1
|
Taujale R, Uchimiya M, Clendinen CS, Borges RM, Turck CW, Edison AS. PyINETA: Open-Source Platform for INADEQUATE-JRES Integration in NMR Metabolomics. Anal Chem 2024; 96:19029-19037. [PMID: 39563064 PMCID: PMC11618735 DOI: 10.1021/acs.analchem.4c03966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Robust annotation of compounds is a critical element in metabolomics. The 13C-detection NMR experiment incredible natural abundance double-quantum transfer experiment (INADEQUATE) stands out as a powerful tool for structural elucidation, but this valuable experiment is not often included in metabolomics studies. This is partly due to the lack of a community platform that provides structural information based on INADEQUATE. Also, it is often the case that a single study uses various NMR experiments synergistically to improve the quality of information or balance total NMR experiment time, but there is no public platform that can integrate the outputs of INADEQUATE with other NMR experiments. Here, we introduce PyINETA, a Python-based INADEQUATE network analysis. PyINETA is an open-source platform that provides structural information on molecules using INADEQUATE, conducts database searches using an INADEQUATE library, and integrates information on INADEQUATE and a complementary NMR experiment 13C J-resolved experiment (13C-JRES). 13C-JRES was chosen because of its ability to efficiently provide relative quantification in a study of the 13C-enriched samples. Those steps are carried out automatically, and PyINETA keeps track of all the pipeline parameters and outputs, ensuring the transparency of annotation in metabolomics. Our evaluation of PyINETA using a model mouse study showed that PyINETA successfully integrated INADEQUATE and 13C-JRES. The results showed that 13C-labeled amino acids that were fed to mice were transferred to different tissues and were transformed to other metabolites. The distribution of those compounds was tissue-specific, showing enrichment of specific metabolites in the liver, spleen, pancreas, muscle, or lung. PyINETA is freely available on NMRbox.
Collapse
Affiliation(s)
- Rahil Taujale
- Institute
of Bioinformatics, University of Georgia, 120 E Green St, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Rd., Athens, Georgia 30602, United States
| | - Mario Uchimiya
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Rd., Athens, Georgia 30602, United States
| | - Chaevien S. Clendinen
- The
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ricardo M. Borges
- Instituto
de Pesquisas de Produtos Naturais, Universidade
Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Christoph W. Turck
- Max
Planck Institute of Psychiatry, Proteomics and Biomarkers, Kraepelinstr. 2-10, 80804 Munich, Germany
- Key Laboratory
of Animal Models and Human Disease Mechanisms of Yunnan Province,
and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research
in Common Diseases, Kunming Institute of
Zoology, Chinese Academy of Sciences, Kunming 650223, China
- National
Resource Center for Non-human Primates, and National Research Facility
for Phenotypic & Genetic Analysis of Model Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650107, China
| | - Arthur S. Edison
- Institute
of Bioinformatics, University of Georgia, 120 E Green St, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Rd., Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 120 E Green
St, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Taujale R, Uchimiya M, Clendinen CS, Borges RM, Turck CW, Edison AS. PyINETA: Open-source platform for INADEQUATE-JRES integration in NMR metabolomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.601875. [PMID: 39026850 PMCID: PMC11257532 DOI: 10.1101/2024.07.10.601875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Annotating compounds with high confidence is a critical element in metabolomics. 13C-detection NMR experiment INADEQUATE (incredible natural abundance double-quantum transfer experiment) stands out as a powerful tool for structural elucidation, whereas this valuable experiment is not often included in metabolomics studies. This is partly due to the lack of community platform that provides structural information based INADEQUATE. Also, it is often the case that a single study uses various NMR experiments synergistically to improve the quality of information or balance total NMR experiment time, but there is no public platform that can integrate the outputs of INADEQUATE and other NMR experiments either. Here, we introduce PyINETA, Python-based INADEQUATE network analysis. PyINETA is an open-source platform that provides structural information of molecules using INADEQUATE, conducts database search, and integrates information of INADEQUATE and a complementary NMR experiment 13C J-resolved experiment (13C-JRES). Those steps are carried out automatically, and PyINETA keeps track of all the pipeline parameters and outputs, ensuring the transparency of annotation in metabolomics. Our evaluation of PyINETA using a model mouse study showed that our pipeline successfully integrated INADEQUATE and 13C-JRES. The results showed that 13C-labeled amino acids that were fed to mice were transferred to different tissues, and, also, they were transformed to other metabolites. The distribution of those compounds was tissue-specific, showing enrichment of particular metabolites in liver, spleen, pancreas, muscle, or lung. The value of PyINETA was not limited to those known compounds; PyINETA also provided fragment information for unknown compounds. PyINETA is available on NMRbox.
Collapse
Affiliation(s)
- Rahil Taujale
- Institute of Bioinformatics, University of Georgia, 120 E Green St, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| | - Mario Uchimiya
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| | - Chaevien S. Clendinen
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354 USA
| | - Ricardo M. Borges
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Christoph W. Turck
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, Kraepelinstr. 2-10, 80804 Munich, Germany
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- National Resource Center for Non-human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Arthur S. Edison
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E Green St, Athens, GA 30602, USA
| |
Collapse
|
3
|
Hu Z, Sun T, Chen W, Nordenskiöld L, Lu L. Refined Bonded Terms in Coarse-Grained Models for Intrinsically Disordered Proteins Improve Backbone Conformations. J Phys Chem B 2024; 128:6492-6508. [PMID: 38950000 DOI: 10.1021/acs.jpcb.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Coarse-grained models designed for intrinsically disordered proteins and regions (IDP/Rs) usually omit some bonded potentials (e.g., angular and dihedral potentials) as a conventional strategy to enhance backbone flexibility. However, a notable drawback of this approach is the generation of inaccurate backbone conformations. Here, we addressed this problem by introducing residue-specific angular, refined dihedral, and correction map (CMAP) potentials, derived based on the statistics from a customized coil database. These bonded potentials were integrated into the existing Mpipi model, resulting in a new model, denoted as the "Mpipi+" model. Results show that the Mpipi+ model can improve backbone conformations. More importantly, it can markedly improve the secondary structure propensity (SSP) based on the experimental chemical shift and, consequently, succeed in capturing transient secondary structures. Moreover, the Mpipi+ model preserves the liquid-liquid phase separation (LLPS) propensities of IDPs.
