1
|
Messaoudi O, Benamar I, Azizi A, Albukhaty S, Khane Y, Sulaiman GM, Salem-Bekhit MM, Hamdi K, Ghoummid S, Zoukel A, Messahli I, Kerchich Y, Benaceur F, Salem MM, Bendahou M. Characterization of Silver Carbonate Nanoparticles Biosynthesized Using Marine Actinobacteria and Exploring of Their Antimicrobial and Antibiofilm Activity. Mar Drugs 2023; 21:536. [PMID: 37888471 PMCID: PMC10608482 DOI: 10.3390/md21100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Bacterial resistance to different antimicrobial agents is growing with alarming speed, especially when bacterial cells are living in biofilm. Hybrid nanoparticles, synthesized through the green method, hold promise as a potential solution to this challenge. In this study, 66 actinomycete strains were isolated from three distinct marine sources: marine sediment, the algae Codium bursa, and the marine sponge Chondrosia reniformis. From the entirety of the isolated strains, one strain, S26, identified as Saccharopolyspora erythrea, was selected based on its taxonomic position and significant antimicrobial activity. Using the biomass of the selected marine Actinobacteria, the green synthesis of eco-friendly silver carbonate nanoparticles (BioAg2CO3NPs) is reported for the first time in this pioneering study. The BioAg2CO3NPs were characterized using different spectroscopic and microscopic analyses; the synthesized BioAg2CO3NPs primarily exhibit a triangular shape, with an approximate size of 100 nm. Biological activity evaluation indicated that the BioAg2CO3NPs exhibited good antimicrobial activity against all tested microorganisms and were able to remove 58% of the biofilm formed by the Klebsiella pneumoniae kp6 strain.
Collapse
Affiliation(s)
- Omar Messaoudi
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| | - Ibrahim Benamar
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| | - Ahmed Azizi
- Department of The Common Trunk Sciences and Technology, Faculty of Technology, University of Amar Telidji, Highway Ghardaia, P.O. Box G37 (M’kam), Laghouat 03000, Algeria;
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Yasmina Khane
- Faculty of Science and Technology, University of Ghardaia, BP455, Ghardaia 47000, Algeria;
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq;
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Kaouthar Hamdi
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Sirine Ghoummid
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Abdelhalim Zoukel
- Laboratory Physico-Chemistry of Materials, Laghouat University, Laghouat 03000, Algeria;
- Center for Scientific and Technical Research in Physicochemical Analysis (PTAPC-Laghouat-CRAPC), Laghouat 03000, Algeria
| | - Ilhem Messahli
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
| | - Yacine Kerchich
- École Nationale Polytechnique (ENP), Laboratory of Environmental Science and Technology, El Harrach 16200, Algeria;
| | - Farouk Benaceur
- Department of Biology, Faculty of Science, University of Amar Telidji, Laghouat 03000, Algeria; (O.M.); (I.B.); (K.H.); (S.G.); (I.M.); (F.B.)
- Research Unit of Medicinal Plant (RUMP) Attached to Center of Biotechnology (CRBt, 3000, Constantine), Laghouat 03000, Algeria
| | - Mohamed M. Salem
- College of Medicine, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Mourad Bendahou
- Laboratory of Applied Microbiology in Food and Environment, Abou Bekr Belkaïd University, Tlemcen 13000, Algeria;
| |
Collapse
|
2
|
Maqbool M, Nawaz Q, Atiq Ur Rehman M, Cresswell M, Jackson P, Hurle K, Detsch R, Goldmann WH, Shah AT, Boccaccini AR. Synthesis, Characterization, Antibacterial Properties, and In Vitro Studies of Selenium and Strontium Co-Substituted Hydroxyapatite. Int J Mol Sci 2021; 22:4246. [PMID: 33921909 PMCID: PMC8072711 DOI: 10.3390/ijms22084246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, as a measure to enhance the antimicrobial activity of biomaterials, the selenium ions have been substituted into hydroxyapatite (HA) at different concentration levels. To balance the potential cytotoxic effects of selenite ions (SeO32-) in HA, strontium (Sr2+) was co-substituted at the same concentration. Selenium and strontium-substituted hydroxyapatites (Se-Sr-HA) at equal molar ratios of x Se/(Se + P) and x Sr/(Sr + Ca) at (x = 0, 0.01, 0.03, 0.05, 0.1, and 0.2) were synthesized via the wet precipitation route and sintered at 900 °C. The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial ability, and cell viability were studied. X-ray diffraction verified the phase purity and confirmed the substitution of selenium and strontium ions. Acellular in vitro bioactivity tests revealed that Se-Sr-HA was highly bioactive compared to pure HA. Se-Sr-HA samples showed excellent antibacterial activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus carnosus) bacterial strains. In vitro cell-material interaction, using human osteosarcoma cells MG-63 studied by WST-8 assay, showed that Se-HA has a cytotoxic effect; however, the co-substitution of strontium in Se-HA offsets the negative impact of selenium and enhanced the biological properties of HA. Hence, the prepared samples are a suitable choice for antibacterial coatings and bone filler applications.
