1
|
Raju G, Nayak S, Acharya N, Sunder M, Kistenev Y, Mazumder N. Exploring the future of regenerative medicine: Unveiling the potential of optical microscopy for structural and functional imaging of stem cells. JOURNAL OF BIOPHOTONICS 2024; 17:e202300360. [PMID: 38168892 DOI: 10.1002/jbio.202300360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Regenerative medicine, which utilizes stem cells for tissue and organ repair, holds immense promise in healthcare. A comprehensive understanding of stem cell characteristics is crucial to unlock their potential. This study explores the pivotal role of optical microscopy in advancing regenerative medicine as a potent tool for stem cell research. Advanced optical microscopy techniques enable an in-depth examination of stem cell behavior, morphology, and functionality. The review encompasses current optical microscopy, elucidating its capabilities and constraints in stem cell imaging, while also shedding light on emerging technologies for improved stem cell visualization. Optical microscopy, complemented by techniques like fluorescence and multiphoton imaging, enhances our comprehension of stem cell dynamics. The introduction of label-free imaging facilitates noninvasive, real-time stem cell monitoring without external dyes or markers. By pushing the boundaries of optical microscopy, researchers reveal the intricate cellular mechanisms underpinning regenerative processes, thereby advancing more effective therapeutic strategies. The current study not only outlines the future of regenerative medicine but also underscores the pivotal role of optical microscopy in both structural and functional stem cell imaging.
Collapse
Affiliation(s)
- Gagan Raju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Smitha Nayak
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neha Acharya
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mridula Sunder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Yury Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Walther AR, Ditzel N, Kassem M, Andersen MØ, Hedegaard MAB. In vivo non-invasive monitoring of tissue development in 3D printed subcutaneous bone scaffolds using fibre-optic Raman spectroscopy. BIOMATERIALS AND BIOSYSTEMS 2022; 7:100059. [PMID: 36824488 PMCID: PMC9934492 DOI: 10.1016/j.bbiosy.2022.100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022] Open
Abstract
The development of novel biomaterials for regenerative therapy relies on the ability to assess tissue development, quality, and similarity with native tissue types in in vivo experiments. Non-invasive imaging modalities such as X-ray computed tomography offer high spatial resolution but limited biochemical information while histology and biochemical assays are destructive. Raman spectroscopy is a non-invasive, label-free and non-destructive technique widely applied for biochemical characterization. Here we demonstrate the use of fibre-optic Raman spectroscopy for in vivo quantitative monitoring of tissue development in subcutaneous calcium phosphate scaffolds in mice over 16 weeks. Raman spectroscopy was able to quantify the time dependency of different tissue components related to the presence, absence, and quantity of mesenchymal stem cells. Scaffolds seeded with stem cells produced 3-5 times higher amount of collagen-rich extracellular matrix after 16 weeks implantation compared to scaffolds without. These however, showed a 2.5 times higher amount of lipid-rich tissue compared to implants with stem cells. Ex vivo micro-computed tomography and histology showed stem cell mediated collagen and bone development. Histological measures of collagen correlated well with Raman derived quantifications (correlation coefficient in vivo 0.74, ex vivo 0.93). In the absence of stem cells, the scaffolds were largely occupied by adipocytes. The technique developed here could potentially be adapted for a range of small animal experiments for assessing tissue engineering strategies at the biochemical level.
