1
|
Liao Y, Octaviani S, Tian Z, Wang SR, Huang C, Huang J. Mitochondrial quality control in hematopoietic stem cells: mechanisms, implications, and therapeutic opportunities. Stem Cell Res Ther 2025; 16:180. [PMID: 40234908 PMCID: PMC12001479 DOI: 10.1186/s13287-025-04304-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Mitochondrial quality control (MQC) is a critical mechanism for maintaining mitochondrial function and cellular metabolic homeostasis, playing an essential role in the self-renewal, differentiation, and long-term stability of hematopoietic stem cells (HSCs). Recent research highlights the central importance of MQC in HSC biology, particularly the roles of mitophagy, mitochondrial biogenesis, fission, fusion and mitochondrial transfer in regulating HSC function. Mitophagy ensures the removal of damaged mitochondria, maintaining low levels of reactive oxygen species (ROS) in HSCs, thereby preventing premature aging and functional decline. Concurrently, mitochondrial biogenesis adjusts key metabolic regulators such as mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) to meet environmental demands, ensuring the metabolic needs of HSCs are met. Additionally, mitochondrial transfer, as an essential form of intercellular material exchange, facilitates the transfer of functional mitochondria from bone marrow stromal cells to HSCs, contributing to damage repair and metabolic support. Although existing studies have revealed the significance of MQC in maintaining HSC function, the precise molecular mechanisms and interactions among different regulatory pathways remain to be fully elucidated. Furthermore, the potential role of MQC dysfunction in hematopoietic disorders, including its involvement in disease progression and therapeutic resistance, is not yet fully understood. This review discusses the molecular mechanisms of MQC in HSCs, its functions under physiological and pathological conditions, and its potential therapeutic applications. By summarizing the current progress in this field, we aim to provide insights for further research and the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Yun Liao
- Coriell Institute for Medical Research, Camden, NJ, USA
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, Sichuan, China
| | | | - Zhen Tian
- Coriell Institute for Medical Research, Camden, NJ, USA
| | | | - Chunlan Huang
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, Luzhou, Sichuan, China.
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ, USA.
- Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
2
|
Valipour B, Fathi E, Farahzadi R, Naderali E, Behniafar H. L-carnitine cause to increase cell proliferation of C-Kit + hematopoietic progenitor cells via decreasing the PI3K and FOXO-1 protein expression. Tissue Cell 2024; 91:102558. [PMID: 39260072 DOI: 10.1016/j.tice.2024.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Stem cell-based therapy has emerged as an attractive approach for regenerative medicine. Poor survival and maintenance of the cells used in regenerative medicine are considered as serious barriers to enhance the efficacy of the cell therapy. Using some antioxidants has been reported to prevent the aging of stem cells, and finding effective factors to reduce the senescence of these cells has impressive potential in cell therapy. The PI3K pathway adversely regulates the transcription factors known as FOXO, which are thought to have an inhibitory influence on cell proliferation. By downregulating FOXO and other targets, PI3K signaling controls the growth of cells. For this reason, the aim of the present study is to investigate the effect of L-carnitine (LC) as antioxidant on the cell proliferation and the protein expression of PI3K and FOXO. METHODS For understanding the in vitro effect of LC on the PI3K and FOXO-1 expression of C-kit+ hematopoietic progenitor cells, the bone marrow mononuclear cells were isolated, and C-kit+ cells was enriched by the magnetic-activated cell sorting (MACS). Next, the identification of enriched C-kit+ cells were done by flowcytometry and immunocytochemistry. Then, C-kit+ cells were treated with 0.2 mM LC, the cells were collected at the end of the treatment period (48 h), and the proteins were extracted. In the following, the protein expression of PI3K and FOXO-1 was measured by western blotting. In addition, flowcytometry was done to assess the Ki-67 expression as a key marker for cell proliferation investigation. RESULTS 0.2 mM LC cause to significantly decrease in the protein expression of PI3K and FOXO-1 (*P<0.05 and **P<0.01, respectively). Also, the expression of Ki-67 was significantly increased in the presence of 0.2 mM LC (***P<0.001). CONCLUSION Briefly, LC can be considered an effective factor in increasing the proliferation of C-kit+ cells via some signaling pathways.
