1
|
Torres-Isidro O, González-Montoya M, Vargas-Vargas MA, Florian-Rodriguez U, García-Berumen CI, Montoya-Pérez R, Saavedra-Molina A, Calderón-Cortés E, Rodríguez-Orozco AR, Cortés-Rojo C. Anti-Aging Potential of Avocado Oil via Its Antioxidant Effects. Pharmaceuticals (Basel) 2025; 18:246. [PMID: 40006059 PMCID: PMC11858862 DOI: 10.3390/ph18020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Aging is a process characterized by tissue degeneration, increased susceptibility to chronic degenerative diseases, infections, and the appearance of neoplasms, which leads to disability and a reduction in the length and quality of life. This phenomenon is the result of the convergence of multiple processes, including mitochondrial dysfunction, fibrosis, inflammation, dysregulation of cell death processes, and immunosenescence. These processes have as their point of convergence an increase in the production of ROS. Avocado oil (Persea americana Mill.) contains a diverse array of bioactive compounds, including oleic acid, phytosterols, chlorophylls, xanthones, xanthines, and carotenoids. These bioactive compounds have the capacity to modulate the excessive production of ROS, thereby reducing the progression of age-related diseases and extending lifespan in experimental models of aging. In addition, several studies have demonstrated the efficacy of avocado oil in mitigating age-related diseases, including hypertension; insulin resistance; diabetes; non-alcoholic liver disease; and degenerative processes such as hearing loss, cognitive decline, neurodegeneration, and impaired wound healing. In light of these findings, it is hypothesized that avocado oil is a promising agent capable of promoting healthspan in later stages of life owing to its direct antioxidant actions and the activation of pathways that enhance endogenous antioxidant levels.
Collapse
Affiliation(s)
- Olin Torres-Isidro
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Marcela González-Montoya
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Ulises Florian-Rodriguez
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58240, Michoacán, Mexico;
| | - Claudia Isabel García-Berumen
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58260, Michoacán, Mexico;
| | - Alain Raimundo Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58020, Michoacán, Mexico;
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (O.T.-I.); (M.G.-M.); (M.A.V.-V.); (C.I.G.-B.); (R.M.-P.); (A.S.-M.)
| |
Collapse
|
2
|
Drakpa D, Paul T, Chakrabarty S, Jigdrel K, Mukherjee P, Gupta J. Avocado Oil: Recent Advances in Its Anti-diabetic Potential. Curr Med Sci 2025; 45:11-24. [PMID: 39998768 DOI: 10.1007/s11596-025-00010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 02/27/2025]
Abstract
BACKGROUND Diet plays a crucial role in insulin resistance and diabetes, with high-fat and high-carbohydrate diets being major contributors. However, the type of fat consumed is critical, as different fatty acids impact insulin sensitivity differently. OBJECTIVE This review examines the potential benefits of avocado oil, which is rich in monounsaturated fatty acids (MUFAs), in improving glycaemic control and lipid metabolism. It also explores variations in avocado oil composition across different avocado cultivars. METHODS Experimental and clinical studies were analysed to assess the metabolic effects of avocado oil. The impact of MUFAs on insulin sensitivity, lipid profiles, and metabolic health was reviewed, alongside the influence of fruit quality, maturity, and cultivar differences. RESULTS Avocado oil may enhance glycaemic control and lipid metabolism, benefiting individuals with diabetes and hypercholesterolemia. However, its composition varies significantly across avocado variants such as Hass, Reed, Ettinger, and Fuerte, influencing its therapeutic properties. CONCLUSION Avocado oil's high MUFA content offers promising metabolic benefits. Further research is needed to standardize its therapeutic application, considering cultivar-dependent variations in composition.
Collapse
Affiliation(s)
- Dorji Drakpa
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144001, India
| | - Taniya Paul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144001, India
| | - Sukriti Chakrabarty
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144001, India
| | - Karma Jigdrel
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144001, India
| | - Prasun Mukherjee
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144001, India
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144001, India.
| |
Collapse
|
3
|
Landa-Moreno CI, Trejo-Hurtado CM, Lemus-de la Cruz J, Peña-Montes DJ, Murillo-Villicaña M, Huerta-Cervantes M, Montoya-Pérez R, Salgado-Garciglia R, Manzo-Avalos S, Cortés-Rojo C, Monribot-Villanueva JL, Guerrero-Analco JA, Saavedra-Molina A. Antioxidant Effect of the Ethyl Acetate Extract of Potentilla indica on Kidney Mitochondria of Streptozotocin-Induced Diabetic Rats. PLANTS (BASEL, SWITZERLAND) 2023; 12:3196. [PMID: 37765360 PMCID: PMC10538127 DOI: 10.3390/plants12183196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by persistent hyperglycemia. This state may lead to an increase in oxidative stress, which contributes to the development of diabetes complications, including diabetic kidney disease. Potentilla indica is a traditional medicinal herb in Asia, employed in the treatment of several diseases, including DM. In this study, we investigated the antioxidant effect of the ethyl acetate extract of Potentilla indica both in vitro and on kidneys of streptozotocin-induced diabetic male rats. Firstly, phytochemicals were identified via UPLC-MS/MS, and their in vitro antioxidant capabilities were evaluated. Subsequently, male Wistar rats were assigned into four groups: normoglycemic control, diabetic control, normoglycemic treated with the extract, and diabetic treated with the extract. At the end of the treatment, fasting blood glucose (FBG) levels, creatinine, blood urea nitrogen (BUN), and uric acid were estimated. Furthermore, the kidneys were removed and utilized for the determination of mitochondrial reactive oxygen species (ROS) production, mitochondrial respiratory chain complex activities, mitochondrial lipid peroxidation, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities. The in vitro findings showed that the major phytochemicals present in the extract were phenolic compounds, which exhibited a potent antioxidant activity. Moreover, the administration of the P. indica extract reduced creatinine and BUN levels, ROS production, and lipid peroxidation and improved mitochondrial respiratory chain complex activity and GSH-Px, SODk, and CAT activities when compared to the diabetic control group. In conclusion, our data suggest that the ethyl acetate extract of Potentilla indica possesses renoprotective effects by reducing oxidative stress on the kidneys of streptozotocin-induced diabetic male rats.