Collapse
Affiliation(s)
- Anders Runge Walther
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Nicholas Ditzel
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Moustapha Kassem
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000 Odense, Denmark
| | - Morten Østergaard Andersen
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Martin Aage Barsøe Hedegaard
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
3
|
McIvor MJ, Sharma PK, Birt CE, McDowell H, Wilson S, McKillop S, Acheson JG, Boyd AR, Meenan BJ. Direct monitoring of single-cell response to biomaterials by Raman spectroscopy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:148. [PMID: 34862915 PMCID: PMC8643295 DOI: 10.1007/s10856-021-06624-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
There is continued focus on the development of new biomaterials and associated biological testing methods needed to reduce the time taken for their entry to clinical use. The application of Raman spectroscopy to the study of individual cells that have been in contact with biomaterials offers enhanced in vitro information in a potentially non-destructive testing regime. The work presented here reports the Raman spectral analysis of discreet U-2 OS bone cells after exposure to hydroxyapatite (HA) coated titanium (Ti) substrates in both the as-deposited and thermally annealed states. These data show that cells that were in contact with the bioactive HA surface for 7 days had spectral markers similar to those cultured on the Ti substrate control for the same period. However, the spectral features for those cells that were in contact with the annealed HA surface had indicators of significant differentiation at day 21 while cells on the as-deposited surface did not show these Raman changes until day 28. The cells adhered to pristine Ti control surface showed no spectral changes at any of the timepoints studied. The validity of these spectroscopic results has been confirmed using data from standard in vitro cell viability, adhesion, and proliferation assays over the same 28-day culture period. In this case, cell maturation was evidenced by the formation of natural bone apatite, which precipitated intracellularly for cells exposed to both types of HA-coated Ti at 21 and 28 days, respectively. The properties of the intracellular apatite were markedly different from that of the synthetic HA used to coat the Ti substrate with an average particle size of 230 nm, a crystalline-like shape and Ca/P ratio of 1.63 ± 0.5 as determined by SEM-EDX analysis. By comparison, the synthetic HA particles used as a control had an average size of 372 nm and were more-rounded in shape with a Ca/P ratio of 0.8 by XPS analysis and 1.28 by SEM-EDX analysis. This study shows that Raman spectroscopy can be employed to monitor single U-2 OS cell response to biomaterials that promote cell maturation towards de novo bone thereby offering a label-free in vitro testing method that allows for non-destructive analyses.
Collapse
Affiliation(s)
- Mary Josephine McIvor
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK.
| | - Preetam K Sharma
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
- Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, England, UK
| | - Catherine E Birt
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - Hayley McDowell
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - Shannon Wilson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - Stephen McKillop
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - Jonathan G Acheson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - Adrian R Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - Brian J Meenan
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster, Shore Road, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| |
Collapse
|
4
|
Zhang Q, Ye M, Wang L, Jiang D, Yao S, Lin D, Chen Y, Feng S, Yang T, Hu J. Characterization of Drug Resistance in Chronic Myeloid Leukemia Cells Based on Laser Tweezers Raman Spectroscopy. APPLIED SPECTROSCOPY 2021; 75:1296-1304. [PMID: 34076539 DOI: 10.1177/00037028211024581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multidrug resistance is highly associated with poor prognosis of chronic myeloid leukemia. This work aims to explore whether the laser tweezers Raman spectroscopy (LTRS) could be practical in separating adriamycin-resistant chronic myeloid leukemia cells K562/adriamycin from its parental cells K562, and to explore the potential mechanisms. Detection of LTRS initially reflected the spectral differences caused by chemoresistance including bands assigned to carbohydrates, amino acid, protein, lipids, and nucleic acid. In addition, principal components analysis as well as the classification and regression trees algorithms showed that the specificity and sensitivity were above 90%. Moreover, the band data-based classification and regression tree model and receiver operating characteristic curve further determined some important bands and band intensity ratios to be reliable indexes in discriminating K562 chemoresistance status. Finally, we highlighted three metabolism pathways correlated with chemoresistance. This work demonstrates that the label-free LTRS analysis combined with multivariate statistical analyses have great potential to be a novel analytical strategy at the single-cell level for rapid evaluation of the chemoresistance status of K562 cells.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Laboratory Medicine, 74551Fujian Medical University, Fuzhou, China