Collapse
Affiliation(s)
- Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Elahe Naderali
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Hamed Behniafar
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran
| |
Collapse
|
3
|
Menon V, Slavinsky M, Hermine O, Ghaffari S. Mitochondrial regulation of erythropoiesis in homeostasis and disease. Br J Haematol 2024; 205:429-439. [PMID: 38946206 PMCID: PMC11619715 DOI: 10.1111/bjh.19600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Erythroid cells undergo a highly complex maturation process, resulting in dynamic changes that generate red blood cells (RBCs) highly rich in haemoglobin. The end stages of the erythroid cell maturation process primarily include chromatin condensation and nuclear polarization, followed by nuclear expulsion called enucleation and clearance of mitochondria and other organelles to finally generate mature RBCs. While healthy RBCs are devoid of mitochondria, recent evidence suggests that mitochondria are actively implicated in the processes of erythroid cell maturation, erythroblast enucleation and RBC production. However, the extent of mitochondrial participation that occurs during these ultimate steps is not completely understood. This is specifically important since abnormal RBC retention of mitochondria or mitochondrial DNA contributes to the pathophysiology of sickle cell and other disorders. Here we review some of the key findings so far that elucidate the importance of this process in various aspects of erythroid maturation and RBC production under homeostasis and disease conditions.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Mary Slavinsky
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Olivier Hermine
- Department Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Descartes
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
4
|
Cheng M, Nie Y, Song M, Chen F, Yu Y. Forkhead box O proteins: steering the course of stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:7. [PMID: 38466341 DOI: 10.1186/s13619-024-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Nie
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Song
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Snarski P, Ghimire J, Savkovic SD. FOXO3: at the crossroads of metabolic, inflammatory, and tumorigenic remodeling in the colon. Am J Physiol Gastrointest Liver Physiol 2024; 326:G247-G251. [PMID: 38193202 PMCID: PMC11211034 DOI: 10.1152/ajpgi.00201.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
The Forkhead box O3 (FOXO3) transcription factor regulates the expression of genes critical for diverse cellular functions in homeostasis. Diminished FOXO3 activity is associated with human diseases such as obesity, metabolic diseases, inflammatory diseases, and cancer. In the mouse colon, FOXO3 deficiency leads to an inflammatory immune landscape and dysregulated molecular pathways, which, under various insults, exacerbates inflammation and tumor burden, mimicking characteristics of human diseases. This deficiency also results in dysregulated lipid metabolism, and consequently, the accumulation of intracellular lipid droplets (LDs) in colonic epithelial cells and infiltrated immune cells. FOXO3 and LDs form a self-reinforcing negative regulatory loop in colonic epithelial cells, neutrophils, and macrophages, which is associated with inflammatory bowel disease and colon cancer, particularly in the context of obesity.
