1
|
Silva MF, Douglas K, Sandalli S, Maclean AE, Sheiner L. Functional and biochemical characterization of the Toxoplasma gondii succinate dehydrogenase complex. PLoS Pathog 2023; 19:e1011867. [PMID: 38079448 PMCID: PMC10735183 DOI: 10.1371/journal.ppat.1011867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The mitochondrial electron transport chain (mETC) is a series of membrane embedded enzymatic complexes critical for energy conversion and mitochondrial metabolism. In commonly studied eukaryotes, including humans and animals, complex II, also known as succinate dehydrogenase (SDH), is an essential four-subunit enzyme that acts as an entry point to the mETC, by harvesting electrons from the TCA cycle. Apicomplexa are pathogenic parasites with significant impact on human and animal health. The phylum includes Toxoplasma gondii which can cause fatal infections in immunocompromised people. Most apicomplexans, including Toxoplasma, rely on their mETC for survival, yet SDH remains largely understudied. Previous studies pointed to a divergent apicomplexan SDH with nine subunits proposed for the Toxoplasma complex, compared to four in humans. While two of the nine are homologs of the well-studied SDHA and B, the other seven have no homologs in SDHs of other systems. Moreover, SDHC and D, that anchor SDH to the membrane and participate in substrate bindings, have no homologs in Apicomplexa. Here, we validated five of the seven proposed subunits as bona fide SDH components and demonstrated their importance for SDH assembly and activity. We further find that all five subunits are important for parasite growth, and that disruption of SDH impairs mitochondrial respiration and results in spontaneous initiation of differentiation into bradyzoites. Finally, we provide evidence that the five subunits are membrane bound, consistent with their potential role in membrane anchoring, and we demonstrate that a DY motif in one of them, SDH10, is essential for complex formation and function. Our study confirms the divergent composition of Toxoplasma SDH compared to human, and starts exploring the role of the lineage-specific subunits in SDH function, paving the way for future mechanistic studies.
Collapse
Affiliation(s)
- Mariana F. Silva
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Kiera Douglas
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Sofia Sandalli
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew E. Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Miranda-Astudillo H, Ostolga-Chavarría M, Cardol P, González-Halphen D. Beyond being an energy supplier, ATP synthase is a sculptor of mitochondrial cristae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148569. [PMID: 35577152 DOI: 10.1016/j.bbabio.2022.148569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial F1FO-ATP synthase plays a key role in cellular bioenergetics; this enzyme is present in all eukaryotic linages except in amitochondriate organisms. Despite its ancestral origin, traceable to the alpha proteobacterial endosymbiotic event, the actual structural diversity of these complexes, due to large differences in their polypeptide composition, reflects an important evolutionary divergence between eukaryotic lineages. We discuss the effect of these structural differences on the oligomerization of the complex and the shape of mitochondrial cristae.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcos Ostolga-Chavarría
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pierre Cardol
- InBios/Phytosystems, Institut de Botanique, Université de Liège, Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
3
|
Ukolova IV, Kondakova MA, Kondratov IG, Sidorov AV, Borovskii GB, Voinikov VK. New insights into the organisation of the oxidative phosphorylation system in the example of pea shoot mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148264. [PMID: 32663476 DOI: 10.1016/j.bbabio.2020.148264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
The physical and functional organisation of the OXPHOS system in mitochondria in vivo remains elusive. At present, different models of OXPHOS arrangement, representing either highly ordered respiratory strings or, vice versa, a set of randomly dispersed supercomplexes and respiratory complexes, have been suggested. In the present study, we examined a supramolecular arrangement of the OXPHOS system in pea shoot mitochondria using digitonin solubilisation of its constituents, which were further analysed by classical BN-related techniques and a multidimensional gel electrophoresis system when required. As a result, in addition to supercomplexes I1III2, I1III2IVn and III2IV1-2, dimer V2, and individual complexes I-V previously detected in plant mitochondria, new OXPHOS structures were also revealed. Of them, (1) a megacomplex (IIxIIIyIVz)n including complex II, (2) respirasomes I2III4IVn with two copies of complex I and dimeric complex III2, (3) a minor new supercomplex IV1Va2 comigrating with I1III2, and (4) a second minor form of ATP synthase, Va, were found. The activity of singular complexes I, IV, and V was higher than the activity of the associated forms. The detection of new supercomplex IV1Va2, along with assemblies I1III2 and I1-2III2-4IVn, prompted us to suggest the occurrence of in vivo oxphosomes comprising complexes I, III2, IV, and V. The putative oxphosome's stoichiometry, historical background, assumed functional significance, and subcompartmental location are discussed herein.
