1
|
Bagherabadi M, Feuilloley C, Cameron PJ, Andrieu-Brunsen A. Simultaneous Bacteria Sensing and On-Demand Antimicrobial Peptide Release. ACS APPLIED BIO MATERIALS 2025; 8:2365-2376. [PMID: 39993945 DOI: 10.1021/acsabm.4c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
A material that was able to simultaneously sense a bacterial presence and to release antimicrobial peptides (AMP) on demand in a tunable amount was developed. Simultaneous sensing and release were achieved by the combination of a bacteria-sensing hydrogel with antimicrobial-peptide-carrying mesoporous silica particles or coatings. The mesoporous silica with a mesopore diameter of 22 nm was functionalized with a covalently grafted green light-sensitive linker, to which antimicrobial peptides were covalently attached. The gelatin-based hydrogel, which contains C14R-functionalized mesoporous silica particles, is designed to respond to bacterial presence as it may occur, e.g., in a wound's microbiological environment. In the presence of bacteria and 0.1% trypsin, a protease enzyme simulating bacterial presence, the hydrogel, deposited in a donut shape, undergoes a shape loss as the bacteria cleave cross-linking bonds within the hydrogel. When observing hydrogel shape loss after 2 h as a readout of a bacterial infection, subsequent irradiation triggers the release of antimicrobial peptides on demand with adjustable concentration-time profiles. The sensing and on-demand release are integrated into commercially available wound dressing fabrics, demonstrating an application proof-of-concept. Characterization using ATR-IR spectroscopy, TGA, and BCA validates the successful fabrication and release. The H1.6P composite released antimicrobial agents, reaching concentrations of up to 298 μg/mL at pH 7.4 from a 300 μL sample. The efficacy of the released C14R against E. coli BL21(DE3) is illustrated. Overall, the multifunctionality of this approach presents a promising step toward on-demand wound care and thus for reducing side effects and antibiotic resistance.
Collapse
Affiliation(s)
- Mohadeseh Bagherabadi
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, Darmstadt 64287, Germany
| | - Celine Feuilloley
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Petra J Cameron
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Annette Andrieu-Brunsen
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, Darmstadt 64287, Germany
| |
Collapse
|
2
|
Veiga A, Foster O, Kaplan DL, Oliveira AL. Expanding the boundaries of silk sericin biomaterials in biomedical applications. J Mater Chem B 2024; 12:7020-7040. [PMID: 38935038 DOI: 10.1039/d4tb00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Silk sericin (SS) has a long history as a by-product of the textile industry. SS has emerged as a sustainable material for biomedical engineering due to its material properties including water solubility, diverse impact on biological activities including antibacterial and antioxidant properties, and ability to promote cell adhesion and proliferation. This review addresses the origin, structure, properties, extraction, and underlying functions of this protein. An overview of the growing research studies and market evolution is presented, along with highlights of the most common fabrication matrices (hydrogels, bioinks, porous and fibrous scaffolds) and tissue engineering applications. Finally, the future trends with this protein as a multifaceted toolbox for bioengineering are explored, along with the challenges with SS. Overall, the present review can serve as a foundation for the creation of innovative biomaterials utilizing SS as a fundamental building block that hold market potential.