Collapse
Affiliation(s)
- Patricia Snarski
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Jenisha Ghimire
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Suzana D Savkovic
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
| |
Collapse
|
6
|
Liang R, Lin M, Menon V, Qiu J, Menon A, Breda L, Arif T, Rivella S, Ghaffari S. Elevated CDKN1A (P21) mediates β-thalassemia erythroid apoptosis, but its loss does not improve β-thalassemic erythropoiesis. Blood Adv 2023; 7:6873-6885. [PMID: 37672319 PMCID: PMC10685172 DOI: 10.1182/bloodadvances.2022007655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
β-thalassemias are common hemoglobinopathies due to mutations in the β-globin gene that lead to hemolytic anemias. Premature death of β-thalassemic erythroid precursors results in ineffective erythroid maturation, increased production of erythropoietin (EPO), expansion of erythroid progenitor compartment, extramedullary erythropoiesis, and splenomegaly. However, the molecular mechanism of erythroid apoptosis in β-thalassemia is not well understood. Using a mouse model of β-thalassemia (Hbbth3/+), we show that dysregulated expression of the FOXO3 transcription factor is implicated in β-thalassemia erythroid apoptosis. In Foxo3-/-/Hbbth3/+ mice, erythroid apoptosis is significantly reduced, whereas erythroid cell maturation, and red blood cell and hemoglobin production are substantially improved even with elevated reactive oxygen species in double-mutant erythroblasts. However, persistence of elevated reticulocytes and splenomegaly suggests that ineffective erythropoiesis is not resolved in Foxo3-/-/Hbbth3/+. We found the cell cycle inhibitor Cdkn1a (cyclin-dependent kinase inhibitor p21), a FOXO3 target gene, is markedly upregulated in both mouse and patient-derived β-thalassemic erythroid precursors. Double-mutant p21/Hbbth3/+ mice exhibited embryonic lethality with only a fraction of mice surviving to weaning. Notably, studies in adult mice displayed greatly reduced apoptosis and circulating Epo in erythroid compartments of surviving p21-/-/Hbbth3/+ mice relative to Hbbth3/+ mice, whereas ineffective erythroid cell maturation, extramedullary erythropoiesis, and splenomegaly were not modified. These combined results suggest that mechanisms that control β-thalassemic erythroid cell survival and differentiation are uncoupled from ineffective erythropoiesis and involve a molecular network including FOXO3 and P21. Overall, these studies provide a new framework for investigating ineffective erythropoiesis in β-thalassemia.
Collapse
Affiliation(s)
- Raymond Liang
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miao Lin
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiajing Qiu
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anagha Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Breda
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stefano Rivella
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
Czerny CC, Borschel A, Cai M, Otto M, Hoyer-Fender S. FOXA1 is a transcriptional activator of Odf2/Cenexin and regulates primary ciliation. Sci Rep 2022; 12:21468. [PMID: 36509813 PMCID: PMC9744847 DOI: 10.1038/s41598-022-25966-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are sensory organelles essential for embryonic and postnatal development, and tissue homeostasis in adulthood. They are generated in a cell cycle-dependent manner and found on most cells of the body. Although cilia formation is intensively investigated virtually nothing is known about the transcriptional regulation of primary ciliation. We used here Odf2/Cenexin, encoding a protein of the mother centriole and the basal body that is mandatory for primary cilia formation, as the target gene for the identification of transcriptional activators. We identified a consensus binding site for Fox transcription factors (TFs) in its promoter region and focused here on the Fox family. We found transcriptional activation of Odf2 neither by FOXO TFs nor by the core TF for multiciliation, FOXJ1. However, we identified FOXA1 as a transcriptional activator of Odf2 by reporter gene assays and qRT-PCR, and showed by qWB that Foxa1 knockdown caused a decrease in ODF2 and CP110 proteins. We verified the binding sequence of FOXA1 in the Odf2 promoter by ChIP. Finally, we demonstrated that knockdown of FOXA1 affected primary cilia formation. We, thus, showed for the first time, that FOXA1 regulates primary ciliation by transcriptional activation of ciliary genes.