| | - Minlu Ye
- Department of Laboratory Medicine, 74551Fujian Medical University, Fuzhou, China
| | - Lingyan Wang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, 74551Fujian Medical University Union Hospital, Fuzhou, China
| | - Dongmei Jiang
- Department of Medical Imaging Technology, 74551Fujian Medical University, Fuzhou, China
| | - Shuting Yao
- Department of Medical Imaging Technology, 74551Fujian Medical University, Fuzhou, China
| | - Donghong Lin
- Department of Laboratory Medicine, 74551Fujian Medical University, Fuzhou, China
| | - Yang Chen
- Department of Laboratory Medicine, 74551Fujian Medical University, Fuzhou, China
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, 12425Fujian Normal University, Fuzhou, China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, 74551Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianda Hu
- Department of Laboratory Medicine, 74551Fujian Medical University, Fuzhou, China
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, 74551Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
5
|
Kulkarni G, Guha Ray P, Das S, Biswas S, Dhara S, Das S. Raman spectroscopy assisted biochemical evaluation of L929 fibroblast cells on differentially crosslinked gelatin hydrogels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119760. [PMID: 33892247 DOI: 10.1016/j.saa.2021.119760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Biochemical evaluation of cell-matrix interaction using conventional labelling techniques often possesses limitations due to dye entrapment. In contrast, Raman spectroscopy guided approach offers label-free determination of cell-matrix biochemistry. Herein, gelatin (Gel) matrices modified with 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/ N-Hydroxysuccinimide (EDC/NHS) and glutaraldehyde (GTA) was used as standards for comparative evaluation. Raman spectroscopy was deployed as a label-free approach to investigate interaction of cells with Gel hydrogels. Raman-based approach assisted in evaluation of cell-matrix interactions by identifying key biomolecular signatures retrospecting the fact that L929 fibroblast cells portrayed excellent growth and proliferation kinetics in crosslinked Gel as compared to its bare counterpart. EDC crosslinked hydrogels exhibited superior cell proliferation than its GTA counterparts. Cell proliferation on differentially crosslinked gel was also confirmed using standard MTT Assay and Rhodamine-DAPI staining thus corroborating the fact that Raman spectroscopy can be deployed as a superior label-free alternative towards real-time determination of cell proliferation and growth.
Collapse
Affiliation(s)
- Gaurav Kulkarni
- School of Medical Science & Technology, IIT Kharagpur, West Bengal 721302, India
| | - Preetam Guha Ray
- School of Medical Science & Technology, IIT Kharagpur, West Bengal 721302, India
| | - Shreyasi Das
- School of Nano Science & Technology, IIT Kharagpur, West Bengal 721302, India
| | - Souvik Biswas
- School of Medical Science & Technology, IIT Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science & Technology, IIT Kharagpur, West Bengal 721302, India
| | - Soumen Das
- School of Medical Science & Technology, IIT Kharagpur, West Bengal 721302, India.
| |
Collapse
|
6
|
Geng J, Zhang W, Chen C, Zhang H, Zhou A, Huang Y. Tracking the Differentiation Status of Human Neural Stem Cells through Label-Free Raman Spectroscopy and Machine Learning-Based Analysis. Anal Chem 2021; 93:10453-10461. [PMID: 34282890 DOI: 10.1021/acs.analchem.0c04941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to noninvasively monitor stem cells' differentiation is important to stem cell studies. Raman spectroscopy is a non-harmful imaging approach that acquires the cellular biochemical signatures. Herein, we report the first use of label-free Raman spectroscopy to characterize the gradual change during the differentiation process of live human neural stem cells (NSCs) in the in vitro cultures. Raman spectra of 600-1800 cm-1 were measured with human NSC cultures from the undifferentiated stage (NSC-predominant) to the highly differentiated one (neuron-predominant) and subsequently analyzed using various mathematical methods. Hierarchical cluster analysis distinguished two cell types (NSCs and neurons) through the spectra. The subsequently derived differentiation rate matched that measured by immunocytochemistry. The key spectral biomarkers were identified by time-dependent trend analysis and principal component analysis. Furthermore, through machine learning-based analysis, a set of eight spectral data points were found to be highly accurate in classifying cell types and predicting the differentiation rate. The predictive accuracy was the highest using the artificial neural network (ANN) and slightly lowered using the logistic regression model and linear discriminant analysis. In conclusion, label-free Raman spectroscopy with the aid of machine learning analysis can provide the noninvasive classification of cell types at the single-cell level and thus accurately track the human NSC differentiation. A set of eight spectral data points combined with the ANN method were found to be the most efficient and accurate. Establishing this non-harmful and efficient strategy will shed light on the in vivo and clinical studies of NSCs.