Collapse
Affiliation(s)
- Muhammad Maqbool
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
- Lucideon Ltd., Penkhull, Stoke-on-Trent, Staffordshire ST4 7LQ, UK; (M.C.); (P.J.)
- CAM Bioceramics B.V., 2333 CL Leiden, The Netherlands
| | - Qaisar Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
| | - Muhammad Atiq Ur Rehman
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Mark Cresswell
- Lucideon Ltd., Penkhull, Stoke-on-Trent, Staffordshire ST4 7LQ, UK; (M.C.); (P.J.)
| | - Phil Jackson
- Lucideon Ltd., Penkhull, Stoke-on-Trent, Staffordshire ST4 7LQ, UK; (M.C.); (P.J.)
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
| | - Wolfgang H. Goldmann
- Department of Biophysics, University of Erlangen-Nuremberg, 91052 Erlangen, Germany;
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Defence Road, Off-Raiwind Road, Lahore 54000, Pakistan;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (M.M.); (Q.N.); (M.A.U.R.); (R.D.)
| |
Collapse
|
3
|
Preparation of novel blue phosphate pigments in imitation of copper lazulite. INTERNATIONAL JOURNAL OF INDUSTRIAL CHEMISTRY 2020. [DOI: 10.1007/s40090-020-00221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Raucci MG, D'Amora U, Ronca A, Ambrosio L. Injectable Functional Biomaterials for Minimally Invasive Surgery. Adv Healthc Mater 2020; 9:e2000349. [PMID: 32484311 DOI: 10.1002/adhm.202000349] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Injectable materials represent very attractive ready-to-use biomaterials for application in minimally invasive surgical procedures. It is shown that this approach to treat, for example, vertebral fracture, craniofacial defects, or tumor resection has significant clinical potential in the biomedical field. In the last four decades, calcium phosphate cements have been widely used as injectable materials for orthopedic surgery due to their excellent properties in terms of biocompatibility and osteoconductivity. However, few clinical studies have demonstrated certain weaknesses of these cements, which include high viscosity, long degradation time, and difficulties being manipulated. To overcome these limitations, the use of sol-gel technology has been investigated, which has shown good results for synthesis of injectable calcium phosphate-based materials. In the last few decades, injectable hydrogels have gained increasing attention owing to their structural similarities with the extracellular matrix, easy process conditions, and potential applications in minimally invasive surgery. However, the need to protect cells during injection leads to the development of double network injectable hydrogels that are capable of being cross-linked in situ. This review will provide the current state of the art and recent advances in the field of injectable biomaterials for minimally invasive surgery.
Collapse
Affiliation(s)
- Maria Grazia Raucci
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| |
Collapse
|
5
|
Tsikourkitoudi V, Karlsson J, Merkl P, Loh E, Henriques-Normark B, Sotiriou GA. Flame-Made Calcium Phosphate Nanoparticles with High Drug Loading for Delivery of Biologics. Molecules 2020; 25:E1747. [PMID: 32290273 PMCID: PMC7181047 DOI: 10.3390/molecules25071747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/18/2022] Open
Abstract
Nanoparticles exhibit potential as drug carriers in biomedicine due to their high surface-to-volume ratio that allows for facile drug loading. Nanosized drug delivery systems have been proposed for the delivery of biologics facilitating their transport across epithelial layers and maintaining their stability against proteolytic degradation. Here, we capitalize on a nanomanufacturing process famous for its scalability and reproducibility, flame spray pyrolysis, and produce calcium phosphate (CaP) nanoparticles with tailored properties. The as-prepared nanoparticles are loaded with bovine serum albumin (model protein) and bradykinin (model peptide) by physisorption and the physicochemical parameters influencing their loading capacity are investigated. Furthermore, we implement the developed protocol by formulating CaP nanoparticles loaded with the LL-37 antimicrobial peptide, which is a biological drug currently involved in clinical trials. High loading values along with high reproducibility are achieved. Moreover, it is shown that CaP nanoparticles protect LL-37 from proteolysis in vitro. We also demonstrate that LL-37 retains its antimicrobial activity against Escherichia coli and Streptococcus pneumoniae when loaded on nanoparticles in vitro. Therefore, we highlight the potential of nanocarriers for optimization of the therapeutic profile of existing and emerging biological drugs.