Collapse
Affiliation(s)
- Anabela Veiga
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Olivia Foster
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Ana Leite Oliveira
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
3
|
Panchal R, Mateti T, Likhith K, Rodrigues FC, Thakur G. Genipin cross-linked chitosan–PVA composite films: An investigation on the impact of cross-linking on accelerating wound healing. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Kaya S, Kondolot Solak E. Development of ketorolac tromethamine loaded biocompatible polymeric microspheres and matrix films: designing for topical application. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Seçil Kaya
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
- Department of Material and Material Processing Technologies, Technical Sciences Vocational School, Gazi University, Ankara, Turkey
| | - Ebru Kondolot Solak
- Department of Advanced Technologies, Gazi University, Ankara, Turkey
- Department of Chemistry and Chemical Processing Technologies, Technical Sciences Vocational School, Gazi University, Ankara, Turkey
| |
Collapse
|
5
|
Pedrosa TC, Trócolli R, de Sousa WJB, de Cerqueira GRC, da Silva HN, Barbosa RC, de Souza MF, Galdino TP, Tissiani JNA, Fook MVL. Development of Gelatin/Misoprostol Compounds for Use in Pregnancy Failures. MATERIALS 2021; 14:ma14237250. [PMID: 34885405 PMCID: PMC8658583 DOI: 10.3390/ma14237250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/01/2022]
Abstract
Early abortion is one of the most common complications during pregnancy. However, the frequent handling of the genital region, more precisely the vagina, which causes discomfort to patients in this abortion process due to the frequency of drug insertion, as four pills are inserted every six hours, has led to the search for alternatives to alleviate the suffering caused by this practice in patients who are already in a shaken emotional state. Hence, this work aimed to develop composites of gelatin and misoprostol, using a conventional single-dose drug delivery system. These composites were prepared by freeze/lyophilization technique, by dissolving the gelatin in distilled water, with a concentration of 2.5% (w/v), and misoprostol was incorporated into the gelatin solution at the therapeutic concentration (800 mcg). They were subsequently molded, frozen and lyophilized. The samples of the composites were then crosslinked with sodium tripolyphosphate (TPP) 1% (v/v) with respect to the gelatin mass for 5 min. The characterization techniques used were: Optical Microscopy (OM), Fourier Transformed Infrared Spectroscopy (FTIR), Thermogravimetry (TG), Swelling, Biodegradation and Cytotoxicity. In OM it was observed that the addition of the drug improved the cylindrical appearance of the compounds, in comparison with the sample that was composed of only gelatin. There was a reduction in the degree of swelling with the addition of the drug and crosslinking. The cytotoxicity test indicated the biocompatibility of the material. Based on the results obtained in these tests, the composites have therapeutic potential for uterine emptying in pregnancy failures, especially in the first trimester.
Collapse
|
6
|
Yu Y, Xu S, Li S, Pan H. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater Sci 2021; 9:1583-1597. [PMID: 33443245 DOI: 10.1039/d0bm01403f] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genipin is a naturally occurring nontoxic cross-linker, which has been widely used for drug delivery due to its excellent biocompatibility, admirable biodegradability and stable cross-linked attributes. These advantages led to its extensive application in the fabrication of hydrogels for drug delivery. This review describes the physicochemical characteristics and pharmacological activities of genipin and attempts to elucidate the detailed mechanisms of the cross-linking reaction between genipin and biomaterials. The current article entails a general review of the different biomaterials cross-linked by genipin: chitosan and its derivatives, collagen, gelatin, etc. The genipin-cross-linked hydrogels for various pharmaceutical applications, including ocular drug delivery, buccal drug delivery, oral drug delivery, anti-inflammatory drug delivery, and antibiotic and antifungal drug delivery, are reported. Finally, the future research directions and challenges of genipin-cross-linked hydrogels for pharmaceutical applications are also discussed in this review.
Collapse
Affiliation(s)
- Yibin Yu
- School of Pharmacy, Liaoning University, Shenyang 110036, China. and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Shuo Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
7
|
Torres-García R, Flores-Estrada J, Cauich-Rodríguez JV, Flores-Reyes M, Flores-Merino MV. Design of a polyacrylamide and gelatin hydrogel as a synthetic extracellular matrix. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1825082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rocío Torres-García
- Facultad de Enfermería y Obstetricia, Universidad Autónoma del Estado de México, Toluca de Lerdo, Mexico
| | - Jaime Flores-Estrada
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca de Lerdo, Mexico
| | - Juan V. Cauich-Rodríguez
- Unidad de Materiales, Centro de Investigación Científica de Yucatán A.C, Colonia Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, Mexico
| | - Mario Flores-Reyes
- Facultad de Enfermería y Obstetricia, Universidad Autónoma del Estado de México, Toluca de Lerdo, Mexico
| | | |
Collapse
|
8
|
Li H, Zhao L, Wang F, Wang H, Dong M, Liu T, Ruan T, Zhou M, Zhou Q, Xie L. Natural cross-linker-stabilized acellular porcine corneal stroma for lamellar keratoplasty. Acta Biomater 2020; 114:270-284. [PMID: 32702529 DOI: 10.1016/j.actbio.2020.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/12/2023]
Abstract
Acellular porcine corneal stroma (APCS) is a promising alternative to human donor cornea for lamellar keratoplasty (LKP). However, the detergents, enzymes and physical forces used during decellularization unavoidably alter the cornea's extracellular matrix composition and disrupt its ultrastructure, making it less mechanically stable and liable to degradation both in vitro and in vivo. Herein, we systematically analyzed the low biomechanics and easy degradability of APCS in terms of structure and protein composition. Then, we introduced natural cross-linkers, namely proanthocyanidin (PA), epigallocatechin-3-gallate and genipin, to stabilize the APCS that exhibited color variations during crosslinking. Then, we developed a protective crosslinking system by combining cross-linkers with bovine serum albumin (BSA) to reduce color change, maintain transparency and improve the mechanical property of APCS. PA/BSA-crosslinked APCS (PA/BSA-APCS) shows favorable corneal transparency and swelling property; the improved overall and surface corneal biomechanics were comparable to those of human cornea, revealing strong resistance to enzymatic degradation and good biocompatibility. Results from LKP in the rabbit model showed complete re-epithelialization without graft melting, the stitches were scarcely loosened after the operation and more host keratocytes had migrated in PA/BSA-APCS at six months post-operation. Therefore, PA/BSA-APCS could be useful as a corneal substitute for tissue regeneration and the protective crosslinking system could be applicable in other bioengineering fields.