Collapse
Affiliation(s)
- Zixin Hu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Wenwen Chen
- UHL no. 05-01, Tan Chin Tuan Wing, Office of the President, University Hall, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
4
|
Baskaran K, Ploskon E, Tejero R, Yokochi M, Harrus D, Liang Y, Peisach E, Persikova I, Ramelot TA, Sekharan M, Tolchard J, Westbrook JD, Bardiaux B, Schwieters CD, Patwardhan A, Velankar S, Burley SK, Kurisu G, Hoch JC, Montelione GT, Vuister GW, Young JY. Restraint validation of biomolecular structures determined by NMR in the Protein Data Bank. Structure 2024; 32:824-837.e1. [PMID: 38490206 PMCID: PMC11162339 DOI: 10.1016/j.str.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.
Collapse
Affiliation(s)
- Kumaran Baskaran
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA.
| | - Eliza Ploskon
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Roberto Tejero
- Departamento de Quίmica Fίsica, Universidad de Valencia, Dr. Moliner, 50 46100 Burjassot, Valencia, Spain
| | - Masashi Yokochi
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan; Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Deborah Harrus
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - James Tolchard
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Benjamin Bardiaux
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, 75015 Paris, France
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ardan Patwardhan
- The Electron Microscopy Data Bank, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sameer Velankar
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, La Jolla, CA, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan; Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Jeffrey C Hoch
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Jasmine Y Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
5
|
Baskaran K, Ploskon E, Tejero R, Yokochi M, Harrus D, Liang Y, Peisach E, Persikova I, Ramelot TA, Sekharan M, Tolchard J, Westbrook JD, Bardiaux B, Schwieters CD, Patwardhan A, Velankar S, Burley SK, Kurisu G, Hoch JC, Montelione GT, Vuister GW, Young JY. Restraint Validation of Biomolecular Structures Determined by NMR in the Protein Data Bank. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575520. [PMID: 38328042 PMCID: PMC10849500 DOI: 10.1101/2024.01.15.575520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.
Collapse
Affiliation(s)
- Kumaran Baskaran
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Eliza Ploskon
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Roberto Tejero
- Departamento de Quίmica Fίsica, Universidad de Valencia, Dr. Moliner, 50 46100-Burjassot, Valencia, Spain
| | - Masashi Yokochi
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Deborah Harrus
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Yuhe Liang
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ezra Peisach
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Irina Persikova
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Theresa A Ramelot
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| | - Monica Sekharan
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - James Tolchard
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Benjamin Bardiaux
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, 75015 Paris, France
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ardan Patwardhan
- The Electron Microscopy Data Bank, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sameer Velankar
- Protein Data Bank in Europe, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, California, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Protein Data Bank Japan, Protein Research Foundation, Minoh, Osaka 562-8686, Japan
| | - Jeffrey C Hoch
- Biological Magnetic Resonance Data Bank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Gaetano T Montelione
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Jasmine Y Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Nuzillard JM. Use of carbon-13 NMR to identify known natural products by querying a nuclear magnetic resonance database-An assessment. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:582-588. [PMID: 37583258 DOI: 10.1002/mrc.5386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023]
Abstract
The quick identification of known organic low molecular weight compounds, also known as structural dereplication, is a highly important task in the chemical profiling of natural resource extracts. To that end, a method that relies on carbon-13 nuclear magnetic resonance (NMR) spectroscopy, elaborated in earlier works of the author's research group, requires the availability of a dedicated database that establishes relationships between chemical structures, biological and chemical taxonomy, and spectroscopy. The construction of such a database, called acd_lotus, was reported earlier, and its usefulness was illustrated by only three examples. This article presents the results of structure searches carried out starting from 58 carbon-13 NMR data sets recorded on compounds selected in the metabolomics section of the biological magnetic resonance bank (BMRB). Two compound retrieval methods were employed. The first one involves searching in the acd_lotus database using commercial software. The second one operates through the freely accessible web interface of the nmrshiftdb2 database, which includes the compounds present in acd_lotus and many others. The two structural dereplication methods have proved to be efficient and can be used together in a complementary way.
Collapse
|
7
|
Lüking M, van der Spoel D, Elf J, Tribello GA. Can molecular dynamics be used to simulate biomolecular recognition? J Chem Phys 2023; 158:2889489. [PMID: 37158325 DOI: 10.1063/5.0146899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
There are many problems in biochemistry that are difficult to study experimentally. Simulation methods are appealing due to direct availability of atomic coordinates as a function of time. However, direct molecular simulations are challenged by the size of systems and the time scales needed to describe relevant motions. In theory, enhanced sampling algorithms can help to overcome some of the limitations of molecular simulations. Here, we discuss a problem in biochemistry that offers a significant challenge for enhanced sampling methods and that could, therefore, serve as a benchmark for comparing approaches that use machine learning to find suitable collective variables. In particular, we study the transitions LacI undergoes upon moving between being non-specifically and specifically bound to DNA. Many degrees of freedom change during this transition and that the transition does not occur reversibly in simulations if only a subset of these degrees of freedom are biased. We also explain why this problem is so important to biologists and the transformative impact that a simulation of it would have on the understanding of DNA regulation.