Collapse
Affiliation(s)
- Junnan Geng
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, Utah 84322, United States
| | - Wei Zhang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, Utah 84322, United States
| | - Cheng Chen
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, Utah 84322, United States
| | - Han Zhang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, Utah 84322, United States
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, Utah 84322, United States
| | - Yu Huang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, ENGR 402, Logan, Utah 84322, United States
| |
Collapse
|
7
|
Sharma A, Goring A, Staines KA, Emery RJ, Pitsillides AA, Oreffo RO, Mahajan S, Clarkin CE. Raman spectroscopy links differentiating osteoblast matrix signatures to pro-angiogenic potential. Matrix Biol Plus 2020; 5:100018. [PMID: 33543015 PMCID: PMC7852201 DOI: 10.1016/j.mbplus.2019.100018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 01/25/2023] Open
Abstract
Mineralization of bone is achieved by the sequential maturation of the immature amorphous calcium phase to mature hydroxyapatite (HA) and is central in the process of bone development and repair. To study normal and dysregulated mineralization in vitro, substrates are often coated with poly-l-lysine (PLL) which facilitates cell attachment. This study has used Raman spectroscopy to investigate the effect of PLL coating on osteoblast (OB) matrix composition during differentiation, with a focus on collagen specific proline and hydroxyproline and precursors of HA. Deconvolution analysis of murine derived long bone OB Raman spectra revealed collagen species were 4.01-fold higher in OBs grown on PLL. Further, an increase of 1.91-fold in immature mineral species (amorphous calcium phosphate) was coupled with a 9.32-fold reduction in mature mineral species (carbonated apatite) on PLL versus controls. These unique low mineral signatures identified in OBs were linked with reduced alkaline phosphatase enzymatic activity, reduced Alizarin Red staining and altered osteogenic gene expression. The promotion of immature mineral species and restriction of mature mineral species of OB grown on PLL were linked to increased cell viability and pro-angiogenic vascular endothelial growth factor (VEGF) production. These results demonstrate the utility of Raman spectroscopy to link distinct matrix signatures with OB maturation and VEGF release. Importantly, Raman spectroscopy could provide a label-free approach to clinically assess the angiogenic potential of bone during fracture repair or degenerative bone loss.
Collapse
Key Words
- ACP, amorphous calcium phosphate
- ALP, tissue non-specific alkaline phosphatase
- CAP, carbonated apatite
- CCEC, collagenase-collagenase-EDTA-collagenase
- ECM, extracellular matrix
- HA, hydroxyapatite
- HBSS, Hank's balanced salt solution
- MV, matrix vesicles
- OB, osteoblast
- OCP, octacalcium phosphate
- Osteoblast mineralization
- PCA, principle component analysis
- PLL, poly-l-lysine
- Poly-l-lysine
- RT-qPCR, reverse transcription-quantiative PCR
- Raman spectroscopy
- VEGF
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Aikta Sharma
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| | - Alice Goring
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| | - Katherine A. Staines
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh, EH11 4BN, United Kingdom of Great Britain and Northern Ireland
| | - Roger J.H. Emery
- Department of Surgery and Cancer, Faculty of Medicine, St Mary's Campus, Imperial College London, London, W2 1PG, United Kingdom of Great Britain and Northern Ireland
| | - Andrew A. Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, United Kingdom of Great Britain and Northern Ireland
| | - Richard O.C. Oreffo
- Centre for Human Development, Stem Cell and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - Sumeet Mahajan
- School of Chemistry and Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| | - Claire E. Clarkin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
8
|