Collapse
Affiliation(s)
- Hua Li
- Department of Ophthalmology, Clinical Medical College of Shandong University, Jinan, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Long Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Fuyan Wang
- Department of Ophthalmology, Clinical Medical College of Shandong University, Jinan, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Hongwei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Muchen Dong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Eye Hospital of Shandong First Medical Universtiy, Jinan, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Ting Ruan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Mingming Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China; Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
9
|
Holmkvist AD, Agorelius J, Forni M, Nilsson UJ, Linsmeier CE, Schouenborg J. Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. J Nanobiotechnology 2020; 18:27. [PMID: 32024534 PMCID: PMC7003334 DOI: 10.1186/s12951-020-0585-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neural interfaces often elicit inflammatory responses and neuronal loss in the surrounding tissue which adversely affect the function and longevity of the implanted device. Minocycline, an anti-inflammatory pharmaceutics with neuroprotective properties, may be used for reducing the acute brain tissue responses after implantation. However, conventional administration routes require high doses which can cause adverse systemic side effects. Therefore, the aim of this study was to develop and evaluate a new drug-delivery-system for local and sustained administration of minocycline in the brain. METHODS Stainless steel needles insulated with Parylene-C were dip-coated with non-crosslinked gelatin and minocycline-loaded PLGA nanoparticles (MC-NPs) were incorporated into the gelatin-coatings by an absorption method and subsequently trapped by drying the gelatin. Parylene-C insulated needles coated only with gelatin were used as controls. The expression of markers for activated microglia (CD68), all microglia (CX3CR1-GFP), reactive astrocytes (GFAP), neurons (NeuN) and all cell nuclei (DAPI) surrounding the implantation sites were quantified at 3 and 7 days after implantation in mice. RESULTS MC-NPs were successfully incorporated into gelatin-coatings of neural implants by an absorption method suitable for thermosensitive drug-loads. Immunohistochemical analysis of the in vivo brain tissue responses, showed that MC-NPs significantly attenuate the activation of microglial cells without effecting the overall population of microglial cells around the implantation sites. A delayed but significant reduction of the astrocytic response was also found in comparison to control implants. No effect on neurons or total cell count was found which may suggest that the MC-NPs are non-toxic to the central nervous system. CONCLUSIONS A novel drug-nanoparticle-delivery-system was developed for neural interfaces and thermosensitive drug-loads. The local delivery of MC-NPs was shown to attenuate the acute brain tissue responses nearby an implant and therefore may be useful for improving biocompatibility of implanted neuro-electronic interfaces. The developed drug-delivery-system may potentially also be used for other pharmaceutics to provide highly localized and therefore more specific effects as compared to systemic administration.