Collapse
Affiliation(s)
- Malin Lüking
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-75124 Uppsala, Sweden
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-75124 Uppsala, Sweden
| | - Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-75124 Uppsala, Sweden
| | - Gareth A Tribello
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
8
|
Hoch JC, Baskaran K, Burr H, Chin J, Eghbalnia H, Fujiwara T, Gryk M, Iwata T, Kojima C, Kurisu G, Maziuk D, Miyanoiri Y, Wedell J, Wilburn C, Yao H, Yokochi M. Biological Magnetic Resonance Data Bank. Nucleic Acids Res 2023; 51:D368-D376. [PMID: 36478084 PMCID: PMC9825541 DOI: 10.1093/nar/gkac1050] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022] Open
Abstract
The Biological Magnetic Resonance Data Bank (BMRB, https://bmrb.io) is the international open data repository for biomolecular nuclear magnetic resonance (NMR) data. Comprised of both empirical and derived data, BMRB has applications in the study of biomacromolecular structure and dynamics, biomolecular interactions, drug discovery, intrinsically disordered proteins, natural products, biomarkers, and metabolomics. Advances including GHz-class NMR instruments, national and trans-national NMR cyberinfrastructure, hybrid structural biology methods and machine learning are driving increases in the amount, type, and applications of NMR data in the biosciences. BMRB is a Core Archive and member of the World-wide Protein Data Bank (wwPDB).
Collapse
Affiliation(s)
- Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Kumaran Baskaran
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Harrison Burr
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - John Chin
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Hamid R Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Toshimichi Fujiwara
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Michael R Gryk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Takeshi Iwata
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Chojiro Kojima
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
- Graduate School of Engineering Science, Yokohama National University, Yokohama 240-8501, Japan
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Dmitri Maziuk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Yohei Miyanoiri
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| | - Jonathan R Wedell
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Colin Wilburn
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Hongyang Yao
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030-3305, USA
| | - Masashi Yokochi
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871. Japan
| |
Collapse
|
9
|
Ślusarz R, Lubecka EA, Czaplewski C, Liwo A. Improvements and new functionalities of UNRES server for coarse-grained modeling of protein structure, dynamics, and interactions. Front Mol Biosci 2022; 9:1071428. [PMID: 36589235 PMCID: PMC9794589 DOI: 10.3389/fmolb.2022.1071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
In this paper we report the improvements and extensions of the UNRES server (https://unres-server.chem.ug.edu.pl) for physics-based simulations with the coarse-grained UNRES model of polypeptide chains. The improvements include the replacement of the old code with the recently optimized one and adding the recent scale-consistent variant of the UNRES force field, which performs better in the modeling of proteins with the β and the α+β structures. The scope of applications of the package was extended to data-assisted simulations with restraints from nuclear magnetic resonance (NMR) and chemical crosslink mass-spectroscopy (XL-MS) measurements. NMR restraints can be input in the NMR Exchange Format (NEF), which has become a standard. Ambiguous NMR restraints are handled without expert intervention owing to a specially designed penalty function. The server can be used to run smaller jobs directly or to prepare input data to run larger production jobs by using standalone installations of UNRES.
Collapse
Affiliation(s)
- Rafał Ślusarz
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Emilia A. Lubecka
- Faculty of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities in Gdańsk, Gdańsk, Poland,*Correspondence: Adam Liwo,
| |
Collapse
|
10
|
Judge MT, Ebbels TMD. Problems, principles and progress in computational annotation of NMR metabolomics data. Metabolomics 2022; 18:102. [PMID: 36469142 PMCID: PMC9722819 DOI: 10.1007/s11306-022-01962-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/18/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND Compound identification remains a critical bottleneck in the process of exploiting Nuclear Magnetic Resonance (NMR) metabolomics data, especially for 1H 1-dimensional (1H 1D) data. As databases of reference compound spectra have grown, workflows have evolved to rely heavily on their search functions to facilitate this process by generating lists of potential metabolites found in complex mixture data, facilitating annotation and identification. However, approaches for validating and communicating annotations are most often guided by expert knowledge, and therefore are highly variable despite repeated efforts to align practices and define community standards. AIM OF REVIEW This review is aimed at broadening the application of automated annotation tools by discussing the key ideas of spectral matching and beginning to describe a set of terms to classify this information, thus advancing standards for communicating annotation confidence. Additionally, we hope that this review will facilitate the growing collaboration between chemical data scientists, software developers and the NMR metabolomics community aiding development of long-term software solutions. KEY SCIENTIFIC CONCEPTS OF REVIEW We begin with a brief discussion of the typical untargeted NMR identification workflow. We differentiate between annotation (hypothesis generation, filtering), and identification (hypothesis testing, verification), and note the utility of different NMR data features for annotation. We then touch on three parts of annotation: (1) generation of queries, (2) matching queries to reference data, and (3) scoring and confidence estimation of potential matches for verification. In doing so, we highlight existing approaches to automated and semi-automated annotation from the perspective of the structural information they utilize, as well as how this information can be represented computationally.