Quality Analysis of Minerals Formed by Jaw Periosteal Cells under Different Culture Conditions. Int J Mol Sci 2019; 20:ijms20174193. [PMID: 31461878 PMCID: PMC6747376 DOI: 10.3390/ijms20174193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Previously, we detected a higher degree of mineralization in fetal calf serum (FCS) compared to serum-free cultured jaw periosteum derived osteoprogenitor cells (JPCs). By Raman spectroscopy, we detected an earlier formation of mineralized extracellular matrix (ECM) of higher quality under serum-free media conditions. However, mineralization potential remained too low. In the present study, we aimed to investigate the biochemical composition and subsequent biomechanical properties of the JPC-formed ECM and minerals under human platelet lysate (hPL) and FCS supplementation. JPCs were isolated (n = 4 donors) and expanded under FCS conditions and used in passage five for osteogenic induction under both, FCS and hPL media supplementation. Raman spectroscopy and Alizarin Red/von Kossa staining were employed for biochemical composition analyses and for visualization and quantification of mineralization. Osteocalcin gene expression was analyzed by quantitative PCR. Biomechanical properties were assessed by using atomic force microscopy (AFM). Raman spectroscopic measurements showed significantly higher (p < 0.001) phosphate to protein ratios and in the tendency, lower carbonate to phosphate ratios in osteogenically induced JPCs under hPL in comparison to FCS culturing. Furthermore, higher crystal sizes were detected under hPL culturing of the cells. With respect to the ECM, significantly higher ratios of the precursor protein proline to hydroxyproline were detected in hPL-cultured JPC monolayers (p < 0.001). Additionally, significantly higher levels (p < 0.001) of collagen cross-linking were calculated, indicating a higher degree of collagen maturation in hPL-cultured JPCs. By atomic force microscopy, a significant increase in ECM stiffness (p < 0.001) of FCS cultured JPC monolayers was observed. The reverse effect was measured for the JPC formed precipitates/minerals. Under hPL supplementation, JPCs formed minerals of significantly higher stiffness (p < 0.001) when compared to the FCS setting. This study demonstrates that hPL culturing of JPCs leads to the formation of an anorganic material of superior quality in terms of biochemical composition and mechanical properties.
Collapse
|
9
|
Surmacki JM, Woodhams BJ, Haslehurst A, Ponder BAJ, Bohndiek SE. Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells. Sci Rep 2018; 8:12604. [PMID: 30135442 PMCID: PMC6105656 DOI: 10.1038/s41598-018-30407-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/20/2018] [Indexed: 12/25/2022] Open
Abstract
Live cell Raman micro-spectroscopy is emerging as a promising bioanalytical technique for label-free discrimination of a range of different cell types (e.g. cancer cells and fibroblasts) and behaviors (e.g. apoptosis). The aim of this study was to determine whether confocal Raman micro-spectroscopy shows sufficient sensitivity and specificity for identification of primary human bronchial epithelial cells (HBECs) to be used for live cell biological studies in vitro. We first compared cell preparation substrates and media, considering their influence on lung cell proliferation and Raman spectra, as well as methods for data acquisition, using different wavelengths (488 nm, 785 nm) and scan protocols (line, area). Evaluating these parameters using human lung cancer (A549) and fibroblast (MRC5) cell lines confirmed that line-scan data acquisition at 785 nm using complete cell media on a quartz substrate gave optimal performance. We then applied our protocol to acquisition of data from primary human bronchial epithelial cells (HBEC) derived from three independent sources, revealing an average sensitivity for different cell types of 96.3% and specificity of 95.2%. These results suggest that Raman micro-spectroscopy is suitable for delineating primary HBEC cell cultures, which in future could be used for identifying different lung cell types within co-cultures and studying the process of early carcinogenesis in lung cell culture.
Collapse
Affiliation(s)
- Jakub M Surmacki
- Department of Physics, University of Cambridge, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - Benjamin J Woodhams
- Department of Physics, University of Cambridge, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - Alexandria Haslehurst
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - Bruce A J Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom.