Collapse
Affiliation(s)
- Alexander Dontsios Holmkvist
- Neuronano Research Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Medicon Village, Building 404 A2, Scheelevägen 2, 223 81, Lund, Sweden. .,Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden.
| | - Johan Agorelius
- Neuronano Research Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Medicon Village, Building 404 A2, Scheelevägen 2, 223 81, Lund, Sweden.,NanoLund, Lund University, Professorsgatan 1, 223 63, Lund, Sweden
| | - Matilde Forni
- Neuronano Research Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Medicon Village, Building 404 A2, Scheelevägen 2, 223 81, Lund, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Cecilia Eriksson Linsmeier
- Neuronano Research Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Medicon Village, Building 404 A2, Scheelevägen 2, 223 81, Lund, Sweden
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Medicon Village, Building 404 A2, Scheelevägen 2, 223 81, Lund, Sweden. .,NanoLund, Lund University, Professorsgatan 1, 223 63, Lund, Sweden.
| |
Collapse
|
10
|
Dathathri E, Thakur G, Koteshwara KB, Anil Kumar NV, Rodrigues FC. Investigating the effect of freezing temperature and cross-linking on modulating drug release from chitosan scaffolds. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-01024-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Crosslinking Biopolymers for Advanced Drug Delivery and Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:213-231. [DOI: 10.1007/978-981-13-0950-2_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Annamalai RT, Turner PA, Carson WF, Levi B, Kunkel S, Stegemann JP. Harnessing macrophage-mediated degradation of gelatin microspheres for spatiotemporal control of BMP2 release. Biomaterials 2018; 161:216-227. [PMID: 29421557 PMCID: PMC5831261 DOI: 10.1016/j.biomaterials.2018.01.040] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Biomaterials-based approaches to harnessing the immune and inflammatory responses to potentiate wound healing hold important promise. Bone fracture healing is characterized by an acute inflammatory phase, followed by a transition to a regenerative and repair phase. In this study, we developed genipin-crosslinked gelatin microspheres designed to be preferentially degraded by inflammatory (M1) macrophages. Highly crosslinked (>90%) microspheres allowed efficient incorporation of bioactive bone morphogenetic protein 2 (BMP2), a potent stimulator of osteogenesis in progenitor cells, via electrostatic interactions. Release of BMP2 was directly correlated with degradation of the gelatin matrix. Exposure of microspheres to polarized murine macrophages showed that degradation was significantly higher in the presence of M1 macrophages, relative to alternatively activated (M2) macrophages and unpolarized controls. Microsphere degradation in the presence of non-inflammatory cells resulted in very low degradation rates. The expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMP (TIMPs) by macrophages were consistent with the observed phenotype-dependent degradation rates. Indirect co-culture of BMP2-loaded microspheres and macrophages with isolated adipose-derived mesenchymal stem cells (MSC) showed that M1 macrophages produced the strongest osteogenic response, comparable to direct supplementation of the culture medium with BMP2. Controlled release systems that are synchronized with the inflammatory response have the potential to provide better spatiotemporal control of growth factor delivery and therefore may improve the outcomes of recalcitrant wounds.
Collapse
Affiliation(s)
| | - Paul A Turner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | | | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - Steven Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
13
|
Genipin-crosslinked gelatin microspheres as a strategy to prevent postsurgical peritoneal adhesions: In vitro and in vivo characterization. Biomaterials 2016; 96:33-46. [DOI: 10.1016/j.biomaterials.2016.04.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 01/27/2023]
|
14
|
|
15
|
Mallick SP, Sagiri SS, Singh VK, Behera B, Thirugnanam A, Pradhan DK, Bhattacharya MK, Pal K. Genipin-Crosslinked Gelatin-Based Emulgels: an Insight into the Thermal, Mechanical, and Electrical Studies. AAPS PharmSciTech 2015; 16:1254-62. [PMID: 25771735 DOI: 10.1208/s12249-014-0260-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022] Open
Abstract
The present study discusses about the preparation and characterization (thermal, mechanical, and electrical) of the genipin-crosslinked gelatin emulgels. Emulgels have gained importance in recent years due to their improved stability than emulsions and ability to control the drug release. Mustard oil was used as the representative oil. A decrease in the enthalpy and entropy of the formulations was observed with the increase in the oil fraction. The mechanical studies suggested formation of softer emulgels as the oil fraction was increased. As the proportion of the oil fraction was increased in the emulgels, there was a corresponding increase in the impedance. The drug release properties from the emulgels were also studied. Ciprofloxacin was used as the model antimicrobial drug. The drug release was higher from the emulgels whose electrical conductivity was higher.