Collapse
Affiliation(s)
- Cinthia I. Landa-Moreno
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Morelia 58030, Michoacán, Mexico; (C.I.L.-M.); (C.M.T.-H.); (J.L.-d.l.C.); (D.J.P.-M.); (M.M.-V.); (M.H.-C.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Cristian M. Trejo-Hurtado
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Morelia 58030, Michoacán, Mexico; (C.I.L.-M.); (C.M.T.-H.); (J.L.-d.l.C.); (D.J.P.-M.); (M.M.-V.); (M.H.-C.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Jenaro Lemus-de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Morelia 58030, Michoacán, Mexico; (C.I.L.-M.); (C.M.T.-H.); (J.L.-d.l.C.); (D.J.P.-M.); (M.M.-V.); (M.H.-C.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Morelia 58030, Michoacán, Mexico; (C.I.L.-M.); (C.M.T.-H.); (J.L.-d.l.C.); (D.J.P.-M.); (M.M.-V.); (M.H.-C.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Marina Murillo-Villicaña
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Morelia 58030, Michoacán, Mexico; (C.I.L.-M.); (C.M.T.-H.); (J.L.-d.l.C.); (D.J.P.-M.); (M.M.-V.); (M.H.-C.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Maribel Huerta-Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Morelia 58030, Michoacán, Mexico; (C.I.L.-M.); (C.M.T.-H.); (J.L.-d.l.C.); (D.J.P.-M.); (M.M.-V.); (M.H.-C.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Morelia 58030, Michoacán, Mexico; (C.I.L.-M.); (C.M.T.-H.); (J.L.-d.l.C.); (D.J.P.-M.); (M.M.-V.); (M.H.-C.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Morelia 58030, Michoacán, Mexico; (C.I.L.-M.); (C.M.T.-H.); (J.L.-d.l.C.); (D.J.P.-M.); (M.M.-V.); (M.H.-C.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Salvador Manzo-Avalos
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Morelia 58030, Michoacán, Mexico; (C.I.L.-M.); (C.M.T.-H.); (J.L.-d.l.C.); (D.J.P.-M.); (M.M.-V.); (M.H.-C.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Morelia 58030, Michoacán, Mexico; (C.I.L.-M.); (C.M.T.-H.); (J.L.-d.l.C.); (D.J.P.-M.); (M.M.-V.); (M.H.-C.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| | - Juan Luis Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Clúster BioMimic, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico; (J.L.M.-V.); (J.A.G.-A.)
| | - José Antonio Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Clúster BioMimic, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico; (J.L.M.-V.); (J.A.G.-A.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Morelia 58030, Michoacán, Mexico; (C.I.L.-M.); (C.M.T.-H.); (J.L.-d.l.C.); (D.J.P.-M.); (M.M.-V.); (M.H.-C.); (R.M.-P.); (R.S.-G.); (S.M.-A.); (C.C.-R.)
| |
Collapse
|
4
|
Lemus-de la Cruz J, Trejo-Hurtado M, Landa-Moreno C, Peña-Montes D, Landeros-Páramo JL, Cortés-Rojo C, Montoya-Pérez R, Rosas G, Saavedra-Molina A. Antioxidant effects of silver nanoparticles obtained by green synthesis from the aqueous extract of Eryngium carlinae on the brain mitochondria of streptozotocin-induced diabetic rats. J Bioenerg Biomembr 2023; 55:123-135. [PMID: 36988777 DOI: 10.1007/s10863-023-09963-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia that affects practically all tissues and organs, being the brain one of most susceptible, due to overproduction of reactive oxygen species induced by diabetes. Eryngium carlinae is a plant used in traditional Mexican medicine to treat diabetes, which has already been experimentally shown have hypoglycemic, antioxidant and hypolipidemic properties. The green synthesis of nanoparticles is a technique that combines plant extracts with metallic nanoparticles, so that the nanoparticles reduce the absorption and distribution time of drugs or compounds, increasing their effectiveness. In this work, the antioxidant effects and mitochondrial function in the brain were evaluated, as well as the hypoglycemic and hypolipidemic effect in serum of both the aqueous extract of the aerial part of E. carlinae, as well as its combination with silver nanoparticles of green synthesis. Administration with both, extract and the combination significantly decreased the production of reactive oxygen species, lipid peroxidation, and restored the activity of superoxide dismutase 2, glutathione peroxidase, and electron transport chain complexes in brain, while that the extract-nanoparticle combination decreased blood glucose and triglyceride levels. The results obtained suggest that both treatments have oxidative activity and restore mitochondrial function in the brain of diabetic rats.
Collapse
Affiliation(s)
- Jenaro Lemus-de la Cruz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Mich, México
| | - Mitchell Trejo-Hurtado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Mich, México
| | - Cinthia Landa-Moreno
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Mich, México
| | - Donovan Peña-Montes
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Mich, México
| | - José Luis Landeros-Páramo
- Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Mich, México
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Mich, México
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Mich, México
| | - Gerardo Rosas
- Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Mich, México
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Mich, México.
| |
Collapse
|
5
|
Cuevas-Cianca SI, Romero-Castillo C, Gálvez-Romero JL, Juárez ZN, Hernández LR. Antioxidant and Anti-Inflammatory Compounds from Edible Plants with Anti-Cancer Activity and Their Potential Use as Drugs. Molecules 2023; 28:molecules28031488. [PMID: 36771154 PMCID: PMC9920972 DOI: 10.3390/molecules28031488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Food is our daily companion, performing numerous beneficial functions for our bodies. Many of them can help to alleviate or prevent ailments and diseases. In this review, an extensive bibliographic search is conducted in various databases to update information on unprocessed foods with anti-inflammatory and antioxidant properties that can aid in treating diseases such as cancer. The current state of knowledge on inflammatory processes involving some interleukins and tumor necrosis factor-alpha (TNF-α) is reviewed. As well as unprocessed foods, which may help reduce inflammation and oxidative stress, both of which are important factors in cancer development. Many studies are still needed to take full advantage of the food products we use daily.