Collapse
Affiliation(s)
- Michael T Judge
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, 131 Sir Alexander Fleming Building, South Kensington Campus, London, UK
| | - Timothy M D Ebbels
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, 131 Sir Alexander Fleming Building, South Kensington Campus, London, UK.
| |
Collapse
|
11
|
Fraga KJ, Huang YJ, Ramelot TA, Swapna GVT, Lashawn Anak Kendary A, Li E, Korf I, Montelione GT. SpecDB: A relational database for archiving biomolecular NMR spectral data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107268. [PMID: 35930941 PMCID: PMC9922030 DOI: 10.1016/j.jmr.2022.107268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 05/11/2023]
Abstract
NMR is a valuable experimental tool in the structural biologist's toolkit to elucidate the structures, functions, and motions of biomolecules. The progress of machine learning, particularly in structural biology, reveals the critical importance of large, diverse, and reliable datasets in developing new methods and understanding in structural biology and science more broadly. Biomolecular NMR research groups produce large amounts of data, and there is renewed interest in organizing these data to train new, sophisticated machine learning architectures and to improve biomolecular NMR analysis pipelines. The foundational data type in NMR is the free-induction decay (FID). There are opportunities to build sophisticated machine learning methods to tackle long-standing problems in NMR data processing, resonance assignment, dynamics analysis, and structure determination using NMR FIDs. Our goal in this study is to provide a lightweight, broadly available tool for archiving FID data as it is generated at the spectrometer, and grow a new resource of FID data and associated metadata. This study presents a relational schema for storing and organizing the metadata items that describe an NMR sample and FID data, which we call Spectral Database (SpecDB). SpecDB is implemented in SQLite and includes a Python software library providing a command-line application to create, organize, query, backup, share, and maintain the database. This set of software tools and database schema allow users to store, organize, share, and learn from NMR time domain data. SpecDB is freely available under an open source license at https://github.rpi.edu/RPIBioinformatics/SpecDB.
Collapse
Affiliation(s)
- Keith J Fraga
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| | - Yuanpeng J Huang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.
| | - Theresa A Ramelot
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.
| | - G V T Swapna
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | - Ethan Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.
| | - Ian Korf
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA.
| |
Collapse
|
12
|
Rauh D, Blankenburg C, Fischer TG, Jung N, Kuhn S, Schatzschneider U, Schulze T, Neumann S. Data format standards in analytical chemistry. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-3101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Research data is an essential part of research and almost every publication in chemistry. The data itself can be valuable for reuse if sustainably deposited, annotated and archived. Thus, it is important to publish data following the FAIR principles, to make it findable, accessible, interoperable and reusable not only for humans but also in machine-readable form. This also improves transparency and reproducibility of research findings and fosters analytical work with scientific data to generate new insights, being only accessible with manifold and diverse datasets. Research data requires complete and informative metadata and use of open data formats to obtain interoperable data. Generic data formats like AnIML and JCAMP-DX have been used for many applications. Special formats for some analytical methods are already accepted, like mzML for mass spectrometry or nmrML and NMReDATA for NMR spectroscopy data. Other methods still lack common standards for data. Only a joint effort of chemists, instrument and software vendors, publishers and infrastructure maintainers can make sure that the analytical data will be of value in the future. In this review, we describe existing data formats in analytical chemistry and introduce guidelines for the development and use of standardized and open data formats.
Collapse
Affiliation(s)
- David Rauh
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data , Weinberg 3 , 06120 Halle , Germany
| | - Claudia Blankenburg
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data , Weinberg 3 , 06120 Halle , Germany
| | - Tillmann G. Fischer
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data , Weinberg 3 , 06120 Halle , Germany
| | - Nicole Jung
- Karlsruhe Institute of Technology, Institute for Chemical and Biological Systems (IBCS-FMS) , Hermann von Helmholtz Platz 1 , 76344 Eggenstein-Leopolshafen , Germany
| | - Stefan Kuhn
- School of Computer Science and Informatics , De Montfort University , Leicester , UK
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , D-97074 Würzburg , Germany
| | - Tobias Schulze
- Department of Effect-Directed Analysis , Helmholtz Centre for Environmental Research – UFZ , Permoserstr. 15, 04318 Leipzig , Germany
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data , Weinberg 3 , 06120 Halle , Germany
| |
Collapse
|
13
|
Rahimi M, Lee Y, Nguyen H, Chiu A, Lee W. A toolset for the solid-state NMR-based 3D structure calculation of proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 339:107214. [PMID: 35490563 DOI: 10.1016/j.jmr.2022.107214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Proteins are the building blocks of life. The shape of the protein determines its functionality. This understanding of the 3D structure of proteins has applications in study of diseases, medicine, body functions, and other aspects of life. Nuclear magnetic resonance (NMR) has been a powerful tool for researchers to get insight into the metabolome of cells, tissues, biofluids, secretions, and overall etiology of the disease state. Solid-state NMR (ssNMR) spectroscopy is used for samples that have low solubility in common NMR solvents. The use of ssNMR for 3D structure determination of proteins has been on the rise in the recent years especially for such samples. Still, one of the challenges that researchers face in this area is a shortage of easy and user-friendly computational aids. To address this, we are introducing our comprehensive software solution by automating every step of the process and essentially transforming the task into a few clicks of the mouse. The workflow for 3D structure determination has been simplified down to only a few procedures. Starting with selection of an ssNMR spectrum, user can receive its 3D structure along with an abundance of statistical information and validation tools using our software. We have tested this toolset to test the usefulness and user-friendliness with different data sets available on biological magnetic resonance bank (BMRB).
Collapse
Affiliation(s)
- Mehdi Rahimi
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA.
| | - Yeongjoon Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| | - Huong Nguyen
- Computer Science Department, University of Wisconsin-Madison, Madison, WI 53706, USA; URS Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Abigail Chiu
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA.
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA.
| |
Collapse
|
14
|
Hanson RM, Jeannerat D, Archibald M, Bruno IJ, Chalk SJ, Davies AN, Lancashire RJ, Lang J, Rzepa HS. IUPAC specification for the FAIR management of spectroscopic data in chemistry (IUPAC FAIRSpec) – guiding principles. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A set of guiding principles for the development of a standard for FAIR management of spectroscopic data are outlined and discussed. The principles form the basis for future recommendations of IUPAC Project 2019-031-1-024 specifying a detailed data model and metadata schema for describing the contents of an “IUPAC FAIRData Collection” and the organization of digital objects within that collection. Foremost among the recommendations will be a specification for an “IUPAC FAIRData Finding Aid” that describes the collection in such a way as to optimize the findability, accessibility, interoperability, and reusability of its contents. Results of an analysis of data provided by an American Chemical Society Publications pilot study are discussed in relation to potential workflows that might be used in implementing the “IUPAC FAIRSpec” standard based on these principles.