Collapse
|
16
|
Limón D, Amirthalingam E, Rodrigues M, Halbaut L, Andrade B, Garduño-Ramírez ML, Amabilino DB, Pérez-García L, Calpena AC. Novel nanostructured supramolecular hydrogels for the topical delivery of anionic drugs. Eur J Pharm Biopharm 2015; 96:421-36. [PMID: 26409201 DOI: 10.1016/j.ejpb.2015.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/30/2015] [Accepted: 09/14/2015] [Indexed: 11/16/2022]
Abstract
A bis-imidazolium-based amphiphilic molecule was used to form novel supramolecular gels in ethanol-water mixtures. The proportion of solvents, the concentration of gellant and the temperature are factors that strongly influence the gelling process. The physical gels that are formed comprise entangled fibers of around 100nm in diameter, able to incorporate anionic drugs, whose morphology varies depending on the drug they incorporate. These hydrogels are soft and therefore optimum for skin application. They show good stability when compared to previously reported gels. Suitable drug release and skin permeation profiles were obtained, and, moreover, they seem to promote the retention of the drug inside the skin. Finally, effective in vivo anti-inflammatory activity was observed, especially with the indomethacin-incorporated gel, which indicates that these supramolecular hydrogels are a good option for the delivery of poor water soluble drugs for the treatment of acute inflammation or other skin diseases.
Collapse
Affiliation(s)
- David Limón
- Departament de Farmacologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII, s/n, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ezhil Amirthalingam
- Departament de Farmacologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII, s/n, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Mafalda Rodrigues
- Departament de Farmacologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII, s/n, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lyda Halbaut
- Departament de Farmàcia i Tecnologia Farmacèutica, Universitat de Barcelona, Av. Joan XXI, s/n, 08028 Barcelona, Spain
| | - Berenice Andrade
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, Mexico
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos, Mexico
| | - David B Amabilino
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari, 08193 Bellaterra, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII, s/n, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ana C Calpena
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain; Departament de Farmàcia i Tecnologia Farmacèutica, Universitat de Barcelona, Av. Joan XXI, s/n, 08028 Barcelona, Spain.
| |
Collapse
|
17
|
Wang Z, Zhang Y, Zhang J, Huang L, Liu J, Li Y, Zhang G, Kundu SC, Wang L. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Sci Rep 2014; 4:7064. [PMID: 25412301 PMCID: PMC4238302 DOI: 10.1038/srep07064] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022] Open
Abstract
Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China 430022
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China 430022
| | - Yeshun Zhang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China 430022
| | - Jinxiang Zhang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China 430022
| | - Lei Huang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China 430022
| | - Jia Liu
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China 430022
| | - Yongkui Li
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China 430022
| | - Guozheng Zhang
- The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu China 212018
| | - Subhas C. Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India 721302
| | - Lin Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China 430022
- Medical Research Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China 430022
| |
Collapse
|
18
|
Kirchmajer DM, Panhuis MIH. Reinforcing biopolymer hydrogels with ionic-covalent entanglement hydrogel microspheres. J Appl Polym Sci 2014. [DOI: 10.1002/app.40557] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Damian Martin Kirchmajer
- Soft Materials Group, School of Chemistry and Intelligent Polymer Research Institute; ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong; New South Wales 2522 Australia
| | - Marc in het Panhuis
- Soft Materials Group, School of Chemistry and Intelligent Polymer Research Institute; ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong; New South Wales 2522 Australia
| |
Collapse
|
19
|
Khade SM, Behera B, Sagiri SS, Singh VK, Thirugnanam A, Pal K, Ray SS, Pradhan DK, Bhattacharya MK. Gelatin–PEG based metronidazole-loaded vaginal delivery systems: preparation, characterization and in vitro antimicrobial efficiency. IRANIAN POLYMER JOURNAL 2014. [DOI: 10.1007/s13726-013-0213-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Martinez AW, Caves JM, Ravi S, Li W, Chaikof EL. Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers. Acta Biomater 2014; 10:26-33. [PMID: 23993944 DOI: 10.1016/j.actbio.2013.08.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/04/2013] [Accepted: 08/19/2013] [Indexed: 11/30/2022]
Abstract
Recombinant elastin-like protein polymers are increasingly being investigated as component materials of a variety of implantable medical devices. This is chiefly a result of their favorable biological properties and the ability to tailor their physical and mechanical properties. In this report, we explore the potential of modulating the water content, mechanical properties, and drug release profiles of protein films through the selection of different crosslinking schemes and processing strategies. We find that the selection of crosslinking scheme and processing strategy has a significant influence on all aspects of protein polymer films. Significantly, utilization of a confined, fixed volume, as well as vapor-phase crosslinking strategies, decreased protein polymer equilibrium water content. Specifically, as compared to uncrosslinked protein gels, water content was reduced for genipin (15.5%), glutaraldehyde (GTA, 24.5%), GTA vapor crosslinking (31.6%), disulfide (SS, 18.2%) and SS vapor crosslinking (25.5%) (P<0.05). Distinct crosslinking strategies modulated protein polymer stiffness, strain at failure and ultimate tensile strength (UTS). In all cases, vapor-phase crosslinking produced the stiffest films with the highest UTS. Moreover, both confined, fixed volume and vapor-phase approaches influenced drug delivery rates, resulting in decreased initial drug burst and release rates as compared to solution phase crosslinking. Tailored crosslinking strategies provide an important option for modulating the physical, mechanical and drug delivery properties of protein polymers.