Collapse
Affiliation(s)
- Christian Carl Czerny
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Anett Borschel
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Mingfang Cai
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Madeline Otto
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany ,grid.424957.90000 0004 0624 9165Present Address: Thermo Fisher Scientific GENEART, Regensburg, Germany
| | - Sigrid Hoyer-Fender
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| |
Collapse
|
8
|
Schmitt F, Eckert GP. Caenorhabditis elegans as a Model for the Effects of Phytochemicals on Mitochondria and Aging. Biomolecules 2022; 12:1550. [PMID: 36358900 PMCID: PMC9687847 DOI: 10.3390/biom12111550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
The study of aging is an important topic in contemporary research. Considering the demographic changes and the resulting shifts towards an older population, it is of great interest to preserve youthful physiology in old age. For this endeavor, it is necessary to choose an appropriate model. One such model is the nematode Caenorhabditis elegans (C. elegans), which has a long tradition in aging research. In this review article, we explore the advantages of using the nematode model in aging research, focusing on bioenergetics and the study of secondary plant metabolites that have interesting implications during this process. In the first section, we review the situation of aging research today. Conventional theories and hypotheses about the ongoing aging process will be presented and briefly explained. The second section focuses on the nematode C. elegans and its utility in aging and nutrition research. Two useful genome editing methods for monitoring genetic interactions (RNAi and CRISPR/Cas9) are presented. Due to the mitochondria's influence on aging, we also introduce the possibility of observing bioenergetics and respiratory phenomena in C. elegans. We then report on mitochondrial conservation between vertebrates and invertebrates. Here, we explain why the nematode is a suitable model for the study of mitochondrial aging. In the fourth section, we focus on phytochemicals and their applications in contemporary nutritional science, with an emphasis on aging research. As an emerging field of science, we conclude this review in the fifth section with several studies focusing on mitochondrial research and the effects of phytochemicals such as polyphenols. In summary, the nematode C. elegans is a suitable model for aging research that incorporates the mitochondrial theory of aging. Its living conditions in the laboratory are optimal for feeding studies, thus enabling bioenergetics to be observed during the aging process.
Collapse
Affiliation(s)
| | - Gunter P. Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Science, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
9
|
Margrett JA, Schofield T, Martin P, Poon LW, Masaki K, Donlon TA, Kallianpur KJ, Willcox BJ. Novel Functional, Health, and Genetic Determinants of Cognitive Terminal Decline: Kuakini Honolulu Heart Program/Honolulu-Asia Aging Study. J Gerontol A Biol Sci Med Sci 2022; 77:1525-1533. [PMID: 34918073 PMCID: PMC9373950 DOI: 10.1093/gerona/glab327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
To investigate interindividual differences in cognitive terminal decline and identify determinants including functional, health, and genetic risk and protective factors, data from the Honolulu Heart Program/Honolulu-Asia Aging Study, a prospective cohort study of Japanese American men, were analyzed. The sample was recruited in 1965-1968 (ages 45-68 years). Longitudinal performance of cognitive abilities and mortality status were assessed from Exam 4 (1991-1993) through June 2014. Latent class analysis revealed 2 groups: maintainers retained relatively high levels of cognitive functioning until death and decliners demonstrated significant cognitive waning several years prior to death. Maintainers were more likely to have greater education, diagnosed coronary heart disease, and presence of the apolipoprotein E (APOE) ε2 allele and FOXO3 G allele (SNP rs2802292). Decliners were more likely to be older and have prior stroke, Parkinson's disease, dementia, and greater depressive symptoms at Exam 4, and the APOE ε4 allele. Findings support terminal decline using distance to death as the basis for modeling change. Significant differences were observed between maintainers and decliners 15 years prior to death, a finding much earlier compared to the majority of previous investigations.