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom.
| |
Collapse
|
10
|
Ember KJI, Hoeve MA, McAughtrie SL, Bergholt MS, Dwyer BJ, Stevens MM, Faulds K, Forbes SJ, Campbell CJ. Raman spectroscopy and regenerative medicine: a review. NPJ Regen Med 2017; 2:12. [PMID: 29302348 PMCID: PMC5665621 DOI: 10.1038/s41536-017-0014-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/22/2023] Open
Abstract
The field of regenerative medicine spans a wide area of the biomedical landscape-from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques. A versatile, non-invasive, non-destructive technique for biochemical analysis would be invaluable for the study of regeneration; and Raman spectroscopy is a potential solution. Raman spectroscopy is an analytical method by which chemical data are obtained through the inelastic scattering of light. Since its discovery in the 1920s, physicists and chemists have used Raman scattering to investigate the chemical composition of a vast range of both liquid and solid materials. However, only in the last two decades has this form of spectroscopy been employed in biomedical research. Particularly relevant to regenerative medicine are recent studies illustrating its ability to characterise and discriminate between healthy and disease states in cells, tissue biopsies and in patients. This review will briefly outline the principles behind Raman spectroscopy and its variants, describe key examples of its applications to biomedicine, and consider areas of regenerative medicine that would benefit from this non-invasive bioanalytical tool.
Collapse
Affiliation(s)
- Katherine J. I. Ember
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Marieke A. Hoeve
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Sarah L. McAughtrie
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
| | - Mads S. Bergholt
- 0000 0001 2113 8111grid.7445.2Department of Materials, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Benjamin J. Dwyer
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Molly M. Stevens
- 0000 0001 2113 8111grid.7445.2Department of Materials, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Department of Bioengineering, Imperial College London, London, SW7 2AZ UK
- 0000 0001 2113 8111grid.7445.2Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Karen Faulds
- 0000000121138138grid.11984.35Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Building, 99 George Street, Glasgow, G1 1RD UK
| | - Stuart J. Forbes
- 0000 0004 1936 7988grid.4305.2MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Colin J. Campbell
- 0000 0004 1936 7988grid.4305.2School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ UK
| |
Collapse
|
11
|
Leferink AM, van Blitterswijk CA, Moroni L. Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for In Vitro Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:265-83. [PMID: 26825610 DOI: 10.1089/ten.teb.2015.0340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the field of tissue engineering, there is a need for methods that allow assessing the performance of tissue-engineered constructs noninvasively in vitro and in vivo. To date, histological analysis is the golden standard to retrieve information on tissue growth, cellular distribution, and cell fate on tissue-engineered constructs after in vitro cell culture or on explanted specimens after in vivo applications. Yet, many advances have been made to optimize imaging techniques for monitoring tissue-engineered constructs with a sub-mm or μm resolution. Many imaging modalities have first been developed for clinical applications, in which a high penetration depth has been often more important than lateral resolution. In this study, we have reviewed the current state of the art in several imaging approaches that have shown to be promising in monitoring cell fate and tissue growth upon in vitro culture. Depending on the aimed tissue type and scaffold properties, some imaging methods are more applicable than others. Optical methods are mostly suited for transparent materials such as hydrogels, whereas magnetic resonance-based methods are mostly applied to obtain contrast between hard and soft tissues regardless of their transparency. Overall, this review shows that the field of imaging in scaffold-based tissue engineering is developing at a fast pace and has the potential to overcome the limitations of destructive endpoint analysis.