Collapse
Affiliation(s)
- Adam W Martinez
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
21
|
Heparin crosslinked chitosan microspheres for the delivery of neural stem cells and growth factors for central nervous system repair. Acta Biomater 2013; 9:6834-43. [PMID: 23467042 DOI: 10.1016/j.actbio.2013.02.043] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/22/2022]
Abstract
An effective paradigm for transplanting large numbers of neural stem cells after central nervous system (CNS) injury has yet to be established. Biomaterial scaffolds have shown promise in cell transplantation and in regenerative medicine, but improved scaffolds are needed. In this study we designed and optimized multifunctional and biocompatible chitosan-based films and microspheres for the delivery of neural stem cells and growth factors for CNS injuries. The chitosan microspheres were fabricated by coaxial airflow techniques, with the sphere size controlled by varying the syringe needle gauge and the airflow rate. When applying a coaxial airflow at 30 standard cubic feet per hour, ∼300μm diameter spheres were reproducibly generated that were physically stable yet susceptible to enzymatic degradation. Heparin was covalently crosslinked to the chitosan scaffolds using genipin, which bound fibroblast growth factor-2 (FGF-2) with high affinity while retaining its biological activity. At 1μgml(-1) approximately 80% of the FGF-2 bound to the scaffold. A neural stem cell line, GFP+RG3.6 derived from embryonic rat cortex, was used to evaluate cytocompatibility, attachment and survival on the crosslinked chitosan-heparin complex surfaces. The MTT assay and microscopic analysis revealed that the scaffold containing tethered FGF-2 was superior in sustaining survival and growth of neural stem cells compared to standard culture conditions. Altogether, our results demonstrate that this multifunctional scaffold possesses good cytocompatibility and can be used as a growth factor delivery vehicle while supporting neural stem cell attachment and survival.
Collapse
|
22
|
Wu T, Zhang Q, Ren W, Yi X, Zhou Z, Peng X, Yu X, Lang M. Controlled release of gentamicin from gelatin/genipin reinforced beta-tricalcium phosphate scaffold for the treatment of osteomyelitis. J Mater Chem B 2013; 1:3304-3313. [PMID: 32261039 DOI: 10.1039/c3tb20261e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Infection of the bone (osteomyelitis) remains one of the most challenging problems in the field of orthopedic surgery. The limitations of systemic antibiotics administration include undesired side effects, systemic toxicity, patient discomfort, and development of bacterial resistance. In this study, we developed a bactericidal gentamicin-doped beta-tricalcium phosphate (TCP) scaffold reinforced with a gelatin/genipin hydrogel (G-TCP). Our data showed that the gentamicin-doped G-TCP had a much longer drug releasing period, while the gentamicin was completely released from pure TCP cements (B-TCP) within one day. In addition, the release profile of G-TCP exhibited an initial burst followed by a zero-order release. One standard strain, Staphylococcus aureus (S. aureus, ATCC25923) was selected to evaluate the antibacterial activity and therapeutic effect of this scaffold. G-TCP significantly inhibited growth of S. aureus both in vitro and in vivo. In a rat osteomyelitis model, osteomyelitis could be totally cured after implantation of G-TCP for three weeks. We propose that the gelatin/genipin-gentamicin TCP scaffold represents one of the promising gentamicin releasing bone scaffolds in treating osteomyelitis.