Collapse
Affiliation(s)
- Irina V Ukolova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia.
| | - Marina A Kondakova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia
| | - Ilya G Kondratov
- Limnological Institute SB RAS, 3, Ulan-Batorskaya St., Irkutsk 664033, Russia
| | - Alexander V Sidorov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia; Irkutsk State Medical University, 1, Krasnogo Vosstaniya St., Irkutsk 664003, Russia
| | - Gennadii B Borovskii
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia
| | - Victor K Voinikov
- Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov St., Irkutsk 664033, Russia
| |
Collapse
|
4
|
Colina-Tenorio L, Dautant A, Miranda-Astudillo H, Giraud MF, González-Halphen D. The Peripheral Stalk of Rotary ATPases. Front Physiol 2018; 9:1243. [PMID: 30233414 PMCID: PMC6131620 DOI: 10.3389/fphys.2018.01243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type) can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly conserved in both structure and function, however, the F-type peripheral stalks have divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator function, as evidenced by several biochemical and recent structural studies. This review describes the information regarding the organization of the peripheral stalk components of F, A, and V-ATPases, highlighting the key differences between the studied enzymes, as well as the different processes in which the structure is involved.
Collapse
Affiliation(s)
- Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alain Dautant
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Héctor Miranda-Astudillo
- Genetics and Physiology of Microalgae, InBios, PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Miranda-Astudillo H, Colina-Tenorio L, Jiménez-Suárez A, Vázquez-Acevedo M, Salin B, Giraud MF, Remacle C, Cardol P, González-Halphen D. Oxidative phosphorylation supercomplexes and respirasome reconstitution of the colorless alga Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018. [PMID: 29540299 DOI: 10.1016/j.bbabio.2018.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The proposal that the respiratory complexes can associate with each other in larger structures named supercomplexes (SC) is generally accepted. In the last decades most of the data about this association came from studies in yeasts, mammals and plants, and information is scarce in other lineages. Here we studied the supramolecular association of the F1FO-ATP synthase (complex V) and the respiratory complexes I, III and IV of the colorless alga Polytomella sp. with an approach that involves solubilization using mild detergents, n-dodecyl-β-D-maltoside (DDM) or digitonin, followed by separation of native protein complexes by electrophoresis (BN-PAGE), after which we identified oligomeric forms of complex V (mainly V2 and V4) and different respiratory supercomplexes (I/IV6, I/III4, I/IV). In addition, purification/reconstitution of the supercomplexes by anion exchange chromatography was also performed. The data show that these complexes have the ability to strongly associate with each other and form DDM-stable macromolecular structures. The stable V4 ATPase oligomer was observed by electron-microscopy and the association of the respiratory complexes in the so-called "respirasome" was able to perform in-vitro oxygen consumption.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico; Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium.
| | - Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Alejandra Jiménez-Suárez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Bénédicte Salin
- CNRS, UMR5095, IBGC, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Campus Carreire, 146 Rue Léo Saignat, 33077 Bordeaux, France
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, 1 rue Camille Saint-Saëns, 33077 Bordeaux, France; Université de Bordeaux, Campus Carreire, 146 Rue Léo Saignat, 33077 Bordeaux, France
| | - Claire Remacle
- Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium
| | - Pierre Cardol
- Genetics and Physiology of microalgae, InBioS/Phytosystems, University of Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
6
|
Sánchez-Vásquez L, Vázquez-Acevedo M, de la Mora J, Vega-deLuna F, Cardol P, Remacle C, Dreyfus G, González-Halphen D. Near-neighbor interactions of the membrane-embedded subunits of the mitochondrial ATP synthase of a chlorophycean alga. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:497-509. [DOI: 10.1016/j.bbabio.2017.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/25/2017] [Accepted: 04/29/2017] [Indexed: 12/24/2022]
|
7
|
Colina-Tenorio L, Miranda-Astudillo H, Cano-Estrada A, Vázquez-Acevedo M, Cardol P, Remacle C, González-Halphen D. Subunit Asa1 spans all the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:359-69. [DOI: 10.1016/j.bbabio.2015.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 11/26/2022]
|
8
|
Vázquez-Acevedo M, Vega-deLuna F, Sánchez-Vásquez L, Colina-Tenorio L, Remacle C, Cardol P, Miranda-Astudillo H, González-Halphen D. Dissecting the peripheral stalk of the mitochondrial ATP synthase of chlorophycean algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1183-1190. [PMID: 26873638 DOI: 10.1016/j.bbabio.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/25/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
The algae Chlamydomonas reinhardtii and Polytomella sp., a green and a colorless member of the chlorophycean lineage respectively, exhibit a highly-stable dimeric mitochondrial F1Fo-ATP synthase (complex V), with a molecular mass of 1600 kDa. Polytomella, lacking both chloroplasts and a cell wall, has greatly facilitated the purification of the algal ATP-synthase. Each monomer of the enzyme has 17 polypeptides, eight of which are the conserved, main functional components, and nine polypeptides (Asa1 to Asa9) unique to chlorophycean algae. These atypical subunits form the two robust peripheral stalks observed in the highly-stable dimer of the algal ATP synthase in several electron-microscopy studies. The topological disposition of the components of the enzyme has been addressed with cross-linking experiments in the isolated complex; generation of subcomplexes by limited dissociation of complex V; detection of subunit-subunit interactions using recombinant subunits; in vitro reconstitution of subcomplexes; silencing of the expression of Asa subunits; and modeling of the overall structural features of the complex by EM image reconstruction. Here, we report that the amphipathic polymer Amphipol A8-35 partially dissociates the enzyme, giving rise to two discrete dimeric subcomplexes, whose compositions were characterized. An updated model for the topological disposition of the 17 polypeptides that constitute the algal enzyme is suggested. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Miriam Vázquez-Acevedo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Félix Vega-deLuna
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Lorenzo Sánchez-Vásquez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Lilia Colina-Tenorio
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - Claire Remacle
- Genetics and Physiology of Microalgae, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Pierre Cardol
- Genetics and Physiology of Microalgae, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Héctor Miranda-Astudillo
- Genetics and Physiology of Microalgae, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico.
| |
Collapse
|
9
|
Kinetic and hysteretic behavior of ATP hydrolysis of the highly stable dimeric ATP synthase of Polytomella sp. Arch Biochem Biophys 2015; 575:30-7. [PMID: 25843420 DOI: 10.1016/j.abb.2015.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 11/21/2022]
Abstract
The F1FO-ATP synthase of the colorless alga Polytomella sp. exhibits a robust peripheral arm constituted by nine atypical subunits only present in chlorophycean algae. The isolated dimeric enzyme exhibits a latent ATP hydrolytic activity which can be activated by some detergents. To date, the kinetic behavior of the algal ATPase has not been studied. Here we show that while the soluble F1 sector exhibits Michaelis-Menten kinetics, the dimer exhibits a more complex behavior. The kinetic parameters (Vmax and Km) were obtained for both the F1 sector and the dimeric enzyme as isolated or activated by detergent, and this activation was also seen on the enzyme reconstituted in liposomes. Unlike other ATP synthases, the algal dimer hydrolyzes ATP on a wide range of pH and temperature. The enzyme was inhibited by oligomycin, DCCD and Mg-ADP, although oligomycin induced a peculiar inhibition pattern that can be attributed to structural differences in the algal subunit-c. The hydrolytic activity was temperature-dependent and exhibited activation energy of 4 kcal/mol. The enzyme also exhibited a hysteretic behavior with a lag phase strongly dependent on temperature but not on pH, that may be related to a possible regulatory role in vivo.