Collapse
Affiliation(s)
- Vasiliki Tsikourkitoudi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| | - Jens Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| | - Padryk Merkl
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| | - Edmund Loh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
- Department of Clinical Microbiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-1 71 77 Stockholm, Sweden; (V.T.); (J.K.); (P.M.); (E.L.); (B.H.-N.)
| |
Collapse
|
6
|
Rajabnejadkeleshteri A, Kamyar A, Khakbiz M, bakalani ZL, Basiri H. Synthesis and characterization of strontium fluor-hydroxyapatite nanoparticles for dental applications. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Levingstone TJ, Herbaj S, Redmond J, McCarthy HO, Dunne NJ. Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E146. [PMID: 31947548 PMCID: PMC7023416 DOI: 10.3390/nano10010146] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022]
Abstract
Bone-related injury and disease constitute a significant global burden both socially and economically. Current treatments have many limitations and thus the development of new approaches for bone-related conditions is imperative. Gene therapy is an emerging approach for effective bone repair and regeneration, with notable interest in the use of RNA interference (RNAi) systems to regulate gene expression in the bone microenvironment. Calcium phosphate nanoparticles represent promising materials for use as non-viral vectors for gene therapy in bone tissue engineering applications due to their many favorable properties, including biocompatibility, osteoinductivity, osteoconductivity, and strong affinity for binding to nucleic acids. However, low transfection rates present a significant barrier to their clinical use. This article reviews the benefits of calcium phosphate nanoparticles for RNAi delivery and highlights the role of surface functionalization in increasing calcium phosphate nanoparticles stability, improving cellular uptake and increasing transfection efficiency. Currently, the underlying mechanistic principles relating to these systems and their interplay during in vivo bone formation is not wholly understood. Furthermore, the optimal microRNA targets for particular bone tissue regeneration applications are still unclear. Therefore, further research is required in order to achieve the optimal calcium phosphate nanoparticles-based systems for RNAi delivery for bone tissue regeneration.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
| | - Simona Herbaj
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, 2 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, 2 Dublin, Ireland
| |
Collapse
|
8
|
Khalifehzadeh R, Arami H. DNA-Templated Strontium-Doped Calcium Phosphate Nanoparticles for Gene Delivery in Bone Cells. ACS Biomater Sci Eng 2019; 5:3201-3211. [PMID: 31592442 PMCID: PMC6779169 DOI: 10.1021/acsbiomaterials.8b01587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Calcium phosphates (CaPs), constituents of the inorganic phase of natural bone, are highly biocompatible and biodegradable. Strontium (Sr) regulates the formation and resorption of bone. Incorporation of Sr into CaPs may target genes of interest to bone cells while regulating their function. In this work, we developed a single-step synthesis method to prepare Sr-doped CaP nanoparticles (SrCaP-DNA NPs) by using DNA as a template for controlling the mineralization and the stability of the colloidal solution. The resulting nanoparticles were monodispersed with well-controlled size, morphology, and composition. By using this method, we were able to fabricate CaP NPs with varying contents of Sr2+. We demonstrated that the stability of CaP NPs in extracellular environments increased when Sr2+ partially replaced Ca2+ in CaP NPs. We showed that the cellular uptake of SrCaP-DNA NPs and the efficiency of gene transfer and alkaline phosphatase activity in human fetal osteoblastic cell line (hFOB1.19) were dependent on the content of Sr2+ in NPs. Together with other studies, our results suggest SrCaP-DNA NPs can be optimized for targeted gene transfer to regulate function of bone cells, enabling applications such as bone tissue engineering and treating bone diseases.