Collapse
Affiliation(s)
- Tianyi Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hao Z, Wang L, Xiao K, Zhao Y, Zou M, Zhang Q, Ding Z, Yang F, Qu B. In vivo investigation of ceftiofur-loaded gelatin and PLGA microspheres in beagle dogs. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:903-910. [PMID: 23354736 DOI: 10.1007/s10856-012-4846-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/29/2012] [Indexed: 06/01/2023]
Abstract
Drug delivery systems based on polymer microspheres have received considerable attention. Ceftiofur sodium and ceftiofur hydrochloride is widely used for the treatment of bacterial diseases in animals but the delivery in vivo has not been reported. In this paper, we report the synthesis of microspheres from gelatin and PLGA, two kinds of typical natural and artificial materials, for loading ceftiofur and the in vivo investigation of the pharmacokinetics in beagle dogs. By controlling the synthesis parameters, gelatin and PLGA microspheres with diameter between 5 and 35 microns were obtained. Assay procedures based on high performance liquid chromatography were evaluated and confirmed. The dogs were randomly divided into three groups, i.e., control group, gelatin group, and PLGA group and administrated via intravenous injection. Plasma concentrations of ceftiofur over time were measured and analyzed. Results indicate that the main kinetic parameters do not show significant difference for the gelatin group and control group, but the area under the curve, plasma half-life, apparent volume of distribution, and clearance ratio of PLGA group show significant difference from the gelatin group and the control group. The PLGA microspheres show a low area under the curve but long time release.
Collapse
Affiliation(s)
- Zhihui Hao
- Laboratories of Biological Pharmaceutical, College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Smith JD, Weiss LE, Burgess JE, West AI, Campbell PG. Biologically Active Blood Plasma-Based Biomaterials as a New Paradigm for Tissue Repair Therapies. ACTA ACUST UNITED AC 2013. [DOI: 10.1089/dst.2012.0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Subramanian K, Vijayakumar V. Evaluation of isophorone diisocyanate crosslinked gelatin as a carrier for controlled delivery of drugs. Polym Bull (Berl) 2012. [DOI: 10.1007/s00289-012-0821-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction. Biomaterials 2012; 33:7456-67. [PMID: 22819495 DOI: 10.1016/j.biomaterials.2012.06.091] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/26/2012] [Indexed: 11/22/2022]
Abstract
In situ forming tissue sealants are advantageous due to ease in application, complete coverage of defect site and assured comfort levels to patients. The interconnected three-dimensional hydrophilic networks perfectly manage typical dermal wounds by suitably scaffolding skin fibroblast, diffusing the nutrients, therapeutics and exudates while still maintaining an adequately moist environment. We evaluate the cell homing ability of semi-interpenetrating non-mulberry tropical tasar silk sericin/polyacrylamide hydrophilic network with a keen understanding of its network characteristics and correlation of protein concentration with the performance as cell scaffold. Interconnectivity of porous networks observed through scanning electron micrograph revealed pore sizes ranging from 23 to 52 μm. The enhanced β-sheet content with the increasing sericin concentration in far red spectroscopy study supported their corresponding improved compressive strength. These semi-interpenetrating networks were found to possess a maximum fluid uptake of 112% of its weight, hence preventing the accumulation of exudates at the wound area. The present systems appear to possess characteristics like rapid gelation (~5min) at 37 °C, 98% porosity enabling the migration of fibroblasts during healing (observed through confocal and scanning electron micrographs), cell adhesion together with the absence of any cyto-toxic effect suggesting its potential as in situ tissue sealants. The compressive strength up to 61 kPa ensured ease in handling even when wet. The results prove the suitability to use non-mulberry tasar cocoon silk sericin/polyacrylamide semi-interpenetrating network as a reconstructive dermal sealant.