Collapse
Affiliation(s)
- Robert M. Hanson
- Department of Chemistry , St Olaf College , Northfield , MN , USA
| | | | | | - Ian J. Bruno
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , UK
| | - Stuart J. Chalk
- Department of Chemistry , University of North Florida , Jacksonville , FL , USA
| | - Antony N. Davies
- SERC, Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science , University of South Wales , Newport , UK
| | - Robert J. Lancashire
- Department of Chemistry , The University of the West Indies , Mona Campus , Kingston 7 , Jamaica
| | - Jeffrey Lang
- American Chemical Society Publications Division , Washington , DC , USA
| | - Henry S. Rzepa
- Department of Chemistry , Molecular Sciences Research Hub, Imperial College London , White City Campus, Wood Lane , London W12 OBZ , UK
| |
Collapse
|
15
|
Baskaran K, Craft DL, Eghbalnia HR, Gryk MR, Hoch JC, Maciejewski MW, Schuyler AD, Wedell JR, Wilburn CW. Merging NMR Data and Computation Facilitates Data-Centered Research. Front Mol Biosci 2022; 8:817175. [PMID: 35111815 PMCID: PMC8802229 DOI: 10.3389/fmolb.2021.817175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022] Open
Abstract
The Biological Magnetic Resonance Data Bank (BMRB) has served the NMR structural biology community for 40 years, and has been instrumental in the development of many widely-used tools. It fosters the reuse of data resources in structural biology by embodying the FAIR data principles (Findable, Accessible, Inter-operable, and Re-usable). NMRbox is less than a decade old, but complements BMRB by providing NMR software and high-performance computing resources, facilitating the reuse of software resources. BMRB and NMRbox both facilitate reproducible research. NMRbox also fosters the development and deployment of complex meta-software. Combining BMRB and NMRbox helps speed and simplify workflows that utilize BMRB, and enables facile federation of BMRB with other data repositories. Utilization of BMRB and NMRbox in tandem will enable additional advances, such as machine learning, that are poised to become increasingly powerful.
Collapse
Affiliation(s)
| | | | - Hamid R. Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | | | | | | |
Collapse
|
16
|
Bekker G, Yokochi M, Suzuki H, Ikegawa Y, Iwata T, Kudou T, Yura K, Fujiwara T, Kawabata T, Kurisu G. Protein Data Bank Japan: Celebrating our 20th anniversary during a global pandemic as the Asian hub of three dimensional macromolecular structural data. Protein Sci 2022; 31:173-186. [PMID: 34664328 PMCID: PMC8740847 DOI: 10.1002/pro.4211] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022]
Abstract
Protein Data Bank Japan (PDBj), a founding member of the worldwide Protein Data Bank (wwPDB) has accepted, processed and distributed experimentally determined biological macromolecular structures for 20 years. During that time, we have continuously made major improvements to our query search interface of PDBj Mine 2, the BMRBj web interface, and EM Navigator for PDB/BMRB/EMDB entries. PDBj also serves PDB-related secondary database data, original web-based modeling services such as Homology modeling of complex structure (HOMCOS), visualization services and utility tools, which we have continuously enhanced and expanded throughout the years. In addition, we have recently developed several unique archives, BSM-Arc for computational structure models, and XRDa for raw X-ray diffraction images, both of which promote open science in the structural biology community. During the COVID-19 pandemic, PDBj has also started to provide feature pages for COVID-19 related entries across all available archives at PDBj from raw experimental data and PDB structural data to computationally predicted models, while also providing COVID-19 outreach content for high school students and teachers.
Collapse
Affiliation(s)
- Gert‐Jan Bekker
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| | - Masashi Yokochi
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| | - Hirofumi Suzuki
- School of Advanced Science and EngineeringWaseda UniversityShinjukuTokyoJapan
| | - Yasuyo Ikegawa
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| | - Takeshi Iwata
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| | - Takahiro Kudou
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| | - Kei Yura
- School of Advanced Science and EngineeringWaseda UniversityShinjukuTokyoJapan
- Graduate School of Humanities and Sciences, Ochanoizu UniversityBunkyoTokyoJapan
| | | | - Takeshi Kawabata
- Protein Research FoundationMinohOsakaJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaOsakaJapan
| | - Genji Kurisu
- Institute for Protein ResearchOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
17
|
Miao Z, Wang Q, Xiao X, Kamal GM, Song L, Zhang X, Li C, Zhou X, Jiang B, Liu M. CSI-LSTM: a web server to predict protein secondary structure using bidirectional long short term memory and NMR chemical shifts. JOURNAL OF BIOMOLECULAR NMR 2021; 75:393-400. [PMID: 34510297 DOI: 10.1007/s10858-021-00383-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Protein secondary structure provides rich structural information, hence the description and understanding of protein structure relies heavily on it. Identification or prediction of secondary structures therefore plays an important role in protein research. In protein NMR studies, it is more convenient to predict secondary structures from chemical shifts as compared to the traditional determination methods based on inter-nuclear distances provided by NOESY experiment. In recent years, there was a significant improvement observed in deep neural networks, which had been applied in many research fields. Here we proposed a deep neural network based on bidirectional long short term memory (biLSTM) to predict protein 3-state secondary structure using NMR chemical shifts of backbone nuclei. While comparing with the existing methods the proposed method showed better prediction accuracy. Based on the proposed method, a web server has been built to provide protein secondary structure prediction service.