Collapse
Affiliation(s)
- Sofía Isabel Cuevas-Cianca
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Cristian Romero-Castillo
- Biotechnology Faculty, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
| | - José Luis Gálvez-Romero
- ISSTE Puebla Hospital Regional, Boulevard 14 Sur 4336, Colonia Jardines de San Manuel, Puebla 72570, Mexico
| | - Zaida Nelly Juárez
- Chemistry Area, Deanship of Biological Sciences, Universidad Popular Autónoma del Estado de Puebla, 21 Sur 1103 Barrio Santiago, Puebla 72410, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| | - Luis Ricardo Hernández
- Department of Chemical Biological Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
- Correspondence: (Z.N.J.); (L.R.H.)
| |
Collapse
|
6
|
García-Berumen CI, Vargas-Vargas MA, Ortiz-Avila O, Piña–Zentella RM, Ramos-Gómez M, Figueroa–García MDC, Mejía-Zepeda R, Rodríguez–Orozco AR, Saavedra–Molina A, Cortés-Rojo C. Avocado oil alleviates non-alcoholic fatty liver disease by improving mitochondrial function, oxidative stress and inflammation in rats fed a high fat-High fructose diet. Front Pharmacol 2022; 13:1089130. [PMID: 36601051 PMCID: PMC9807168 DOI: 10.3389/fphar.2022.1089130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation in hepatocytes, and in advanced stages, by inflammation and fibrosis. Excessive ROS production due to mitochondrial dysfunction contributes to NAFLD development, making the decrease in mitochondrial ROS production an emerging target to alleviate NAFLD. Previously, we have shown that avocado oil, a source of several bioactive compounds with antioxidant effects, decreases oxidative stress by improving the function of the mitochondrial electron transport chain (ETC) and decreasing ROS levels in mitochondria of diabetic and hypertensive rats. Therefore, we tested in this work whether avocado oil alleviates NAFLD by attenuating mitochondrial dysfunction, oxidative stress and inflammation. NAFLD was induced in rats by a high fat-high fructose (HF) diet administered for six (HF6) or twelve (HF12) weeks. Hepatic steatosis, hypertrophy and inflammation were detected in both the HF6 and HF12 groups. Hyperglycemia was observed only in the HF12 group. The HF6 and HF12 groups displayed dyslipidemia, impairments in mitochondrial respiration, complex III activity, and electron transfer in cytochromes in the complex III. This led to an increase in the levels of ROS and lipid peroxidation. The substitution of the HF6 diet by standard chow and avocado oil for 6 weeks (HF6+AVO + D), or supplementation of the HF12 diet with avocado oil (HF12 + AVO), ameliorated NAFLD, hyperglycemia, dyslipidemia, and counteracted mitochondrial dysfunctions and oxidative stress. The substitution of the HF6 diet by standard chow without avocado oil did not correct many of these abnormalities, confirming that the removal of the HF diet is not enough to counteract NAFLD and mitochondrial dysfunction. In summary, avocado oil decreases NAFLD by improving mitochondrial function, oxidative stress, and inflammation.
Collapse
Affiliation(s)
| | | | - Omar Ortiz-Avila
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | | | | | | | - Ricardo Mejía-Zepeda
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, México
| | - Alain Raimundo Rodríguez–Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - Alfredo Saavedra–Molina
- Instituto de Investigaciones Químico–Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico–Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, México
| |
Collapse
|
7
|
Gómez-Barroso M, Vargas-Vargas MA, Peña-Montes DJ, Cortés-Rojo C, Saavedra-Molina A, Sánchez-Duarte E, Rodríguez-Orozco AR, Montoya-Pérez R. Comparative Effect of Three Different Exercise Intensities in Combination with Diazoxide on Contraction Capacity and Oxidative Stress of Skeletal Muscle in Obese Rats. BIOLOGY 2022; 11:1367. [PMID: 36138845 PMCID: PMC9495795 DOI: 10.3390/biology11091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Obesity is a chronic disease that impairs skeletal muscle function, affects the ability to contract, and promotes the development of fatigue. For this reason, the study of treatments that seek to reduce the harmful effects of obesity on muscle tissue has been deepened. Diazoxide treatment and various exercise protocols have been proposed to protect skeletal muscle against oxidative stress and its effects. However, the intensity and duration of exercise combined with diazoxide that would obtain the best results for improving skeletal muscle function in obese rats is unknown. To this end, this study evaluated the effects of three different exercise intensities combined with diazoxide on contraction capacity, resistance to fatigue, markers of oxidative stress, lipid peroxidation, ROS, and glutathione redox status of skeletal muscle. The results showed that treatments with diazoxide and exercise at different intensities improved muscle contraction capacity by reducing oxidative stress during obesity, with the best results being obtained with low-intensity exercise in combination with diazoxide. Therefore, these results suggest that diazoxide and low-intensity exercise improve muscle function during obesity by decreasing oxidative stress with the same efficiency as a moderate-intensity exercise protocol.
Collapse
Affiliation(s)
- Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Manuel A. Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| | - Elizabeth Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato, Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, León 37150, Mexico
| | - Alain R. Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chavez”, Universidad Michoacana de San Nicolás de Hidalgo Av. Dr. Rafael Carrillo S/N Esq. Dr. Salvador González Herrejon, Bosque Cuauhtémoc, Morelia 58020, Mexico
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Mexico
| |
Collapse
|
8
|
Wai Linn T, Kobroob A, Ngernjan M, Amornlerdpison D, Lailerd N, Wongmekiat O. Crocodile Oil Disrupts Mitochondrial Homeostasis and Exacerbates Diabetic Kidney Injury in Spontaneously Diabetic Torii Rats. Biomolecules 2022; 12:biom12081068. [PMID: 36008962 PMCID: PMC9406139 DOI: 10.3390/biom12081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetic nephropathy is currently the leading cause of end-stage renal disease (ESRD) in type 2 diabetes. Studies have suggested that supplementation with some fatty acids might reduce the risk and delay the progression to ESRD in patient with chronic kidney disease. Crocodile oil (CO) contains a variety of fatty acids, especially omega-3, -6 and -9, that have been reported to be beneficial to human health. This study examined the impact of long-term CO supplementation on the development of diabetic nephropathy in spontaneously diabetic Torii (SDT) rats. After diabetic verification, SDT rats were assigned to receive vehicle or CO at 500 and 1000 mg/kg BW, respectively, by oral gavage. Age-matched nondiabetic Sprague–Dawley rats were given vehicle or high-dose CO. After 28 weeks of intervention, CO failed to improve hyperglycemia and pancreatic histopathological changes in SDT rats. Unexpectedly, CO dose-dependently exacerbated the impairment of kidney and mitochondrial functions caused by diabetes. CO also disturbed the expressions of proteins involved in mitochondrial biogenesis, dynamics, and mitophagy. However, no significant alterations were observed in nondiabetic rats receiving high-dose CO. The findings reveal that CO has deleterious effects that aggravate diabetic kidney injury via disrupting mitochondrial homeostasis, possibly due to its improper omega-6: omega-3 ratio.