Collapse
Affiliation(s)
- Anne M Leferink
- 1 Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede, The Netherlands .,2 Department of Complex Tissue Regeneration, Maastricht University , Maastricht, The Netherlands .,3 BIOS/Lab-on-a-chip Group, MIRA Institute, University of Twente , Enschede, The Netherlands
| | - Clemens A van Blitterswijk
- 1 Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede, The Netherlands .,2 Department of Complex Tissue Regeneration, Maastricht University , Maastricht, The Netherlands
| | - Lorenzo Moroni
- 1 Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede, The Netherlands .,2 Department of Complex Tissue Regeneration, Maastricht University , Maastricht, The Netherlands
| |
Collapse
|
12
|
Bai H, Li H, Han Z, Zhang C, Zhao J, Miao C, Yan S, Mao A, Zhao H, Han Z. Label-free assessment of replicative senescence in mesenchymal stem cells by Raman microspectroscopy. BIOMEDICAL OPTICS EXPRESS 2015; 6:4493-500. [PMID: 26601012 PMCID: PMC4646556 DOI: 10.1364/boe.6.004493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 05/14/2023]
Abstract
Here, Raman microspectroscopy was employed to assess replicative senescence of mesenchymal stem cells (MSC). A regular spectral change related to the cell senescence was found in the ratio of two peaks at 1157 cm(-1) and 1174 cm(-1), which are assigned to C-C, C-N stretching vibrations in proteins and C-H bending vibrations in tyrosine and phenylalanine, respectively. With the cell aging, the ratio I1157 / I1174 exhibited a monotonic decline and showed small standard deviations, so that it can statistically distinguish between cells having slight changes in terms of aging. We propose that I1157 / I1174 can act as a characteristic spectral signature for label-free assessment of MSC senescence.
Collapse
Affiliation(s)
- Hua Bai
- College of Electronic and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Haiyu Li
- College of Electronic and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Zhibo Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ;
| | - Cheng Zhang
- College of Electronic and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Junfa Zhao
- College of Electronic and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Changyun Miao
- College of Electronic and Information Engineering, Tianjin Polytechnic University, Tianjin 300387, China ;
| | - Shulin Yan
- National Engineering Research Center of Cell Products / AmCellGene Co. Ltd, Tianjin 300457, China
| | - Aibin Mao
- National Engineering Research Center of Cell Products / AmCellGene Co. Ltd, Tianjin 300457, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China ; National Engineering Research Center of Cell Products / AmCellGene Co. Ltd, Tianjin 300457, China ;
| |
Collapse
|
13
|
Secondary ion mass spectrometry and Raman spectroscopy for tissue engineering applications. Curr Opin Biotechnol 2014; 31:108-16. [PMID: 25462628 DOI: 10.1016/j.copbio.2014.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 12/28/2022]
Abstract
Identifying the matrix properties that permit directing stem cell fate is crucial for expanding desired cell lineages ex vivo for disease treatment. Such efforts require knowledge of matrix surface chemistry and the cell responses they elicit. Recent progress in analyzing biomaterial composition and identifying cell phenotype with two label-free chemical imaging techniques, TOF-SIMS and Raman spectroscopy are presented. TOF-SIMS is becoming indispensable for the surface characterization of biomaterial scaffolds. Developments in TOF-SIMS data analysis enable correlating surface chemistry with biological response. Advances in the interpretation of Raman spectra permit identifying the fate decisions of individual, living cells with location specificity. Here we highlight this progress and discuss further improvements that would facilitate efforts to develop artificial scaffolds for tissue regeneration.
Collapse
|
14
|
SANTANDER S, ALCAINE C, LYAHYAI J, PÉREZ MA, RODELLAR C, DOBLARÉ M, OCHOA I. In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants. Dent Mater J 2014; 33:305-12. [DOI: 10.4012/dmj.2012-015-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Brauchle E, Schenke-Layland K. Raman spectroscopy in biomedicine - non-invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol J 2012; 8:288-97. [PMID: 23161832 PMCID: PMC3644878 DOI: 10.1002/biot.201200163] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 12/12/2022]
Abstract
Raman spectroscopy is an established laser-based technology for the quality assurance of pharmaceutical products. Over the past few years, Raman spectroscopy has become a powerful diagnostic tool in the life sciences. Raman spectra allow assessment of the overall molecular constitution of biological samples, based on specific signals from proteins, nucleic acids, lipids, carbohydrates, and inorganic crystals. Measurements are non-invasive and do not require sample processing, making Raman spectroscopy a reliable and robust method with numerous applications in biomedicine. Moreover, Raman spectroscopy allows the highly sensitive discrimination of bacteria. Rama spectra retain information on continuous metabolic processes and kinetics such as lipid storage and recombinant protein production. Raman spectra are specific for each cell type and provide additional information on cell viability, differentiation status, and tumorigenicity. In tissues, Raman spectroscopy can detect major extracellular matrix components and their secondary structures. Furthermore, the non-invasive characterization of healthy and pathological tissues as well as quality control and process monitoring of in vitro-engineered matrix is possible. This review provides comprehensive insight to the current progress in expanding the applicability of Raman spectroscopy for the characterization of living cells and tissues, and serves as a good reference point for those starting in the field.