Collapse
Affiliation(s)
- Razieh Khalifehzadeh
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
| | - Hamed Arami
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
| |
Collapse
|
9
|
Lin Y, Wang X, Huang X, Zhang J, Xia N, Zhao Q. Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Rev Vaccines 2017; 16:895-906. [DOI: 10.1080/14760584.2017.1355733] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yahua Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
- School of Life Science, Xiamen University, Xiamen, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, PR China
- School of Public Health, Xiamen University, Xiamen, PR China
| |
Collapse
|
10
|
Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Nanostructured silicate substituted calcium phosphate (NanoSiCaPs) nanoparticles — Efficient calcium phosphate based non-viral gene delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:486-95. [DOI: 10.1016/j.msec.2016.06.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 11/21/2022]
|
12
|
Li J, Jiang H, Ouyang X, Han S, Wang J, Xie R, Zhu W, Ma N, Wei H, Jiang Z. CaCO 3/Tetraethylenepentamine-Graphene Hollow Microspheres as Biocompatible Bone Drug Carriers for Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30027-30036. [PMID: 27753474 DOI: 10.1021/acsami.6b10697] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
CaCO3 is one kind of important biological mineral, which widely exists in coral, shell, and other organisms. Since it is similar to bone tissue elements and has good biocompatibility, it was very suitable as a candidates for bone drug carriers. In this work, we used tetraethylenepentamine-graphene (rGO-TEPA) sheet matrices induction of CaCO3 mineralization and successfully constructed CaCO3/rGO-TEPA drug carriers with a hollow structure and rough surface. As potential drug carriers, doxorubicin (DOX) loading and release measurements were carried out. It showed that load efficiency was 94.7% and the release efficiencies were 13.8% and 91.7% at values of pH 7.4 and 5.0. The as-prepared drug carriers showed some appealing advantages, such as the pH-sensitive release characteristics and mild storage-release behaviors. The excellent biocompatibility and nontoxicity of CaCO3/rGO-TEPA hybrid microspheres were tested by the cell viability of mouse preosteoblast cells (MC3T3-E1). And cytotoxicity with human osteosarcoma cells (MG-63) was carried out to demonstrate the drug release effect in the cells system. Therefore, the CaCO3/rGO-TEPA hybrid microspheres would be a competitive alternative in bone drug carriers.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Hongkun Jiang
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Xiao Ouyang
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Shihui Han
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Rui Xie
- Tumor Hospital of Harbin Medical University , Harbin 150081, China
| | - Wenting Zhu
- Tumor Hospital of Harbin Medical University , Harbin 150081, China
| | - Ning Ma
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Hao Wei
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University , Harbin 150001, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| |
Collapse
|
13
|
Ben-Nissan B, Macha I, Cazalbou S, Choi AH. Calcium phosphate nanocoatings and nanocomposites, part 2: thin films for slow drug delivery and osteomyelitis. Nanomedicine (Lond) 2016; 11:531-44. [PMID: 26891748 DOI: 10.2217/nnm.15.220] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
During the last two decades although many calcium phosphate based nanomaterials have been proposed for both drug delivery, and bone regeneration, their coating applications have been somehow slow due to the problems related to their complicated synthesis methods. In order to control the efficiency of local drug delivery of a biomaterial the critical pore sizes as well as good control of the chemical composition is pertinent. A variety of calcium phosphate based nanocoated composite drug delivery systems are currently being investigated. This review aims to give an update into the advancements of calcium phosphate nanocoatings and thin film nanolaminates. In particular recent research on PLA/hydroxyapatite composite thin films and coatings into the slow drug delivery for the possible treatment of osteomyelitis is covered.