Collapse
|
10
|
Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 2015; 521:237-40. [PMID: 25707805 DOI: 10.1038/nature14185] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
ATP, the universal energy currency of cells, is produced by F-type ATP synthases, which are ancient, membrane-bound nanomachines. F-type ATP synthases use the energy of a transmembrane electrochemical gradient to generate ATP by rotary catalysis. Protons moving across the membrane drive a rotor ring composed of 8-15 c-subunits. A central stalk transmits the rotation of the c-ring to the catalytic F1 head, where a series of conformational changes results in ATP synthesis. A key unresolved question in this fundamental process is how protons pass through the membrane to drive ATP production. Mitochondrial ATP synthases form V-shaped homodimers in cristae membranes. Here we report the structure of a native and active mitochondrial ATP synthase dimer, determined by single-particle electron cryomicroscopy at 6.2 Å resolution. Our structure shows four long, horizontal membrane-intrinsic α-helices in the a-subunit, arranged in two hairpins at an angle of approximately 70° relative to the c-ring helices. It has been proposed that a strictly conserved membrane-embedded arginine in the a-subunit couples proton translocation to c-ring rotation. A fit of the conserved carboxy-terminal a-subunit sequence places the conserved arginine next to a proton-binding c-subunit glutamate. The map shows a slanting solvent-accessible channel that extends from the mitochondrial matrix to the conserved arginine. Another hydrophilic cavity on the lumenal membrane surface defines a direct route for the protons to an essential histidine-glutamate pair. Our results provide unique new insights into the structure and function of rotary ATP synthases and explain how ATP production is coupled to proton translocation.
Collapse
|
11
|
The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion 2014; 19 Pt B:338-49. [DOI: 10.1016/j.mito.2014.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/17/2022]
|
12
|
Massoz S, Larosa V, Plancke C, Lapaille M, Bailleul B, Pirotte D, Radoux M, Leprince P, Coosemans N, Matagne RF, Remacle C, Cardol P. Inactivation of genes coding for mitochondrial Nd7 and Nd9 complex I subunits in Chlamydomonas reinhardtii. Impact of complex I loss on respiration and energetic metabolism. Mitochondrion 2014; 19 Pt B:365-74. [DOI: 10.1016/j.mito.2013.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 02/04/2023]
|
13
|
Salinas T, Larosa V, Cardol P, Maréchal-Drouard L, Remacle C. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review. Biochimie 2013; 100:207-18. [PMID: 24139906 DOI: 10.1016/j.biochi.2013.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/08/2013] [Indexed: 12/28/2022]
Abstract
Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes.
Collapse
Affiliation(s)
- Thalia Salinas
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Associated with Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Véronique Larosa
- Génétique des Microorganismes, Département de Sciences de la Vie, Institut de Botanique, B22, Université de Liège, B-4000 Liège, Belgium
| | - Pierre Cardol
- Génétique des Microorganismes, Département de Sciences de la Vie, Institut de Botanique, B22, Université de Liège, B-4000 Liège, Belgium
| | - Laurence Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Associated with Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Claire Remacle
- Génétique des Microorganismes, Département de Sciences de la Vie, Institut de Botanique, B22, Université de Liège, B-4000 Liège, Belgium.
| |
Collapse
|
14
|
Miranda-Astudillo H, Cano-Estrada A, Vázquez-Acevedo M, Colina-Tenorio L, Downie-Velasco A, Cardol P, Remacle C, Domínguez-Ramírez L, González-Halphen D. Interactions of subunits Asa2, Asa4 and Asa7 in the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1-13. [PMID: 23933283 DOI: 10.1016/j.bbabio.2013.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/24/2013] [Accepted: 08/02/2013] [Indexed: 12/29/2022]
Abstract
Mitochondrial F1FO-ATP synthase of chlorophycean algae is a complex partially embedded in the inner mitochondrial membrane that is isolated as a highly stable dimer of 1600kDa. It comprises 17 polypeptides, nine of which (subunits Asa1 to 9) are not present in classical mitochondrial ATP synthases and appear to be exclusive of the chlorophycean lineage. In particular, subunits Asa2, Asa4 and Asa7 seem to constitute a section of the peripheral stalk of the enzyme. Here, we over-expressed and purified subunits Asa2, Asa4 and Asa7 and the corresponding amino-terminal and carboxy-terminal halves of Asa4 and Asa7 in order to explore their interactions in vitro, using immunochemical techniques, blue native electrophoresis and affinity chromatography. Asa4 and Asa7 interact strongly, mainly through their carboxy-terminal halves. Asa2 interacts with both Asa7 and Asa4, and also with subunit α in the F1 sector. The three Asa proteins form an Asa2/Asa4/Asa7 subcomplex. The entire Asa7 and the carboxy-terminal half of Asa4 seem to be instrumental in the interaction with Asa2. Based on these results and on computer-generated structural models of the three subunits, we propose a model for the Asa2/Asa4/Asa7 subcomplex and for its disposition in the peripheral stalk of the algal ATP synthase.