Collapse
Affiliation(s)
- Thiri Wai Linn
- Nutrition and Exercise Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.W.L.); (N.L.)
| | - Anongporn Kobroob
- Division of Physiology, School of Medical Science, University of Phayao, Phayao 56000, Thailand;
| | - Metas Ngernjan
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand; (M.N.); (D.A.)
| | - Doungporn Amornlerdpison
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai 50290, Thailand; (M.N.); (D.A.)
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, Chiang Mai 50290, Thailand
| | - Narissara Lailerd
- Nutrition and Exercise Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.W.L.); (N.L.)
| | - Orawan Wongmekiat
- Integrative Renal Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-935362
| |
Collapse
|
9
|
Effects of Avocado Oil Supplementation on Insulin Sensitivity, Cognition, and Inflammatory and Oxidative Stress Markers in Different Tissues of Diet-Induced Obese Mice. Nutrients 2022; 14:nu14142906. [PMID: 35889863 PMCID: PMC9319255 DOI: 10.3390/nu14142906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity induces insulin resistance, chronic inflammation, oxidative stress, and neurocognitive impairment. Avocado oil (AO) has antioxidants and anti-inflammatory effects. This study evaluated the effect of AO supplementation on obese mice in the adipose tissue, muscle, liver, and hippocampus. Male C57BL/6J mice received a standard and high-fat diet (20 weeks) and then were supplemented with AO (4 mL/kg of body weight, 90 days) and divided into the following groups: control (control), control + avocado oil (control + AO), diet-induced obesity (DIO), and diet-induced obesity + avocado oil (DIO + AO) (n = 10/group). AO supplementation was found to improve insulin sensitivity and decrease hepatic fat accumulation and serum triglyceride levels in DIO mice. AO improved cognitive performance and did not affect mood parameters. Oxidative marker levels were decreased in DIO + AO mice in all the tissues and were concomitant with increased catalase and superoxide dismutase activities in the epididymal adipose tissue and quadriceps, as well as increased catalase activity in the liver. AO in obese animals further induced reductions in TNF-α and IL-1β expressions in the epididymal adipose tissue and quadriceps. These results suggest that AO supplementation has the potential to be an effective strategy for combating the effects of obesity in rats, and human studies are needed to confirm these findings.
Collapse
|
10
|
Avocado Oil Prevents Kidney Injury and Normalizes Renal Vasodilation after Adrenergic Stimulation in Hypertensive Rats: Probable Role of Improvement in Mitochondrial Dysfunction and Oxidative Stress. Life (Basel) 2021; 11:life11111122. [PMID: 34832999 PMCID: PMC8625956 DOI: 10.3390/life11111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Hypertension impairs the function of the kidney and its vasculature. Adrenergic activation is involved in these processes by promoting oxidative stress and mitochondrial dysfunction. Thus, the targeting of mitochondrial function and mitochondrial oxidative stress may be an approach to alleviate hypertensive kidney damage. Avocado oil, a source of oleic acid and antioxidants, improves mitochondrial dysfunction, decreases mitochondrial oxidative stress, and enhances vascular function in hypertensive rats. However, whether avocado oil improves the function of renal vasculature during the adrenergic stimulation, and if this is related to improvement in renal damage and enhancement of mitochondrial activity is unknown. Thus, the effects of avocado oil on renal vascular responses to adrenergic stimulation, mitochondrial dysfunction, oxidative stress, and renal damage were compared with prazosin, an antagonist of α1-adrenoceptors, in hypertensive rats induced by L-NAME. Avocado oil or prazosin decreased blood pressure, improved endothelium-dependent renal vasodilation, prevented mitochondrial dysfunction and kidney damage in hypertensive rats. However, avocado oil, but not prazosin, decreased mitochondrial ROS generation and improved the redox state of mitochondrial glutathione. These results suggest that avocado oil and prazosin prevented hypertensive renal damage due to the improvement in mitochondrial function.
Collapse
|
11
|
Cervantes-Paz B, Yahia EM. Avocado oil: Production and market demand, bioactive components, implications in health, and tendencies and potential uses. Compr Rev Food Sci Food Saf 2021; 20:4120-4158. [PMID: 34146454 DOI: 10.1111/1541-4337.12784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
Avocado is a subtropical/tropical fruit with creamy texture, peculiar flavor, and high nutritional value. Due to its high oil content, a significant quantity of avocado fruit is used for the production of oil using different methods. Avocado oil is rich in lipid-soluble bioactive compounds, but their content depends on different factors. Several phytochemicals in the oil have been linked to prevention of cancer, age-related macular degeneration, and cardiovascular diseases and therefore have generated an increase in consumer demand for avocado oil. The aim of this review is to critically and systematically analyze the worldwide production and commercialization of avocado oil, its extraction methods, changes in its fat-soluble phytochemical content, health benefits, and new trends and applications. There is a lack of information on the production and commercialization of the different types of avocado oil, but there are abundant data on extraction methods using solvents, centrifugation-assisted aqueous extraction, mechanical extraction by cold pressing (varying concentration and type of enzymes, temperature and time of reaction, and dilution ratio), ultrasound-assisted extraction, and supercritical fluid to enhance the yield and quality of oil. Extensive information is available on the content of fatty acids, although it is limited on carotenoids and chlorophylls. The effect of avocado oil on cancer, diabetes, and cardiovascular diseases has been demonstrated through in vitro and animal studies, but not in humans. Avocado oil continues to be of interest to the food, pharmaceutical, and cosmetic industries and is also generating increased attention in other areas including structured lipids, nanotechnology, and environmental care.