Collapse
Affiliation(s)
- Jennifer A Margrett
- Department of Human Development and Family Studies, College of Human Sciences, Iowa State University, Ames, Iowa, USA
| | - Thomas Schofield
- Department of Human Development and Family Studies, College of Human Sciences, Iowa State University, Ames, Iowa, USA
| | - Peter Martin
- Department of Human Development and Family Studies, College of Human Sciences, Iowa State University, Ames, Iowa, USA
| | - Leonard W Poon
- Institute of Gerontology, University of Georgia, Athens, Georgia, USA
| | - Kamal Masaki
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
| | - Timothy A Donlon
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
| | - Kalpana J Kallianpur
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
| |
Collapse
|
10
|
Cai G, Lin F, Wu D, Lin C, Chen H, Wei Y, Weng H, Chen Z, Wu M, Huang E, Ye Z, Ye Q. Rosmarinic Acid Inhibits Mitochondrial Damage by Alleviating Unfolded Protein Response. Front Pharmacol 2022; 13:859978. [PMID: 35652041 PMCID: PMC9149082 DOI: 10.3389/fphar.2022.859978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are essential organelles that perform important roles in cell biologies such as ATP synthesis, metabolic regulation, immunomodulatory, and apoptosis. Parkinson’s disease (PD) is connected with mitochondrial neuronal damage related to mitochondrial unfolded protein response (mtUPR). Rosmarinic acid (RA) is a naturally occurring hydroxylated polyphenolic chemical found in the Boraginaceae and the Labiatae subfamily Nepetoideae. This study looked into RA’s protective effect against mitochondrial loss in the substantia nigra (SN) caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the underlying mechanism associated with the mtUPR. Pretreatment with RA reduced motor impairments and dopaminergic neuronal degeneration in the SN of a mouse model injected with MPTP. Pretreatment of SH-SY5Y cells from cell viability loss, morphological damage, and oxidative stress. Furthermore, RA pre-injection suppressed MPTP-induced mtUPR, lowered the expression of HSPA9, HSPE1, CLPP, LONP1, and SIRT 4, and protected the MPTP-mice and SH-SY5Y cells from mitochondrial failure. These findings imply that RA can prevent Parkinson’s disease by preventing mitochondrial damage in dopaminergic neurons in Parkinson’s disease via alleviating mitochondrial unfolded protein response.
Collapse
Affiliation(s)
- Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Fabin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Dihang Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Chenxin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Huiyun Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yicong Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huidan Weng
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Zhiting Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Minxia Wu
- Public Technology Service Center, Fujian Medical University, Fuzhou, China
| | - En Huang
- Fujian Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zucheng Ye
- Fujian Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- *Correspondence: Zucheng Ye, ; Qinyong Ye,
| | - Qinyong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology, Institute of Clinical Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- *Correspondence: Zucheng Ye, ; Qinyong Ye,
| |
Collapse
|
11
|
Lin W, Chen S, Wang Y, Wang M, Lee WYW, Jiang X, Li G. Dynamic regulation of mitochondrial-endoplasmic reticulum crosstalk during stem cell homeostasis and aging. Cell Death Dis 2021; 12:794. [PMID: 34400615 PMCID: PMC8368094 DOI: 10.1038/s41419-021-03912-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Cellular therapy exerts profound therapeutic potential for curing a broad spectrum of diseases. Adult stem cells reside within a specified dynamic niche in vivo, which is essential for continuous tissue homeostatic maintenance through balancing self-renewal with lineage selection. Meanwhile, adult stem cells may be multipotent or unipotent, and are present in both quiescent and actively dividing states in vivo of the mammalians, which may switch to each other state in response to biophysical cues through mitochondria-mediated mechanisms, such as alterations in mitochondrial respiration and metabolism. In general, stem cells facilitate tissue repair after tissue-specific homing through various mechanisms, including immunomodulation of local microenvironment, differentiation into functional cells, cell "empowerment" via paracrine secretion, immunoregulation, and intercellular mitochondrial transfer. Interestingly, cell-source-specific features have been reported between different tissue-derived adult stem cells with distinct functional properties due to the different microenvironments in vivo, as well as differential functional properties in different tissue-derived stem cell-derived extracellular vehicles, mitochondrial metabolism, and mitochondrial transfer capacity. Here, we summarized the current understanding on roles of mitochondrial dynamics during stem cell homeostasis and aging, and lineage-specific differentiation. Also, we proposed potential unique mitochondrial molecular signature features between different source-derived stem cells and potential associations between stem cell aging and mitochondria-endoplasmic reticulum (ER) communication, as well as potential novel strategies for anti-aging intervention and healthy aging.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Shuxun Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yan Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ming Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Yuk-Wai Lee