Collapse
Affiliation(s)
- Zhiwei Miao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Qianqian Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Xiongjie Xiao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Ghulam Mustafa Kamal
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Punjab, 64200, Pakistan
| | - Linhong Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xu Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Conggang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xin Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Bin Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Maili Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
18
|
Baskaran K, Wilburn C, Wedell J, Koharudin L, Ulrich E, Schuyler A, Eghbalnia H, Gronenborn A, Hoch J. Anomalous amide proton chemical shifts as signatures of hydrogen bonding to aromatic sidechains. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:765-775. [PMID: 37905229 PMCID: PMC10539802 DOI: 10.5194/mr-2-765-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 11/02/2023]
Abstract
Hydrogen bonding between an amide group and the p-π cloud of an aromatic ring was first identified in a protein in the 1980s. Subsequent surveys of high-resolution X-ray crystal structures found multiple instances, but their preponderance was determined to be infrequent. Hydrogen atoms participating in a hydrogen bond to the p-π cloud of an aromatic ring are expected to experience an upfield chemical shift arising from a shielding ring current shift. We surveyed the Biological Magnetic Resonance Data Bank for amide hydrogens exhibiting unusual shifts as well as corroborating nuclear Overhauser effects between the amide protons and ring protons. We found evidence that Trp residues are more likely to be involved in p-π hydrogen bonds than other aromatic amino acids, whereas His residues are more likely to be involved in in-plane hydrogen bonds, with a ring nitrogen acting as the hydrogen acceptor. The p-π hydrogen bonds may be more abundant than previously believed. The inclusion in NMR structure refinement protocols of shift effects in amide protons from aromatic sidechains, or explicit hydrogen bond restraints between amides and aromatic rings, could improve the local accuracy of sidechain orientations in solution NMR protein structures, but their impact on global accuracy is likely be limited.
Collapse
Affiliation(s)
- Kumaran Baskaran
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Colin W. Wilburn
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Jonathan R. Wedell
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Leonardus M. I. Koharudin
- Department of Structural Biology University of Pittsburgh School of
Medicine 3501 Fifth Ave., Pittsburgh, PA 15260 USA
| | - Eldon L. Ulrich
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Adam D. Schuyler
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Hamid R. Eghbalnia
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| | - Angela M. Gronenborn
- Department of Structural Biology University of Pittsburgh School of
Medicine 3501 Fifth Ave., Pittsburgh, PA 15260 USA
| | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, 263
Farmington Ave., Farmington, CT 06030-3305 USA
| |
Collapse
|
19
|
Kikuchi J, Yamada S. The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Adv 2021; 11:30426-30447. [PMID: 35480260 PMCID: PMC9041152 DOI: 10.1039/d1ra03008f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
The environment, from microbial ecosystems to recycled resources, fluctuates dynamically due to many physical, chemical and biological factors, the profile of which reflects changes in overall state, such as environmental illness caused by a collapse of homeostasis. To evaluate and predict environmental health in terms of systemic homeostasis and resource balance, a comprehensive understanding of these factors requires an approach based on the "exposome paradigm", namely the totality of exposure to all substances. Furthermore, in considering sustainable development to meet global population growth, it is important to gain an understanding of both the circulation of biological resources and waste recycling in human society. From this perspective, natural environment, agriculture, aquaculture, wastewater treatment in industry, biomass degradation and biodegradable materials design are at the forefront of current research. In this respect, nuclear magnetic resonance (NMR) offers tremendous advantages in the analysis of samples of molecular complexity, such as crude bio-extracts, intact cells and tissues, fibres, foods, feeds, fertilizers and environmental samples. Here we outline examples to promote an understanding of recent applications of solution-state, solid-state, time-domain NMR and magnetic resonance imaging (MRI) to the complex evaluation of organisms, materials and the environment. We also describe useful databases and informatics tools, as well as machine learning techniques for NMR analysis, demonstrating that NMR data science can be used to evaluate the exposome in both the natural environment and human society towards a sustainable future.
Collapse
Affiliation(s)
- Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Shunji Yamada
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Prediction Science Laboratory, RIKEN Cluster for Pioneering Research 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
- Data Assimilation Research Team, RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
20
|
Sinelnikova A, Spoel DVD. NMR refinement and peptide folding using the GROMACS software. JOURNAL OF BIOMOLECULAR NMR 2021; 75:143-149. [PMID: 33778935 PMCID: PMC8131288 DOI: 10.1007/s10858-021-00363-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/18/2021] [Indexed: 05/11/2023]
Abstract
Nuclear magnetic resonance spectroscopy is used routinely for studying the three-dimensional structures and dynamics of proteins and nucleic acids. Structure determination is usually done by adding restraints based upon NMR data to a classical energy function and performing restrained molecular simulations. Here we report on the implementation of a script to extract NMR restraints from a NMR-STAR file and export it to the GROMACS software. With this package it is possible to model distance restraints, dihedral restraints and orientation restraints. The output from the script is validated by performing simulations with and without restraints, including the ab initio refinement of one peptide.
Collapse
Affiliation(s)
- Anna Sinelnikova
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Evans JD, Bon V, Senkovska I, Kaskel S. A Universal Standard Archive File for Adsorption Data. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4222-4226. [PMID: 33797923 DOI: 10.1021/acs.langmuir.1c00122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
New advanced adsorbents are a crucial driver for the development of energy and environmental applications. Tremendous potential is provided by machine learning and data mining techniques, as these approaches can identify the most appropriate adsorbent for a particular application. However, the current scientific reporting of adsorption isotherms in graphs and figures is not adequate to reproduce original experimentally measured data. This report proposes the specification of a new standard adsorption information file (AIF) inspired by the ubiquitous crystallographic information file (CIF) and based on the self-defining text archive and retrieval (STAR) procedure, also used to represent biological nuclear magnetic resonance experiments (NMR-STAR). The AIF is a flexible and easily extended free-format archive file that is readily human and machine readable and is simple to edit using a basic text editor or parse for database curation. This format represents the first steps toward an open adsorption data format as a basis for a decentralized adsorption data library. An open format facilitates the electronic transmission of adsorption data between laboratories, journals, and larger databases, which is key in the effort to increase open science in the field of porous materials in the future.