Collapse
Affiliation(s)
- Besim Ben-Nissan
- Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| | - Innocent Macha
- Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| | - Sophie Cazalbou
- Université de Toulouse, CIRIMAT, UMR 5085 UPS-INPT-CNRS, faculté de pharmacie, Toulouse, France
| | - Andy H Choi
- Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
| |
Collapse
|
14
|
Development of mitochondrial targeting plasmid DNA nanoparticles: Characterization and in vitro studies. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Sharma S, Verma A, Teja BV, Pandey G, Mittapelly N, Trivedi R, Mishra PR. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: Trends and transitions. Colloids Surf B Biointerfaces 2015; 133:120-39. [PMID: 26094145 DOI: 10.1016/j.colsurfb.2015.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/28/2022]
Abstract
Over the recent years the use of biocompatible and biodegradable nanoparticles in biomedicine has become a significant priority. Calcium based ceramic nanoparticles like calcium phosphate (CaP) and calcium carbonate (CaCO3) are therefore considered as attractive carriers as they are naturally present in human body with nanosize range. Their application in tissue engineering and localized controlled delivery of bioactives for bones and teeth is well established now, but recently their use has increased significantly as carrier of bioactives through other routes also. These delivery systems have become most potential alternatives to other commonly used delivery system because of their cost effectiveness, biodegradability, chemical stability, controlled and stimuli responsive behaviour. This review comprehensively covers their characteristic features, method of preparation and applications but the thrust is to focus their recent development, functionalization and use in systemic delivery. On the same platform mineralization of other nanoparticulate delivery system which has widened their application drug delivery will be discussed. The emphasis has been given on their pH dependent properties which make them excellent carriers for tumour targeting and intracellular delivery. Finally this review also attempts to discuss their drawback which limits their clinical utility.
Collapse
Affiliation(s)
- Shweta Sharma
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Ashwni Verma
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - B Venkatesh Teja
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Gitu Pandey
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Naresh Mittapelly
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - P R Mishra
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|
16
|
Zhao D, Wang CQ, Zhuo RX, Cheng SX. Modification of nanostructured calcium carbonate for efficient gene delivery. Colloids Surf B Biointerfaces 2014; 118:111-6. [DOI: 10.1016/j.colsurfb.2014.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/08/2014] [Accepted: 03/04/2014] [Indexed: 12/24/2022]
|
17
|
Wang CQ, Wu JL, Zhuo RX, Cheng SX. Protamine sulfate-calcium carbonate-plasmid DNA ternary nanoparticles for efficient gene delivery. MOLECULAR BIOSYSTEMS 2014; 10:672-8. [PMID: 24442276 DOI: 10.1039/c3mb70502a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ternary nanoparticles, protamine sulfate-calcium carbonate-plasmid DNA (PS-CaCO3-DNA), were prepared for efficient gene delivery. By adding the cationic polypeptide PS in the co-precipitation system of calcium carbonate and DNA, PS-CaCO3-DNA nanoparticles could be formed by self-assembly facilely. The effect of PS on the properties of the ternary nanoparticles was studied by varying the PS amount in the nanoparticles. The size and ζ-potential measurements indicated that the ternary nanoparticles with an appropriate PS amount exhibited a decreased size and an increased ζ-potential. The in vitro gene transfections mediated by different nanoparticles in 293T cells and HeLa cells were carried out in the presence of 10% fetal bovine serum, using pGL3-Luc and pEGFP-C1 as reporter plasmids. As compared with both PS-DNA nanoparticles and CaCO3-DNA nanoparticles, PS-CaCO3-DNA nanoparticles exhibited significantly enhanced gene delivery efficiency, which was higher than that of Lipofectamine 2000-DNA. Confocal microscopy observation showed that PS-CaCO3-DNA nanoparticles could efficiently deliver DNA to cell nuclei. These results indicated that the ternary PS-CaCO3-DNA nanoparticles prepared in this study have promising applications in gene delivery.
Collapse
Affiliation(s)
- Chao-Qun Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
18
|
Wang CQ, Gong MQ, Wu JL, Zhuo RX, Cheng SX. Dual-functionalized calcium carbonate based gene delivery system for efficient gene delivery. RSC Adv 2014. [DOI: 10.1039/c4ra05468g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual-functionalized KALA/PS/CaCO3/DNA nanoparticles containing a cell penetrating peptide (KALA) and protamine sulfate (PS) could effectively mediate gene transfection at a low DNA concentration.
Collapse
Affiliation(s)
- Chao-Qun Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072, P. R. China
| | - Meng-Qing Gong
- Key Laboratory of Biomedical Polymers of Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072, P. R. China
| | - Jin-Long Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072, P. R. China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education
- Department of Chemistry
- Wuhan University
- Wuhan 430072, P. R. China
| |
Collapse
|
19
|
Drevet R, Benhayoune H. Pulsed electrodeposition for the synthesis of strontium-substituted calcium phosphate coatings with improved dissolution properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4260-5. [PMID: 23910341 DOI: 10.1016/j.msec.2013.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/06/2013] [Accepted: 06/18/2013] [Indexed: 12/28/2022]
Abstract
Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM.