Collapse
Affiliation(s)
- Braulio Cervantes-Paz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, México.,Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Elhadi M Yahia
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, México
| |
Collapse
|
12
|
Bravo-Sánchez E, Peña-Montes D, Sánchez-Duarte S, Saavedra-Molina A, Sánchez-Duarte E, Montoya-Pérez R. Effects of Apocynin on Heart Muscle Oxidative Stress of Rats with Experimental Diabetes: Implications for Mitochondria. Antioxidants (Basel) 2021; 10:antiox10030335. [PMID: 33668280 PMCID: PMC7996266 DOI: 10.3390/antiox10030335] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) constitutes one of the public health problems today. It is characterized by hyperglycemia through a defect in the β-cells function and/or decreased insulin sensitivity. Apocynin has been tasted acting directly as an NADPH oxidase inhibitor and reactive oxygen species (ROS) scavenger, exhibiting beneficial effects against diabetic complications. Hence, the present study’s goal was to dissect the possible mechanisms by which apocynin could mediate its cardioprotective effect against DM-induced oxidative stress. Male Wistar rats were assigned into 4 groups: Control (C), control + apocynin (C+A), diabetes (D), diabetes + apocynin (D+A). DM was induced with streptozotocin. Apocynin treatment (3 mg/kg/day) was applied for 5 weeks. Treatment significantly decreased blood glucose levels and insulin resistance in diabetic rats. In cardiac tissue, ROS levels were higher, and catalase enzyme activity was reduced in the D group compared to the C group; the apocynin treatment significantly attenuated these responses. In heart mitochondria, Complexes I and II of the electron transport chain (ETC) were significantly enhanced in the D+A group. Total glutathione, the level of reduced glutathione (GSH) and the GSH/ oxidized glutathione (GSSG) ratio were increased in the D+A group. Superoxide dismutase (SOD) and the glutathione peroxidase (GSH-Px) activities were without change. Apocynin enhances glucose uptake and insulin sensitivity, preserving the antioxidant defense and mitochondrial function.
Collapse
Affiliation(s)
- Estefanía Bravo-Sánchez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Michoacán, Mexico; (E.B.-S.); (D.P.-M.); (S.S.-D.); (A.S.-M.)
| | - Donovan Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Michoacán, Mexico; (E.B.-S.); (D.P.-M.); (S.S.-D.); (A.S.-M.)
| | - Sarai Sánchez-Duarte
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Michoacán, Mexico; (E.B.-S.); (D.P.-M.); (S.S.-D.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Michoacán, Mexico; (E.B.-S.); (D.P.-M.); (S.S.-D.); (A.S.-M.)
| | - Elizabeth Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, León 37150, Guanajuato, Mexico
- Correspondence: (E.S.-D.); (R.M.-P.); Tel.: +521-477-2670-4900 (ext. 4833) (E.S.-D.); +521-(443)-322-3500 (ext. 4217) (R.M.-P.)
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia 58030, Michoacán, Mexico; (E.B.-S.); (D.P.-M.); (S.S.-D.); (A.S.-M.)
- Correspondence: (E.S.-D.); (R.M.-P.); Tel.: +521-477-2670-4900 (ext. 4833) (E.S.-D.); +521-(443)-322-3500 (ext. 4217) (R.M.-P.)
| |
Collapse
|
13
|
Gómez-Barroso M, Moreno-Calderón KM, Sánchez-Duarte E, Cortés-Rojo C, Saavedra-Molina A, Rodríguez-Orozco AR, Montoya-Pérez R. Diazoxide and Exercise Enhance Muscle Contraction during Obesity by Decreasing ROS Levels, Lipid Peroxidation, and Improving Glutathione Redox Status. Antioxidants (Basel) 2020; 9:1232. [PMID: 33291828 PMCID: PMC7762033 DOI: 10.3390/antiox9121232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity causes insulin resistance and hyperinsulinemia which causes skeletal muscle dysfunction resulting in a decrease in contraction force and a reduced capacity to avoid fatigue, which overall, causes an increase in oxidative stress. KATP channel openers such as diazoxide and the implementation of exercise protocols have been reported to be actively involved in protecting skeletal muscle against metabolic stress; however, the effects of diazoxide and exercise on muscle contraction and oxidative stress during obesity have not been explored. This study aimed to determine the effect of diazoxide in the contraction of skeletal muscle of obese male Wistar rats (35 mg/kg), and with an exercise protocol (five weeks) and the combination from both. Results showed that the treatment with diazoxide and exercise improved muscular contraction, showing an increase in maximum tension and total tension due to decreased ROS and lipid peroxidation levels and improved glutathione redox state. Therefore, these results suggest that diazoxide and exercise improve muscle function during obesity, possibly through its effects as KATP channel openers.
Collapse
Affiliation(s)
- Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Koré M. Moreno-Calderón
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Elizabeth Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, León, Guanajuato 37150, Mexico;
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Alain R. Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón, Bosque Cuauhtémoc, Morelia, Michoacán 58020, Mexico;
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| |
Collapse
|
14
|
Consumption of avocado oil (Persea americana) improves the biochemical profile of rats submitted to long-term androgenic stimulation. NUTR HOSP 2020; 37:1033-1038. [PMID: 32960628 DOI: 10.20960/nh.03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: indiscriminate use of anabolic steroids is associated with cardiovascular diseases, renal damage, and hepatic toxicity. Contrastingly, nutraceutical foods such as avocados prevent and control several diseases, as they can reduce the effects of oxidative stress. Objective: this study evaluates the benefits of consuming an avocado oil-based diet to attenuate the systemic damage caused by supraphysiological doses of testosterone, by analyzing the biochemical profile of 28 42-day-old male Wistar rats. Methods: silicone pellets containing testosterone were surgically implanted, and they received control or avocado oil-based feed. After 20 weeks, all the male rats were anesthetized and their blood samples collected. Results: although the high hormone concentration had a negative influence on the biochemical profile of these animals, the groups that consumed avocado oil exhibited a reduction in serum triacylglycerols (-21 %; p = 0.0001), VLDL (-20 %; p = 0.0085), LDL (-78 %; p < 0.0001), and total cholesterol (-12 %; p < 0.0001), along with positive changes in their HDL concentrations (+7 %; p = 0.001). The avocado oil groups also manifested a reduction in the total concentration of serum proteins (-24 %; p = 0.0357), albumin (-26 %; p = 0.0015), urea (-14 %; p = 0.04), and creatinine (-33 %; p < 0.0001). The concentration of liver transaminases was found to be higher in the animals included in the induced group (ALT, +66 %; p = 0.0005, and AST, +23 %; p = 0.0021), whereas they remained stable in the avocado oil group. Conclusion: from the above, it may be concluded that supraphysiological doses of testosterone are related to increased risk factors for cardiovascular, renal, and hepatic diseases, and that the consumption of avocado oil shields the biochemical profile, thus reducing the associated risk factors.