Collapse
|
27
|
Liu Z, Zhou Q, Zhu J, Xiao J, Wan P, Zhou C, Huang Z, Qiang N, Zhang W, Wu Z, Quan D, Wang Z. Using genipin-crosslinked acellular porcine corneal stroma for cosmetic corneal lens implants. Biomaterials 2012; 33:7336-46. [PMID: 22795849 DOI: 10.1016/j.biomaterials.2012.06.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 06/26/2012] [Indexed: 12/13/2022]
Abstract
Acellular porcine corneal stroma (APCS) has been proven to maintain the matrix microenvironment and is therefore an ideal biomaterial for the repair and reconstruction of corneal stroma. This study aims to develop a method to prepare cosmetic corneal lens implants for leukoma using genipin-crosslinked APCS (Gc-APCS). The Gc-APCS was prepared from APCS immersed in 1.0% genipin aqueous solution (pH 5.5) for 4 h at 37 °C, followed by lyophilization at -10 °C. The color of the Gc-APCS gradually deepened to dark-blue. The degree of crosslinking was 45.7 ± 4.6%, measured by the decrease of basic and hydroxy amino acids. The porous structure and ultrastructure of collagenous lamellae were maintained, and the porosity and BET SSA were 72.7 ± 4.6% and 23.01 ± 3.45 m(2)/g, respectively. The Gc-APCS rehydrated to the physiological water content within 5 min and was highly resistant to collagenase digestion. There were no significant differences in the areal modulus and curvature variation between Gc-APCS and nature porcine cornea. The dark-blue pigments were stable to pH, light and implantation in vivo. Gc-APCS extracts had no inhibitory effects on the proliferation of keratocytes. Corneal neovascularization, graft degradation and corneal rejection were not observed within 6 months.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thakur G, Mitra A, Basak A. GENIPIN CROSSLINKED DRUG–GELATIN COMPOSITE FOR DRUG TRANSPORT AND CYTOCOMPATIBILITY. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s101623721100244x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gelatin-based drug carrier matrices have emerged as very promising class of delivery system. The purpose of this investigation was to develop drug loaded gelatin-based gels (composites). Gelatin matrices were crosslinked with genipin, a naturally occurring crosslinker for the release of indomethacin. Indomethacin, a low molecular weight and moderately hydrophobic, anti-inflammatory agent was incorporated into the gelatin matrices to form drug loaded gel composites for the release study. The gels were subjected to temperature-dependent oscillatory rheology. The result showed pouring temperature in the range of ~31–34°C for the un-crosslinked gels while the crosslinked gels did not show crossover point. Gels were studied for surface morphology using scanning electron microscopy and a porous network structure was observed. The release of indomethacin from the gels indicated an initial increase in the release rate with the increase in drug concentrations. It was observed that drug composites with higher drug concentration exhibited higher drug transport. Swelling and crosslinking played a crucial role in regulating the drug transport. Further, viability assay suggested biocompatibility of these matrices in vitro. Gel in vitro cell compatibility using live dead assay evaluated with AH-927 cell line indicated normal cell proliferation without any harmful effect and thus suggesting appropriateness of crosslinked composites as potential drug carrier.
Collapse
Affiliation(s)
- Goutam Thakur
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Analava Mitra
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
| |
Collapse
|
29
|
Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int J Mol Sci 2012; 13:3229-3244. [PMID: 22489150 PMCID: PMC3317711 DOI: 10.3390/ijms13033229] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 01/11/2023] Open
Abstract
Circular dichroism (CD) is a useful technique for monitoring changes in the conformation of antimicrobial peptides or gelatin. In this study, interactions between cationic peptides and gelatin were observed without affecting the triple helical content of the gelatin, which was more strongly affected by anionic surfactant. The peptides did not adopt a secondary structure in the presence of aqueous solution or Tween 80, but a peptide secondary structure formed upon the addition of sodium dodecyl sulfate (SDS). The peptides bound to the phosphate group of lipopolysaccharide (LPS) and displayed an alpha-helical conformation while (KW)4 adopted a folded conformation. Further, the peptides did not specifically interact with the fungal cell wall components of mannan or laminarin. Tryptophan blue shift assay indicated that these peptides interacted with SDS, LPS, and gelatin but not with Tween 80, mannan, or laminarin. The peptides also displayed antibacterial activity against P. aeruginosa without cytotoxicity against HaCaT cells at MIC, except for HPA3NT3-analog peptide. In this study, we used a CD spectroscopic method to demonstrate the feasibility of peptide characterization in numerous environments. The CD method can thus be used as a screening method of gelatin-peptide interactions for use in wound healing applications.
Collapse
|