Collapse
Affiliation(s)
- Richard Drevet
- LISM EA 4695, Université de Reims Champagne-Ardenne, 21 rue Clément ADER, 51685 Reims, BP 138 Cedex 02, France.
| | | |
Collapse
|
20
|
Velard F, Braux J, Amedee J, Laquerriere P. Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater 2013; 9:4956-63. [PMID: 23036944 DOI: 10.1016/j.actbio.2012.09.035] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
Abstract
Bone is a metabolically active and highly organized tissue consisting of a mineral phase of hydroxyapatite (HA) and amorphous calcium phosphate (CaP) crystals deposited in an organic matrix. One objective of bone tissue engineering is to mimic the chemical and structural properties of this complex tissue. CaP ceramics, such as sintered HA and beta-tricalcium phosphate, are widely used as bone substitutes or prosthesis coatings because of their osteoconductive properties. These ceramic interactions with tissues induce a cell response that can be different according to the composition of the material. In this review, we discuss inflammatory cell responses to CaP materials to provide a comprehensive overview of mechanisms governing the integration or loosening of implants, which remains a major concern in tissue engineering. A focus on the effects of the functionalization of CaP biomaterials highlights potential ways to increase tissue integration and limit rejection processes.
Collapse
|
21
|
Rudnev VS, Medkov MA, Yarovaya TP, Nedozorov PM. Calcium and strontium phosphates coatings on titanium formed by the plasma electrolytic oxidation. RUSS J APPL CHEM+ 2013. [DOI: 10.1134/s1070427212120117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Zhao D, Liu CJ, Zhuo RX, Cheng SX. Alginate/CaCO3 hybrid nanoparticles for efficient codelivery of antitumor gene and drug. Mol Pharm 2012; 9:2887-93. [PMID: 22894610 DOI: 10.1021/mp3002123] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, a facile strategy for efficient codelivery of gene and drug was developed. Using a coprecipitation method, doxorubicin hydrochloride (DOX), an antitumor drug, and p53 expression plasmid were encapsulated in alginate/CaCO(3)/DNA/DOX nanoparticles with high encapsulation efficiency. The in vitro cell inhibition effect of the alginate/CaCO(3)/DNA/DOX nanoparticles was evaluated by MTT assay in HeLa cells. The alginate/CaCO(3)/DNA/DOX nanoparticles exhibited a high cell inhibition rate about 80%, indicating that the alginate/CaCO(3)/DNA/DOX nanoparticles could effectively mediate gene transfection and deliver the drug to the cells. Compared with the codelivery of gene and drug, the treatments by alginate/CaCO(3)/DOX nanoparticles and alginate/CaCO(3)/DNA nanoparticles separately led to much lower cell inhibition rates. Compared with the CaCO(3)/DNA/DOX nanoparticles without alginate modification, the alginate/CaCO(3)/DNA/DOX nanoparticles with a decreased particle size exhibited enhanced delivery efficiency. The alginate/CaCO(3)/DNA/DOX nanoparticles have promising applications in cancer treatments.
Collapse
Affiliation(s)
- Dong Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, P.R. China
| | | | | | | |
Collapse
|
23
|
Zhao D, Zhuo RX, Cheng SX. Alginate modified nanostructured calcium carbonate with enhanced delivery efficiency for gene and drug delivery. ACTA ACUST UNITED AC 2012; 8:753-9. [DOI: 10.1039/c1mb05337j] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Chen S, Zhao D, Li F, Zhuo RX, Cheng SX. Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Adv 2012. [DOI: 10.1039/c1ra00527h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Zhao D, Zhuo RX, Cheng SX. Modification of calcium carbonate based gene and drug delivery systems by a cell-penetrating peptide. MOLECULAR BIOSYSTEMS 2012; 8:3288-94. [DOI: 10.1039/c2mb25233c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Chen S, Li F, Zhuo RX, Cheng SX. Efficient non-viral gene delivery mediated by nanostructured calcium carbonate in solution-based transfection and solid-phase transfection. MOLECULAR BIOSYSTEMS 2011; 7:2841-7. [DOI: 10.1039/c1mb05147d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|