Collapse
|
15
|
Peña-Montes DJ, Huerta-Cervantes M, Ríos-Silva M, Trujillo X, Cortés-Rojo C, Huerta M, Saavedra-Molina A. Effects of dietary iron restriction on kidney mitochondria function and oxidative stress in streptozotocin-diabetic rats. Mitochondrion 2020; 54:41-48. [DOI: 10.1016/j.mito.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
|
16
|
Tramontin NDS, Luciano TF, Marques SDO, de Souza CT, Muller AP. Ginger and avocado as nutraceuticals for obesity and its comorbidities. Phytother Res 2020; 34:1282-1290. [PMID: 31989713 DOI: 10.1002/ptr.6619] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2023]
Abstract
Obesity is a worldwide epidemic and is one of the factors involved in the etiology of type 2 diabetes mellitus. Obesity induces low-grade inflammation and oxidative stress. The treatment for obesity involves changes in diet, physical activity, and even medication and surgery. Currently, the use of nutraceutical compounds is associated with health benefits. Ginger and avocado are used for many people all around the world; however, its effect as a nutraceutical compound is less known by the general population. For this reason, we searched information of the literature to point its effects on distinct mechanisms of defense against the obesity its comorbidities. The present review aimed showing that these nutraceuticals may be useful in obesity treatment. Reports have shown that ginger and avocado induce antioxidant and anti-inflammatory effects by improving enzymatic activity and modulating obesity-related impairments in the anti-inflammatory system in different tissues, without side effects. Furthermore, ginger and avocado were found to be effective in reversing the harmful effects of obesity on blood lipids. In conclusion, on the basis of the positive effects of ginger and avocado in in vitro, animal, and human studies, these nutraceuticals may be useful in obesity treatment.
Collapse
Affiliation(s)
| | - Thais F Luciano
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Claudio T de Souza
- Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Alexandre P Muller
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
17
|
Huerta-Cervantes M, Peña-Montes DJ, Montoya-Pérez R, Trujillo X, Huerta M, López-Vázquez MÁ, Olvera-Cortés ME, Saavedra-Molina A. Gestational Diabetes Triggers Oxidative Stress in Hippocampus and Cerebral Cortex and Cognitive Behavior Modifications in Rat Offspring: Age- and Sex-Dependent Effects. Nutrients 2020; 12:nu12020376. [PMID: 32023917 PMCID: PMC7071266 DOI: 10.3390/nu12020376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/04/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes (GD) has been linked with an increased risk of developing metabolic disorders and behavioral abnormalities in the offspring. Oxidative stress is strongly associated with neurodegeneration and cognitive disruption. In the offspring brains in a GD experimental rat model, increased oxidative stress in the prenatal and postnatal stages was reported. However, long-term alterations to offspring behavior and oxidative stress, caused by changes in the cerebral cortex and hippocampus, remain unclear. In this study, we evaluated the effect of GD on young and adult male and female rat offspring in metabolic parameters, cognitive behavior, and oxidative stress. GD was induced using streptozotocin in dams. Next, the offspring were evaluated at two and six months of age. Anxiety-like behavior was evaluated using the elevated plus maze and open field maze; spatial learning and short-term memory were evaluated using the Morris water maze and radial maze, respectively. We determined oxidative stress biomarkers (reactive oxygen species (ROS), lipid peroxidation and glutathione status) and antioxidant enzymes (superoxide dismutase and catalase) in the brain of offspring. We observed that male GD offspring showed a reduced level of anxiety at both ages as they spent less time in the closed arms of the elevated plus maze at adult age ((P = 0.019, d = 1.083 ( size effect)) and spent more time in the open area of an open field (P = 0.0412, d = 0.743) when young and adult age (P = 0.018, d = 0.65). Adult female GD offspring showed a reduced level of anxiety (P = 0.036; d = 0.966), and young female GD offspring showed a deficiency in spatial learning (P = 0.0291 vs. control, d = 3.207). Adult male GD offspring showed a deficiency in short-term memory (P = 0.017, d = 1.795). We found an increase in ROS and lipid peroxidation, a disruption in the glutathione status, and decreased activity of catalase and superoxide dismutase (P < 0.05 vs. control, d > 1.0), in the cerebral cortex and hippocampus of male and female GD offspring. GD altered metabolism; male offspring of both ages and adult females showed a high level of triglycerides and a lower level of high-density lipoprotein-cholesterol (P < 0.05 vs. control, d > 1.0). Young and adult female offspring displayed higher insulin levels (P < 0.05, d > 1.0). These results suggest that gestational diabetes modifies oxidative stress and cognitive behavior in an age- and sex-dependent manner.
Collapse
Affiliation(s)
- Maribel Huerta-Cervantes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mich., Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.)
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mich., Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.)
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, Colima, Mexico; (X.T.); (M.H.)
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mich., Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.)
| | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, Colima, Mexico; (X.T.); (M.H.)
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, Colima, Mexico; (X.T.); (M.H.)
| | - Miguel Ángel López-Vázquez
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58341 Morelia, Mich., Mexico;
| | - María Esther Olvera-Cortés
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58341 Morelia, Mich., Mexico;
- Correspondence: (A.S.-M.); (M.E.O-C.); Tel.: +52-443-326-5790 (A.S.-M.); + 52-443-322-2600 (M.E.O-C.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, Mich., Mexico; (M.H.-C.); (D.J.P.-M.); (R.M.-P.)
- Correspondence: (A.S.-M.); (M.E.O-C.); Tel.: +52-443-326-5790 (A.S.-M.); + 52-443-322-2600 (M.E.O-C.)
| |
Collapse
|
18
|
Lara-Márquez M, Báez-Magaña M, Raymundo-Ramos C, Spagnuolo PA, Macías-Rodríguez L, Salgado-Garciglia R, Ochoa-Zarzosa A, López-Meza JE. Lipid-rich extract from Mexican avocado (Persea americana var. drymifolia) induces apoptosis and modulates the inflammatory response in Caco-2 human colon cancer cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103658] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
19
|
Avocado Oil: Characteristics, Properties, and Applications. Molecules 2019; 24:molecules24112172. [PMID: 31185591 PMCID: PMC6600360 DOI: 10.3390/molecules24112172] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/20/2022] Open
Abstract
Avocado oil has generated growing interest among consumers due to its nutritional and technological characteristics, which is evidenced by an increase in the number of scientific articles that have been published on it. The purpose of the present research was to discuss the extraction methods, chemical composition, and various applications of avocado oil in the food and medicine industries. Our research was carried out through a systematic search in scientific databases. Even though there are no international regulations concerning the quality of avocado oil, some authors refer to the parameters used for olive oil, as stated by the Codex Alimentarius or the International Olive Oil Council. They indicate that the quality of avocado oil will depend on the quality and maturity of the fruit and the extraction technique in relation to temperature, solvents, and conservation. While the avocado fruit has been widely studied, there is a lack of knowledge about avocado oil and the potential health effects of consuming it. On the basis of the available data, avocado oil has established itself as an oil that has a very good nutritional value at low and high temperatures, with multiple technological applications that can be exploited for the benefit of its producers.