Collapse
Affiliation(s)
- Jack D Evans
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Volodymyr Bon
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Irena Senkovska
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| |
Collapse
|
22
|
Kupče Ē, Frydman L, Webb AG, Yong JRJ, Claridge TDW. Parallel nuclear magnetic resonance spectroscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00024-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
24
|
Kanza S, Graham Frey J. Semantic Technologies in Drug Discovery. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
25
|
Abstract
Protein Data Bank is the single worldwide archive of experimentally determined macromolecular structure data. Established in 1971 as the first open access data resource in biology, the PDB archive is managed by the worldwide Protein Data Bank (wwPDB) consortium which has four partners-the RCSB Protein Data Bank (RCSB PDB; rcsb.org), the Protein Data Bank Japan (PDBj; pdbj.org), the Protein Data Bank in Europe (PDBe; pdbe.org), and BioMagResBank (BMRB; www.bmrb.wisc.edu ). The PDB archive currently includes ~175,000 entries. The wwPDB has established a number of task forces and working groups that bring together experts form the community who provide recommendations on improving data standards and data validation for improving data quality and integrity. The wwPDB members continue to develop the joint deposition, biocuration, and validation system (OneDep) to improve data quality and accommodate new data from emerging techniques such as 3DEM. Each PDB entry contains coordinate model and associated metadata for all experimentally determined atomic structures, experimental data for the traditional structure determination techniques (X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy), validation reports, and additional information on quaternary structures. The wwPDB partners are committed to following the FAIR (Findability, Accessibility, Interoperability, and Reproducibility) principles and have implemented a DOI resolution mechanism that provides access to all the relevant files for a given PDB entry. On average, >250 new entries are added to the archive every week and made available by each wwPDB partner via FTP area. The wwPDB partner sites also develop data access and analysis tools and make these available via their websites. wwPDB continues to work with experts in the community to establish a federation of archives for archiving structures determined using integrative/hybrid method where multiple experimental techniques are used.
Collapse
Affiliation(s)
- Sameer Velankar
- Protein Data Bank in Europe, European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Genji Kurisu
- Protein Data Bank Japan, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Jeffrey C Hoch
- BioMagResBank, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - John L Markley
- BioMagResBank, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
26
|
Berman HM, Vallat B, Lawson CL. The data universe of structural biology. IUCRJ 2020; 7:630-638. [PMID: 32695409 PMCID: PMC7340255 DOI: 10.1107/s205225252000562x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 05/05/2023]
Abstract
The Protein Data Bank (PDB) has grown from a small data resource for crystallographers to a worldwide resource serving structural biology. The history of the growth of the PDB and the role that the community has played in developing standards and policies are described. This article also illustrates how other biophysics communities are collaborating with the worldwide PDB to create a network of interoperating data resources. This network will expand the capabilities of structural biology and enable the determination and archiving of increasingly complex structures.
Collapse
Affiliation(s)
- Helen M. Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biological Sciences and Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Brinda Vallat
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Catherine L. Lawson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
27
|
Romero PR, Kobayashi N, Wedell JR, Baskaran K, Iwata T, Yokochi M, Maziuk D, Yao H, Fujiwara T, Kurusu G, Ulrich EL, Hoch JC, Markley JL. BioMagResBank (BMRB) as a Resource for Structural Biology. Methods Mol Biol 2020; 2112:187-218. [PMID: 32006287 DOI: 10.1007/978-1-0716-0270-6_14] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Biological Magnetic Resonance Data Bank (BioMagResBank or BMRB), founded in 1988, serves as the archive for data generated by nuclear magnetic resonance (NMR) spectroscopy of biological systems. NMR spectroscopy is unique among biophysical approaches in its ability to provide a broad range of atomic and higher-level information relevant to the structural, dynamic, and chemical properties of biological macromolecules, as well as report on metabolite and natural product concentrations in complex mixtures and their chemical structures. BMRB became a core member of the Worldwide Protein Data Bank (wwPDB) in 2007, and the BMRB archive is now a core archive of the wwPDB. Currently, about 10% of the structures deposited into the PDB archive are based on NMR spectroscopy. BMRB stores experimental and derived data from biomolecular NMR studies. Newer BMRB biopolymer depositions are divided about evenly between those associated with structure determinations (atomic coordinates and supporting information archived in the PDB) and those reporting experimental information on molecular dynamics, conformational transitions, ligand binding, assigned chemical shifts, or other results from NMR spectroscopy. BMRB also provides resources for NMR studies of metabolites and other small molecules that are often macromolecular ligands and/or nonstandard residues. This chapter is directed to the structural biology community rather than the metabolomics and natural products community. Our goal is to describe various BMRB services offered to structural biology researchers and how they can be accessed and utilized. These services can be classified into four main groups: (1) data deposition, (2) data retrieval, (3) data analysis, and (4) services for NMR spectroscopists and software developers. The chapter also describes the NMR-STAR data format used by BMRB and the tools provided to facilitate its use. For programmers, BMRB offers an application programming interface (API) and libraries in the Python and R languages that enable users to develop their own BMRB-based tools for data analysis, visualization, and manipulation of NMR-STAR formatted files. BMRB also provides users with direct access tools through the NMRbox platform.
