirs of delivery is at the frontier of current research. However, to enable an efficient sustained therapeutic effect scaffolds have a potentially significant role to play. This review presents non-viral delivery of RNAi that have been attempted via tissue engineered scaffolds. For RNAi to have a clinical impact, it is imperative to evaluate optimal delivery systems to ensure that the efficacy of this promising technology can be maximized.
Collapse
Affiliation(s)
- Michael Monaghan
- Network of Excellence for Functional Biomaterials, National University of Ireland-Galway, Ireland
| | | |
Collapse
|
34
|
Biofabrication with Biopolymers and Enzymes: Potential for Constructing Scaffolds from Soft Matter. Int J Artif Organs 2011; 34:215-24. [DOI: 10.5301/ijao.2011.6406] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2010] [Indexed: 12/29/2022]
Abstract
Purpose Regenerative medicine will benefit from technologies capable of fabricating soft matter to have appropriate architectures and that provide the necessary physical, chemical and biological cues to recruit cells and guide their development. The goal of this report is to review an emerging set of biofabrication techniques and suggest how these techniques could be applied for the fabrication of scaffolds for tissue engineering. Methods Electrical potentials are applied to submerged electrodes to perform cathodic and anodic reactions that direct stimuli-responsive film-forming polysaccharides to assemble into hydrogel films. Standard methods are used to microfabricate electrode surfaces to allow the electrical signals to be applied with spatial and temporal control. The enzymes mushroom tyrosinase and microbial transglutaminase are used to catalyze macromolecular grafting and crosslinking of proteins. Results Electrodeposition of the polysaccharides chitosan and alginate allow hydrogel films to be formed in response to localized electrical signals. Co-deposition of various components (e.g., proteins, vesicles and cells), and subsequent electrochemical processing allow the physical, chemical and biological activities of these films to be tailored. Enzymatic processing allows for the generation of stimuli-responsive protein conjugates that can also be directed to assemble in response to imposed electrical signals. Further, enzyme-catalyzed crosslinking of gelatin allows replica molding of soft matter to create hydrogel films with topological structure. Conclusions Biofabrication with biological materials and mechanisms provides new approaches for soft matter construction. These methods may enable the formation of tissue engineering scaffolds with appropriate architectures, assembled cells, and spatially organized physical, chemical and biological cues.
Collapse
|
35
|
Yao L, Damodaran G, Nikolskaya N, Gorman AM, Windebank A, Pandit A. The effect of laminin peptide gradient in enzymatically cross-linked collagen scaffolds on neurite growth. J Biomed Mater Res A 2010; 92:484-92. [PMID: 19213056 DOI: 10.1002/jbm.a.32359] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Guided neurite growth is critical in both peripheral nervous system and central nervous system nerve regeneration. Scaffolds that provide structural and guidance cues for neuronal cells have a potential role in neural regeneration application. Type I collagen is suitable to be processed as an engineered scaffold for nerve regeneration because of its biological and structural properties. A few previous studies have shown that cross-linking of collagen scaffolds with microbial transglutaminase improves the mechanical strength and degradation properties of the scaffolds. It was shown that laminin 5 can regulate neurite outgrowth and extension. A motif (PPFLMLLKGSTR) in the human laminin 5 alpha 3 chain is crucial for both integrin alpha 3 beta 1 receptor binding and cell adhesion. In the present work, we studied the guidance effect of a laminin peptide (PPFLMLLKGSTR) gradient in collagen and cross-linked collagen scaffolds on neurite growth. Neurites of rat pheochromocytoma (PC12) cells showed a preferential growth toward the high laminin concentration level on the collagen scaffold, while the incorporation of laminin peptide in the scaffold did not influence neurite length of PC12 cells.