Collapse
|
20
|
Protective Effect of the Hexanic Extract of Eryngium carlinae Inflorescences In Vitro, in Yeast, and in Streptozotocin-Induced Diabetic Male Rats. Antioxidants (Basel) 2019; 8:antiox8030073. [PMID: 30917540 PMCID: PMC6466845 DOI: 10.3390/antiox8030073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 01/14/2023] Open
Abstract
In the present study, we investigated the composition and antioxidant activity of the hexanic extract of Eryngium carlinae inflorescences by employing in vitro assays to measure antioxidant capacity and 2,2-diphenyl-1-picrylhydrazyl scavenging activity. We also applied the hexanic extract to Saccharomyces cerevisiae, under hydrogen peroxide-induced stress. Finally, we tested the extract in male Wistar rats with and without streptozotocin-induced diabetes. The compounds in the hexanic extract were analyzed by gas-chromatography-mass spectrometry, which revealed mainly terpenes and sesquiterpenes, including (Z)β-farnesene (38.79%), β-pinene (17.53%), calamene (13.3%), and α-farnesene (10.38%). In vitro and in S. cerevisiae, the extract possessed antioxidant activity at different concentrations, compared to ascorbic acid (positive control). In normoglycemic and hyperglycemic rats, oral administration of 30 mg/kg of the extract reduced blood glucose levels; lipid peroxidation in liver, kidney and brain; protein carbonylation; and reactive oxygen species (ROS) production. It also increased catalase activity in the brain, kidneys and liver. These findings show that this hexanic extract of E. carlinae inflorescences possessed antioxidant properties.
Collapse
|
21
|
Márquez-Ramírez CA, Hernández de la Paz JL, Ortiz-Avila O, Raya-Farias A, González-Hernández JC, Rodríguez-Orozco AR, Salgado-Garciglia R, Saavedra-Molina A, Godínez-Hernández D, Cortés-Rojo C. Comparative effects of avocado oil and losartan on blood pressure, renal vascular function, and mitochondrial oxidative stress in hypertensive rats. Nutrition 2018; 54:60-67. [DOI: 10.1016/j.nut.2018.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/06/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022]
|
22
|
Fernandes GD, Gómez-Coca RB, Pérez-Camino MC, Moreda W, Barrera-Arellano D. Chemical characterization of commercial and single-variety avocado oils. GRASAS Y ACEITES 2018. [DOI: 10.3989/gya.0110181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This work aimed to determine the major and minor compounds of avocado oils. Mono-varietal oils from the Bacon, Fuerte, Hass, and Pinkerton cultivars were obtained by means of an Abencor® system, while commercial oils from Brazil, Chile, Ecuador and New Zealand were purchased locally. The content of triacylglycerols, fatty acids, aliphatic and terpenic alcohols, desmethyl- methyl- and dimethyl-sterols, squalene and tocopherols were determined. The main triacylglycerols were those with ECN48. In addition, the oleic, palmitic and linoleic acids prevailed. Desmethyl-sterols were the principal minor compounds. Low amounts of aliphatic and terpenic alcohols were also found. Squalene concentrations were higher in Bacon, Fuerte and Pinkerton oils than in the other oils. The most abundant tocopherol was α-tocopherol. Partial least squares discriminant analysis made it possible to express the differences among the samples. To summarize, this work brings a different approach to the complete characterization of avocado oil.
Collapse
|
23
|
Valvassori SS, Bavaresco DV, Feier G, Cechinel-Recco K, Steckert AV, Varela RB, Borges C, Carvalho-Silva M, Gomes LM, Streck EL, Quevedo J. Increased oxidative stress in the mitochondria isolated from lymphocytes of bipolar disorder patients during depressive episodes. Psychiatry Res 2018; 264:192-201. [PMID: 29653348 DOI: 10.1016/j.psychres.2018.03.089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/19/2018] [Accepted: 03/31/2018] [Indexed: 10/25/2022]
Abstract
The present study aims to investigate the oxidative stress parameters in isolated mitochondria, as well as looking at mitochondrial complex activity in patients with Bipolar Disorder (BD) during depressive or euthymic episodes. This study evaluated the levels of mitochondrial complex (I, II, II-III and IV) activity in lymphocytes from BD patients. We evaluated the following oxidative stress parameters: superoxide, thiobarbituric acid reactive species (TBARS) and carbonyl levels in submitochondrial particles of lymphocytes from bipolar patients. 51 bipolar patients were recruited into this study: 34 in the euthymic phase, and 17 in the depressive phase. Our results indicated that the depressive phase could increase the levels of mitochondrial superoxide, carbonyl and TBARS, and superoxide dismutase, and could decrease the levels of mitochondrial complex II activity in the lymphocytes of bipolar patients. It was also observed that there was a negative correlation between the Hamilton Depression Rating Scale (HDRS) and complex II activity in the lymphocytes of depressive bipolar patients. In addition, there was a positive correlation between HDRS and superoxide, superoxide dismutase, TBARS and carbonyl. Additionally, there was a negative correlation between complex II activity and oxidative stress parameters. In conclusion, our results suggest that mitochondrial oxidative stress and mitochondrial complex II dysfunction play important roles in the depressive phase of BD.