Collapse
Affiliation(s)
- Eva Brauchle
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | | |
Collapse
|
16
|
SANTANDER S, ALCAINE C, LYAHYAI J, PÉREZ MA, RODELLAR C, DOBLARÉ M, OCHOA I. In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants. Dent Mater J 2012; 31:843-50. [DOI: 10.4012/dmj.2012-015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
McManus LL, Boyd AR, Burke GA, Meenan BJ. Raman spectroscopy of primary bovine aortic endothelial cells: a comparison of single cell and cell cluster analysis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1923-1930. [PMID: 21670997 DOI: 10.1007/s10856-011-4371-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/04/2011] [Indexed: 05/30/2023]
Abstract
There are many techniques that allow in vitro interactions among cells and their environment to be monitored, including molecular, biochemical and immunochemical techniques. Traditional techniques for the analysis of cells often require fixation or lysis from substrates; however, use of such destructive methods is not feasible where the expanded cell cultures are required to be used for clinical implantation. Several studies have previously highlighted the potential of Raman spectroscopy to provide useful information on key biochemical markers within cells. As such, we highlight the capability of Raman spectroscopy with different laser spot sizes for use as a non-invasive, rapid, and specific method to perform in situ analysis of primary bovine aortic endothelial cells (BAECs). Raman spectra were collected from both individual live cells cultured on fused silica substrates and on clusters of live cells placed on fused silica substrates, measured at 532 and 785 nm. The results obtained show notable spectral differences in DNA/RNA region indicative of the relative cytoplasm and nucleus contributions. Raman spectra of cell clusters show slight variations in the intensity of the phenylalanine peak (1004 cm(-1)) indicating variations in protein contribution. These spectra also highlight contributions from other cellular components such as, proteins, lipids, nucleic acids and carbohydrates, respectively.
Collapse
Affiliation(s)
- L L McManus
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Shore Road, Newtownabbey, Antrim, BT37 0QB, Northern Ireland.
| | | | | | | |
Collapse
|
18
|
Fite BZ, Decaris M, Sun Y, Sun Y, Lam A, Ho CKL, Leach JK, Marcu L. Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging. Tissue Eng Part C Methods 2011; 17:495-504. [PMID: 21303258 DOI: 10.1089/ten.tec.2010.0368] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A multimodal diagnostic system that integrates time-resolved fluorescence spectroscopy, fluorescence lifetime imaging microscopy, and ultrasound backscatter microscopy is evaluated here as a potential tool for assessing changes in engineered tissue composition and microstructure nondestructively and noninvasively. The development of techniques capable of monitoring the quality of engineered tissue, determined by extracellular matrix (ECM) content, before implantation would alleviate the need for destructive assays over multiple time points and advance the widespread development and clinical application of engineered tissues. Using a prototype system combining time-resolved fluorescence spectroscopy, FLIM, and UBM, we measured changes in ECM content occurring during chondrogenic differentiation of equine adipose stem cells on 3D biodegradable matrices. The optical and ultrasound results were validated against those acquired via conventional techniques, including collagen II immunohistochemistry, picrosirius red staining, and measurement of construct stiffness. Current results confirm the ability of this multimodal approach to follow the progression of tissue maturation along the chondrogenic lineage by monitoring ECM production (namely, collagen type II) and by detecting resulting changes in mechanical properties of tissue constructs. Although this study was directed toward monitoring chondrogenic tissue maturation, these data demonstrate the feasibility of this approach for multiple applications toward engineering other tissues, including bone and vascular grafts.
Collapse
Affiliation(s)
- Brett Z Fite
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|