Collapse
Affiliation(s)
- Li Yao
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
36
|
Damodaran G, Collighan R, Griffin M, Navsaria H, Pandit A. Tailored laminin-332 alpha3 sequence is tethered through an enzymatic linker to a collagen scaffold to promote cellular adhesion. Acta Biomater 2009; 5:2441-50. [PMID: 19364681 DOI: 10.1016/j.actbio.2009.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/12/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
Abstract
Surface modification techniques have been used to develop biomimetic scaffolds by incorporating cell adhesion peptides, which facilitates cell adhesion, migration and proliferation. In this study, we evaluated the cell adhesion properties of a tailored laminin-332 alpha3 chain tethered to a type I collagen scaffold using microbial transglutaminase (mTGase) by incorporating transglutaminase substrate peptide sequences containing either glutamine (peptide A: PPFLMLLKGSTREAQQIVM) or lysine (peptide B: PPFLMLLKGSTRKKKKG). The degree of cross-linking was studied by amino acid analysis following proteolytic digestion and the structural changes in the modified scaffold further investigated using Fourier transform infrared spectroscopy and atomic force microscopy. Fibroblasts were used to evaluate the cellular behaviour of the functionalized collagen scaffold. mTGase supports cell growth but tethering of peptide A and peptide B to the mTGase cross-linked collagen scaffold caused a significant increase in cell proliferation when compared with native and mTGase cross-linked collagen scaffolds. Both peptides enabled cell-spreading, attachment and normal actin cytoskeleton organization with slight increase in the cell proliferation was observed in peptide A when compared with the peptide B and mTGase cross-linked scaffold. An increase in the amount of epsilon(gamma-glutamyl) lysine isopeptide was observed in peptide A conjugated scaffolds when compared with peptide B conjugated scaffolds, mTGase cross-linked scaffold without peptide. Changes in D-spacing were observed in the cross-linked scaffolds with tethered peptides. These results demonstrate that mTGase can play a bifunctional role in both conjugation of the glutamine and lysine containing peptide sequences and also in the cross-linking of the collagen scaffold, thus providing a suitable substrate for cell growth.
Collapse
|
37
|
Spurlin TA, Bhadriraju K, Chung KH, Tona A, Plant AL. The treatment of collagen fibrils by tissue transglutaminase to promote vascular smooth muscle cell contractile signaling. Biomaterials 2009; 30:5486-96. [PMID: 19640581 DOI: 10.1016/j.biomaterials.2009.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 07/05/2009] [Indexed: 12/21/2022]
Abstract
The enzyme tissue transglutaminase 2 (TG2) appears to play an important role in several physiological processes such as wound healing, the progression of cancer and of vascular disease. Additionally, TG2 has been proposed as a means of stabilizing collagen extracellular matrix (ECM) scaffolds for tissue engineering applications. In this report, we examined the effect of TG2 treatment on the mechanical properties of the ECM, and associated cell responses. Using a model ECM of fibrillar collagen, we quantitatively examined vascular smooth muscle cell (vSMC) response to untreated, or TG2 treated collagen. We show that cells respond to TG2 treated collagen with increased spreading, an increase in contractile response as indicated by elevated F-actin polymerization and myosin light chain phosphorylation, and increased proliferation, without apparent changes in integrin specificity or matrix topography. Comparative atomic force microscopy loading studies indicate that TG2 treated fibrils are 3 times more resistant to shearing force from an AFM tip than untreated fibrils. The data suggest that TG2 treatment of collagen increases matrix mechanical stiffness, which apparently alters the contractile and proliferative response of vSMC.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Endothelial Cells/drug effects
- Endothelial Cells/physiology
- Fibrillar Collagens/chemistry
- GTP-Binding Proteins
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Protein Glutamine gamma Glutamyltransferase 2
- Rats
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tissue Engineering/methods
- Transglutaminases/administration & dosage
- Transglutaminases/chemistry
Collapse
Affiliation(s)
- Tighe A Spurlin
- Biochemical Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
| | | | | | | | | |
Collapse
|
38
|