Collapse
Affiliation(s)
- Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Daniela V Bavaresco
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo Feier
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Kelen Cechinel-Recco
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Amanda V Steckert
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cenita Borges
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Milena Carvalho-Silva
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Lara M Gomes
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Emílio L Streck
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
24
|
Avocado oil induces long-term alleviation of oxidative damage in kidney mitochondria from type 2 diabetic rats by improving glutathione status. J Bioenerg Biomembr 2017; 49:205-214. [DOI: 10.1007/s10863-017-9697-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/06/2017] [Indexed: 12/24/2022]
|
25
|
Jiménez-Sotelo P, Hernández-Martínez M, Osorio-Revilla G, Meza-Márquez OG, García-Ochoa F, Gallardo-Velázquez T. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1105-15. [DOI: 10.1080/19440049.2016.1203073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Paola Jiménez-Sotelo
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Maylet Hernández-Martínez
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Guillermo Osorio-Revilla
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ofelia Gabriela Meza-Márquez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Felipe García-Ochoa
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Tzayhrí Gallardo-Velázquez
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
26
|
Ameer K. Avocado as a Major Dietary Source of Antioxidants and Its Preventive Role in Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2016; 12:337-54. [DOI: 10.1007/978-3-319-28383-8_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats. J Bioenerg Biomembr 2015; 47:337-53. [PMID: 26060181 DOI: 10.1007/s10863-015-9614-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/29/2015] [Indexed: 02/07/2023]
Abstract
Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation. Streptozocin-induced diabetes elicited a noticeable increase in the content of C22:6, leading to augmented mitochondrial peroxidizability index and higher levels of lipid peroxidation. Mitochondrial respiration and complex I activity were impaired in diabetic rats with a concomitant increase in ROS generation using a complex I substrate. This was associated to a more oxidized state of glutathione, All these alterations were prevented by avocado oil except by the changes in mitochondrial fatty acid composition. Avocado oil did not prevented hyperglycemia and polyphagia although did normalized hyperlipidemia. Neither diabetes nor avocado oil induced steatosis. These results suggest that avocado oil improves mitochondrial ETC function by attenuating the deleterious effects of oxidative stress in the liver of diabetic rats independently of a hypoglycemic effect or by modifying the fatty acid composition of mitochondrial membranes. These findings might have also significant implications in the progression of NAFLD in experimental models of steatosis.
Collapse
|
28
|
Ortiz-Avila O, Esquivel-Martínez M, Olmos-Orizaba BE, Saavedra-Molina A, Rodriguez-Orozco AR, Cortés-Rojo C. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats. J Diabetes Res 2015; 2015:485759. [PMID: 26180820 PMCID: PMC4477098 DOI: 10.1155/2015/485759] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 01/06/2023] Open
Abstract
Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.
Collapse
Affiliation(s)
- Omar Ortiz-Avila
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, MICH, Mexico
| | - Mauricio Esquivel-Martínez
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, 58240 Morelia, MICH, Mexico
| | | | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, MICH, Mexico
| | - Alain R. Rodriguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo, 58020 Morelia, MICH, Mexico
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, MICH, Mexico
| |
Collapse
|
29
|
Effects of diabetes on oxidative and nitrosative stress in kidney mitochondria from aged rats. J Bioenerg Biomembr 2014; 46:511-8. [PMID: 25425473 DOI: 10.1007/s10863-014-9594-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/19/2014] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is characterized by chronic hyperglycemia resulting from defects in the secretion and/or action of insulin. Diabetic nephropathy (DN) develops in diabetic patients and is characterized by a progressive deterioration of renal function. The mitochondrial electron transport chain (ETC) produces most of the reactive oxygen species (ROS) that are involved in diabetic nephropathy. Due to the high incidence of DM in the elderly, the aim of this study was to evaluate oxidative and nitrosative stress in kidney mitochondria from aged rats. We evaluated lipid peroxidation (LPO), nitric oxide (NO(•)) production, S-nitrosylation profiles, glutathione levels, and glutathione reductase and aconitase activities under streptozotocin (STZ)-induced experimental diabetes in kidney mitochondria from aged rats. The results showed an increase in LPO, NO(•) production, and S-nitrosylated proteins in rats with STZ-induced diabetes. A decrease in glutathione (GSH) levels and glutathione reductase (GR) and aconitase activities in the rats that received the STZ-induced diabetes treatment was also observed, when compared with the age-related controls. The data suggest that oxidative and nitrosative stresses promote mitochondrial oxidative dysfunction in the more advanced age rat kidney in STZ-induced diabetes.
Collapse
|
30
|
Rodríguez-Sánchez D, Silva-Platas C, Rojo RP, García N, Cisneros-Zevallos L, García-Rivas G, Hernández-Brenes C. Activity-guided identification of acetogenins as novel lipophilic antioxidants present in avocado pulp (Persea americana). J Chromatogr B Analyt Technol Biomed Life Sci 2013; 942-943:37-45. [PMID: 24211333 DOI: 10.1016/j.jchromb.2013.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/06/2013] [Accepted: 10/10/2013] [Indexed: 12/23/2022]
Abstract
Avocado fruit is a rich source of health-related lipophilic phytochemicals such as monounsaturated fatty acids, tocopherols, carotenes, acetogenins and sterols. However, limited information is available on the contribution of specific phytochemicals to the overall antioxidant capacity (AOC) of the fruit. Centrifugal partition chromatography was used as fractionation tool, guided by an in vitro chemical assay of oxygen radical absorbance capacity (ORAC). Subsequent experiments focused on isolation and characterization of the chemical nature of the main contributors to lipophilic AOC of avocado pulp. ORAC values obtained for acetogenins were contrasted with results from an isolated kidney mitochondria membrane lipid peroxidation bioassay. The present study established that lipophilic AOC of the pulp was significantly higher than its hydrophilic AOC. Our results confirmed the presence of acetogenins in the fractions with highest lipophilic AOC, and for the first time linked them as contributors to lipophilic-ORAC values. Further HPLC-PDA/MS-TOF analysis led to structural elucidation of two novel acetogenins, not previously reported as present in avocado pulp, along with five already known related-compounds. Antioxidant properties observed for avocado pulp acetogenins by the ORAC assay suggested that, in the presence of an emulsifying agent, acetogenins could serve as novel lipophilic antioxidants in a food matrix. Results from isolated mitochondria lipid peroxidation bioassay, indicated that L-ORAC values which may have relevance for food matrix applications, should not be interpreted to have a direct relevance in health-related claims, compounds need to be evaluated considering the complexity of biological systems.
Collapse
Affiliation(s)
- Dariana Rodríguez-Sánchez
- Department of Biotechnology and Food Engineering, School of Biotechnology and Food, Tecnológico de Monterrey-Campus Monterrey, E. Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico; Endowed Chair in Cardiology. School of Medicine. Tecnológico de Monterrey-Campus Monterrey, Monterrey, NL, Mexico
| | | | | | | | | | | | | |
Collapse
|
31
|
Gomathi D, Ravikumar G, Kalaiselvi M, Devaki K, Uma C. Effect of Evolvulus alsinoides on lipid metabolism of streptozotocin induced diabetic rats. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2013. [DOI: 10.1016/s2222-1808(13)60037-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|