Collapse
|
15
|
Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW. Composition of the mitochondrial electron transport chain in acanthamoeba castellanii: structural and evolutionary insights. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2027-37. [PMID: 22709906 DOI: 10.1016/j.bbabio.2012.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 11/20/2022]
Abstract
The mitochondrion, derived in evolution from an α-proteobacterial progenitor, plays a key metabolic role in eukaryotes. Mitochondria house the electron transport chain (ETC) that couples oxidation of organic substrates and electron transfer to proton pumping and synthesis of ATP. The ETC comprises several multiprotein enzyme complexes, all of which have counterparts in bacteria. However, mitochondrial ETC assemblies from animals, plants and fungi are generally more complex than their bacterial counterparts, with a number of 'supernumerary' subunits appearing early in eukaryotic evolution. Little is known, however, about the ETC of unicellular eukaryotes (protists), which are key to understanding the evolution of mitochondria and the ETC. We present an analysis of the ETC proteome from Acanthamoeba castellanii, an ecologically, medically and evolutionarily important member of Amoebozoa (sister to Opisthokonta). Data obtained from tandem mass spectrometric (MS/MS) analyses of purified mitochondria as well as ETC complexes isolated via blue native polyacrylamide gel electrophoresis are combined with the results of bioinformatic queries of sequence databases. Our bioinformatic analyses have identified most of the ETC subunits found in other eukaryotes, confirming and extending previous observations. The assignment of proteins as ETC subunits by MS/MS provides important insights into the primary structures of ETC proteins and makes possible, through the use of sensitive profile-based similarity searches, the identification of novel constituents of the ETC along with the annotation of highly divergent but phylogenetically conserved ETC subunits.
Collapse
Affiliation(s)
- Ryan M R Gawryluk
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
16
|
ATP synthase superassemblies in animals and plants: Two or more are better. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1185-97. [PMID: 21679683 DOI: 10.1016/j.bbabio.2011.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 12/11/2022]
|
17
|
Cano-Estrada A, Vázquez-Acevedo M, Villavicencio-Queijeiro A, Figueroa-Martínez F, Miranda-Astudillo H, Cordeiro Y, Mignaco JA, Foguel D, Cardol P, Lapaille M, Remacle C, Wilkens S, González-Halphen D. Subunit–subunit interactions and overall topology of the dimeric mitochondrial ATP synthase of Polytomella sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1439-48. [DOI: 10.1016/j.bbabio.2010.02.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 02/15/2010] [Accepted: 02/22/2010] [Indexed: 01/12/2023]
|
18
|
Balabaskaran Nina P, Dudkina NV, Kane LA, van Eyk JE, Boekema EJ, Mather MW, Vaidya AB. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. PLoS Biol 2010; 8:e1000418. [PMID: 20644710 PMCID: PMC2903591 DOI: 10.1371/journal.pbio.1000418] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/01/2010] [Indexed: 12/28/2022] Open
Abstract
The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the F(o) sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a substitute for the subunit a of the F(o) sector. The absence of genes encoding orthologs of the novel subunits even in apicomplexans suggests that the Tetrahymena ATP synthase, despite core similarities, is a unique enzyme exhibiting dramatic differences compared to the conventional complexes found in metazoan, fungal, and plant mitochondria, as well as in prokaryotes. These findings have significant implications for the origins and evolution of a central player in bioenergetics.