Damodaran G, Collighan R, Griffin M, Pandit A. Tethering a laminin peptide to a crosslinked collagen scaffold for biofunctionality. J Biomed Mater Res A 2009; 89:1001-10. [PMID: 18478551 DOI: 10.1002/jbm.a.32045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cell adhesion peptide regulates various cellular functions like proliferation, attachment, and spreading. The cellular response to laminin peptide (PPFLMLLKGSTR), a motif of laminin-5 alpha3 chain, tethered to type I collagen, crosslinked using microbial transglutaminase (mTGase) was investigated. mTGase is an enzyme that initiates crosslinking by reacting with the glutamine and lysine residues on the collagen fibers stabilizing the molecular structure. In this study that tethering of the laminin peptide in a mTGase crosslinked collagen scaffold enhanced cell proliferation and attachment. Laminin peptide tethered crosslinked scaffold showed unaltered cell morphology of 3T3 fibroblasts when compared with collagen and crosslinked scaffold. The triple helical structure of collagen remained unaltered by the addition of laminin peptide. In addition a dose-dependent affinity of the laminin peptide towards collagen was seen. The degree of crosslinking was measured by amino acid analysis, differential scanning calorimeter and fourier transform infrared spectroscopy. Increased crosslinking was observed in mTGase crosslinked group. mTGase crosslinking showed higher shrinkage temperature. There was alteration in the fibrillar architecture due to the crosslinking activity of mTGase. Hence, the use of enzyme-mediated linking shows promise in tethering cell adhesive peptides through biodegradable scaffolds.
Collapse
Affiliation(s)
- Gopinath Damodaran
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
39
|
Garcia Y, Hemantkumar N, Collighan R, Griffin M, Rodriguez-Cabello JC, Pandit A. In vitro characterization of a collagen scaffold enzymatically cross-linked with a tailored elastin-like polymer. Tissue Eng Part A 2009; 15:887-99. [PMID: 18976154 DOI: 10.1089/ten.tea.2008.0104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Collagen, the main structural component of the extracellular matrix (ECM), provides tensile stiffness to different structures and organs against rupture. However, collagen tissue-engineered implants are hereto still lacking in mechanical strength. Attempts to create stiffer scaffolds have resulted in increased brittleness of the material, reducing the versatility of the original component. The hypothesis behind this research is that the introduction of an elastic element in the scaffold will enhance the mechanical properties of the collagen-based scaffolds, as elastin does in the ECM to prevent irreversible deformation. In this study, an elastin-like polymer (ELP) designed and synthesized using recombinant DNA methodology is used with the view to providing increased proteolytic resistance and increased functionality to the scaffolds by carrying specific sequences for microbial transglutaminase cross-linking, endothelial cell adhesion, and drug delivery. Evaluation of the effects that cross-linking ELP-collagen has on the physicochemical properties of the scaffold such as porosity, presence of cross-linking, thermal behavior, and mechanical strength demonstrated that the introduction of enzymatically resistant covalent bonds between collagen and ELP increases the mechanical strength of the scaffolds in a dose-dependent manner without significantly affecting the porosity or thermal properties of the original scaffold. Importantly, the scaffolds also showed selective behavior, in a dose (ELP)-dependent manner toward human umbilical vein endothelial cells and smooth muscle cells when compared to fibroblasts.
Collapse
Affiliation(s)
- Yolanda Garcia
- Department of Anatomy, National University of Ireland Galway, Galway, Ireland.
| | | | | | | | | | | |
Collapse
|
40
|
Henry JA, Pandit A. Perspective on biomaterials used in the surgical treatment of morbid obesity. Obes Rev 2009; 10:324-32. [PMID: 19243516 DOI: 10.1111/j.1467-789x.2008.00551.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Morbid obesity is defined as having a body mass index greater than or equal to 40.0 kg m(-2), or 37.0 kg m(-2) with comorbidities. Bariatric surgery remains the most effective treatment for morbid obesity. Bariatric procedures such as sleeve gastrectomy, vertical banded gastroplasty and adjustable gastric banding all generate excess body-weight loss typically over 3-5 years. The biomaterials used during these procedures, namely silicone, polypropylene, expanded polytetrafluoroethylene and titanium, are all non-degradable biomaterials. Hence, their presence in vivo exceeds the functional requirement of an implant to treat morbid obesity. Accordingly, research into non-invasive and reversible surgical procedures has increased, particularly in light of the dramatic increase in paediatric obesity. Tissue engineering is an alternative approach to treat morbid obesity, as it incorporates both engineering and biological principles into the design and development of an implant to surgically treat morbid obesity. It is hypothesized that a biodegradable polymer to treat morbid obesity could be developed to effectively promote excess weight loss. The aim of this review is to discuss morbid obesity with regards to its aetiology, prevalence and current modalities of treatment. Specifically, the shortcomings of the biomaterials currently used to surgically treat morbid obesity shall be reviewed, and alternative biomaterials shall be proposed.