Collapse
Affiliation(s)
- Pedro R Romero
- BMRB, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Naohiro Kobayashi
- PDBj-BMRB, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Jonathan R Wedell
- BMRB, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Kumaran Baskaran
- BMRB, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Takeshi Iwata
- PDBj-BMRB, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masashi Yokochi
- PDBj-BMRB, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Dimitri Maziuk
- BMRB, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Hongyang Yao
- BMRB, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Toshimichi Fujiwara
- PDBj-BMRB, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Genji Kurusu
- PDBj-BMRB, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Eldon L Ulrich
- BMRB, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeffrey C Hoch
- BMRB, Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| | - John L Markley
- BMRB, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
28
|
Berman HM, Adams PD, Bonvin AA, Burley SK, Carragher B, Chiu W, DiMaio F, Ferrin TE, Gabanyi MJ, Goddard TD, Griffin PR, Haas J, Hanke CA, Hoch JC, Hummer G, Kurisu G, Lawson CL, Leitner A, Markley JL, Meiler J, Montelione GT, Phillips GN, Prisner T, Rappsilber J, Schriemer DC, Schwede T, Seidel CAM, Strutzenberg TS, Svergun DI, Tajkhorshid E, Trewhella J, Vallat B, Velankar S, Vuister GW, Webb B, Westbrook JD, White KL, Sali A. Federating Structural Models and Data: Outcomes from A Workshop on Archiving Integrative Structures. Structure 2019; 27:1745-1759. [PMID: 31780431 DOI: 10.1016/j.str.2019.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022]
Abstract
Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures. The primary goal of the Workshop was to build consensus for addressing the challenges involved in creating common data standards, building methods for federated data exchange, and developing mechanisms for validating integrative structures. The summary of the Workshop and the recommendations that emerged are presented here.
Collapse
Affiliation(s)
- Helen M Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Bridge Institute, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA.
| | - Paul D Adams
- Physical Biosciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720-8235, USA; Department of Bioengineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Alexandre A Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wah Chiu
- Department of Bioengineering, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305-5447, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Thomas E Ferrin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Margaret J Gabanyi
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas D Goddard
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | | | - Juergen Haas
- Swiss Institute of Bioinformatics and Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Christian A Hanke
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Genji Kurisu
- Protein Data Bank Japan (PDBj), Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Catherine L Lawson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - John L Markley
- BioMagResBank (BMRB), Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37221, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytech Institute, Troy, NY 12180, USA
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry, Rice University, Houston, TX 77251, USA
| | - Thomas Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3JR, Scotland
| | - David C Schriemer
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Torsten Schwede
- Swiss Institute of Bioinformatics and Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Claus A M Seidel
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Brinda Vallat
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Benjamin Webb
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kate L White
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Bridge Institute, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrej Sali
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
29
|
Lee W, Bahrami A, Dashti HT, Eghbalnia HR, Tonelli M, Westler WM, Markley JL. I-PINE web server: an integrative probabilistic NMR assignment system for proteins. JOURNAL OF BIOMOLECULAR NMR 2019; 73:213-222. [PMID: 31165321 PMCID: PMC6579641 DOI: 10.1007/s10858-019-00255-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/21/2019] [Indexed: 05/12/2023]
Abstract
Various methods for understanding the structural and dynamic properties of proteins rely on the analysis of their NMR chemical shifts. These methods require the initial assignment of NMR signals to particular atoms in the sequence of the protein, a step that can be very time-consuming. The probabilistic interaction network of evidence (PINE) algorithm for automated assignment of backbone and side chain chemical shifts utilizes a Bayesian probabilistic network model that analyzes sequence data and peak lists from multiple NMR experiments. PINE, which is one of the most popular and reliable automated chemical shift assignment algorithms, has been available to the protein NMR community for longer than a decade. We announce here a new web server version of PINE, called Integrative PINE (I-PINE), which supports more types of NMR experiments than PINE (including three-dimensional nuclear Overhauser enhancement and four-dimensional J-coupling experiments) along with more comprehensive visualization of chemical shift based analysis of protein structure and dynamics. The I-PINE server is freely accessible at http://i-pine.nmrfam.wisc.edu . Help pages and tutorial including browser capability are available at: http://i-pine.nmrfam.wisc.edu/instruction.html . Sample data that can be used for testing the web server are available at: http://i-pine.nmrfam.wisc.edu/examples.html .
Collapse
Affiliation(s)
- Woonghee Lee
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Arash Bahrami
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- NetSeer, Inc, 555 Ellis Street, Suite B, Mountain View, CA, 94043, USA
| | - Hesam T Dashti
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Hamid R Eghbalnia
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - William M Westler
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John L Markley
- National Magnetic Resonance Facility at Madison, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
30
|
Markley JL, Dashti H, Wedell JR, Westler WM, Eghbalnia HR. Tools for Enhanced NMR-Based Metabolomics Analysis. Methods Mol Biol 2019; 2037:413-427. [PMID: 31463858 PMCID: PMC7995344 DOI: 10.1007/978-1-4939-9690-2_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolomics is the study of profiles of small molecules in biological fluids, cells, or organs. These profiles can be thought of as the "fingerprints" left behind from chemical processes occurring in biological systems. Because of its potential for groundbreaking applications in disease diagnostics, biomarker discovery, and systems biology, metabolomics has emerged as a rapidly growing area of research. Metabolomics investigations often, but not always, involve the identification and quantification of endogenous and exogenous metabolites in biological samples. Software tools and databases play a crucial role in advancing the rigor, robustness, reproducibility, and validation of these studies. Specifically, the establishment of a robust library of spectral signatures with unique compound descriptors and atom identities plays a key role in profiling studies based on data from nuclear magnetic resonance (NMR) spectroscopy. Here, we discuss developments leading to a rigorous basis for unique identification of compounds, reproducible numbering of atoms, the compact representation of NMR spectra of metabolites and small molecules, tools for improved compound identification, quantification and visualization, and approaches toward the goal of rigorous analysis of metabolomics data.
Collapse
Affiliation(s)
- John L Markley
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA.
| | - Hesam Dashti
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan R Wedell
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| | - William M Westler
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| | - Hamid R Eghbalnia
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|