Collapse
Affiliation(s)
- Praveen Balabaskaran Nina
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Natalya V. Dudkina
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Lesley A. Kane
- Department of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jennifer E. van Eyk
- Department of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Egbert J. Boekema
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Michael W. Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
19
|
Loss of mitochondrial ATP synthase subunit beta (Atp2) alters mitochondrial and chloroplastic function and morphology in Chlamydomonas. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1533-9. [PMID: 20416275 DOI: 10.1016/j.bbabio.2010.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/12/2010] [Accepted: 04/14/2010] [Indexed: 01/22/2023]
Abstract
Mitochondrial F1FO ATP synthase (Complex V) catalyses ATP synthesis from ADP and inorganic phosphate using the proton-motive force generated by the substrate-driven electron transfer chain. In this work, we investigated the impact of the loss of activity of the mitochondrial enzyme in a photosynthetic organism. In this purpose, we inactivated by RNA interference the expression of the ATP2 gene, coding for the catalytic subunit beta, in the green alga Chlamydomonas reinhardtii. We demonstrate that in the absence of beta subunit, complex V is not assembled, respiratory rate is decreased by half and ATP synthesis coupled to the respiratory activity is fully impaired. Lack of ATP synthase also affects the morphology of mitochondria which are deprived of cristae. We also show that mutants are obligate phototrophs and that rearrangements of the photosynthetic apparatus occur in the chloroplast as a response to ATP synthase deficiency in mitochondria. Altogether, our results contribute to the understanding of the yet poorly studied bioenergetic interactions between organelles in photosynthetic organisms.
Collapse
|
20
|
Lapaille M, Escobar-Ramírez A, Degand H, Baurain D, Rodríguez-Salinas E, Coosemans N, Boutry M, Gonzalez-Halphen D, Remacle C, Cardol P. Atypical subunit composition of the chlorophycean mitochondrial F1FO-ATP synthase and role of Asa7 protein in stability and oligomycin resistance of the enzyme. Mol Biol Evol 2010; 27:1630-44. [PMID: 20156838 DOI: 10.1093/molbev/msq049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In yeast, mammals, and land plants, mitochondrial F(1)F(O)-ATP synthase (complex V) is a remarkable enzymatic machinery that comprises about 15 conserved subunits. Peculiar among eukaryotes, complex V from Chlamydomonadales algae (order of chlorophycean class) has an atypical subunit composition of its peripheral stator and dimerization module, with nine subunits of unknown evolutionary origin (Asa subunits). In vitro, this enzyme exhibits an increased stability of its dimeric form, and in vivo, Chlamydomonas reinhardtii cells are insensitive to oligomycins, which are potent inhibitors of proton translocation through the F(O) moiety. In this work, we showed that the atypical features of the Chlamydomonadales complex V enzyme are shared by the other chlorophycean orders. By biochemical and in silico analyses, we detected several atypical Asa subunits in Scenedesmus obliquus (Sphaeropleales) and Chlorococcum ellipsoideum (Chlorococcales). In contrast, complex V has a canonical subunit composition in other classes of Chlorophytes (Trebouxiophyceae, Prasinophyceae, and Ulvophyceae) as well as in Streptophytes (land plants), and in Rhodophytes (red algae). Growth, respiration, and ATP levels in Chlorophyceae were also barely affected by oligomycin concentrations that affect representatives of the other classes of Chlorophytes. We finally studied the function of the Asa7 atypical subunit by using RNA interference in C. reinhardtii. Although the loss of Asa7 subunit has no impact on cell bioenergetics or mitochondrial structures, it destabilizes in vitro the enzyme dimeric form and renders growth, respiration, and ATP level sensitive to oligomycins. Altogether, our results suggest that the loss of canonical components of the complex V stator happened at the root of chlorophycean lineage and was accompanied by the recruitment of novel polypeptides. Such a massive modification of complex V stator features might have conferred novel properties, including the stabilization of the enzyme dimeric form and the shielding of the proton channel. In these respects, we discuss an evolutionary scenario for F(1)F(O)-ATP synthase in the whole green lineage (i.e., Chlorophyta and Streptophyta).
Collapse
Affiliation(s)
- Marie Lapaille
- Genetics of Microorganisms, Department of Life Sciences, Université de Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|