Collapse
Affiliation(s)
- J A Henry
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
41
|
Transglutaminase 2 cross-linking of matrix proteins: biological significance and medical applications. Amino Acids 2008; 36:659-70. [PMID: 18982407 DOI: 10.1007/s00726-008-0190-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 10/07/2008] [Indexed: 12/22/2022]
Abstract
This review summarises the functions of the enzyme tissue transglutaminase (TG2) in the extracellular matrix (ECM) both as a matrix stabiliser through its protein cross-linking activity and as an important cell adhesion protein involved in cell survival. The contribution of extracellular TG2 to the pathology of important diseases such as cancer and fibrosis are discussed with a view to the potential importance of TG2 as a therapeutic target. The medical applications of TG2 are further expanded by detailing the use of transglutaminase cross-linking in the development of novel biocompatible biomaterials for use in soft and hard tissue repair.
Collapse
|
42
|
van den Akker J, Pistea A, Bakker ENTP, VanBavel E. Decomposition cross-correlation for analysis of collagen matrix deformation by single smooth muscle cells. Med Biol Eng Comput 2008; 46:443-50. [PMID: 18324432 PMCID: PMC2329731 DOI: 10.1007/s11517-008-0325-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 02/18/2008] [Indexed: 11/26/2022]
Abstract
Microvascular remodeling is known to depend on cellular interactions with matrix tissue. However, it is difficult to study the role of specific cells or matrix elements in an in vivo setting. The aim of this study is to develop an automated technique that can be employed to obtain and analyze local collagen matrix remodeling by single smooth muscle cells. We combined a motorized microscopic setup and time-lapse video microscopy with a new cross-correlation based image analysis algorithm to enable automated recording of cell-induced matrix reorganization. This method rendered 60–90 single cell studies per experiment, for which collagen deformation over time could be automatically derived. Thus, the current setup offers a tool to systematically study different components active in matrix remodeling.
Collapse
Affiliation(s)
- Jeroen van den Akker
- Department of Medical Physics, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Adrian Pistea
- Department of Medical Physics, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Erik N. T. P. Bakker
- Department of Medical Physics, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Ed VanBavel
- Department of Medical Physics, Academic Medical Center, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
43
|
Chan JCY, Burugapalli K, Naik H, Kelly JL, Pandit A. Amine Functionalization of Cholecyst-Derived Extracellular Matrix with Generation 1 PAMAM Dendrimer. Biomacromolecules 2008; 9:528-36. [DOI: 10.1021/bm701055k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jeffrey C. Y. Chan
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Republic of Ireland, and Department of Plastic and Reconstructive Surgery, University Hospital Galway, Galway, Republic of Ireland
| | - Krishna Burugapalli
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Republic of Ireland, and Department of Plastic and Reconstructive Surgery, University Hospital Galway, Galway, Republic of Ireland
| | - Hemantkumar Naik
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Republic of Ireland, and Department of Plastic and Reconstructive Surgery, University Hospital Galway, Galway, Republic of Ireland
| | - John L. Kelly
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Republic of Ireland, and Department of Plastic and Reconstructive Surgery, University Hospital Galway, Galway, Republic of Ireland
| | - Abhay Pandit
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Republic of Ireland, and Department of Plastic and Reconstructive Surgery, University Hospital Galway, Galway, Republic of Ireland
| |
Collapse
|