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaohua Jiang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Faculty of Medicine, MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Faculty of Medicine, MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
12
|
Weng H, Ma Y, Chen L, Cai G, Chen Z, Zhang S, Ye Q. A New Vision of Mitochondrial Unfolded Protein Response to the Sirtuin Family. Curr Neuropharmacol 2021; 18:613-623. [PMID: 31976838 PMCID: PMC7457425 DOI: 10.2174/1570159x18666200123165002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/01/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial damage is involved in many pathophysiological processes, such as tumor development, metabolism, and neurodegenerative diseases. The mitochondrial unfolded protein response (mtUPR) is the first stress-protective response initiated by mitochondrial damage, and it repairs or clears misfolded proteins to alleviate this damage. Studies have confirmed that the sirtuin family is essential for the mitochondrial stress response; in particular, SIRT1, SIRT3, and SIRT7 participate in the mtUPR in different axes. This article summarizes the associations of sirtuins with the mtUPR as well as specific molecular targets related to the mtUPR in different disease models, which will provide new inspiration for studies on mitochondrial stress, mitochondrial function protection, and mitochondria-related diseases, such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Huidan Weng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350001, China,The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences Kumamoto University, Kumamoto, Japan
| | - Lina Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350001, China
| | - Guoen Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Zhiting Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan
Road, Fuzhou, Fujian, 350001, China,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350001, China
| |
Collapse
|
13
|
Oxidative Stress and ROS-Mediated Signaling in Leukemia: Novel Promising Perspectives to Eradicate Chemoresistant Cells in Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22052470. [PMID: 33671113 PMCID: PMC7957553 DOI: 10.3390/ijms22052470] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid leukemic cells are intrinsically under oxidative stress due to impaired reactive oxygen species (ROS) homeostasis, a common signature of several hematological malignancies. The present review focuses on the molecular mechanisms of aberrant ROS production in myeloid leukemia cells as well as on the redox-dependent signaling pathways involved in the leukemogenic process. Finally, the relevance of new chemotherapy options that specifically exert their pharmacological activity by altering the cellular redox imbalance will be discussed as an effective strategy to eradicate chemoresistant cells.
Collapse
|
14
|
Huang Y, Zhu X, Chen K, Lang H, Zhang Y, Hou P, Ran L, Zhou M, Zheng J, Yi L, Mi M, Zhang Q. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway. Aging (Albany NY) 2020; 11:2217-2240. [PMID: 30988232 PMCID: PMC6519996 DOI: 10.18632/aging.101910] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
Background: The concept of sarcopenic obesity refers to low muscle mass coupled with high adiposity in older adults. Sarcopenic obesity is a new medical challenge that imposes tremendous financial burdens on healthcare authorities worldwide. This study investigated the effects of resveratrol on high-fat diet-induced sarcopenic obesity in aged rats and palmitate acid-induced muscle atrophy in L6 myotubes and explored the underlying mechanisms. Results: In vivo, resveratrol prevented muscle loss and myofiber size decrease, improved grip strength and abolished excessive fat accumulation. In vitro, resveratrol inhibited the palmitate acid-mediated reductions in myosin heavy chain content and myotube diameter. Moreover, resveratrol ameliorated mitochondrial dysfunction and oxidative stress, leading to an improvement in protein metabolism and contributing to the prevention of muscle atrophy. Furthermore, the protective effects of resveratrol on mitochondrial function, oxidative stress and muscle atrophy were abolished by PKA siRNA, LKB1 siRNA and AMPK siRNA transfection in vitro. Conclusions: Resveratrol prevented high-fat diet-induced muscle atrophy in aged rats by reversing mitochondrial dysfunction and oxidative stress, which was partially mediated by the PKA/LKB1/AMPK pathway. These findings indicate that resveratrol might have potential uses for the prevention and treatment of sarcopenic obesity.
Collapse
Affiliation(s)
- Yujie Huang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Xiaohui Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Ka Chen
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Hedong Lang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Yong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Pengfei Hou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Li Ran
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Min Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Jiawei Zheng
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Shapingba District, Chongqing 400038, P. R. China
| |
Collapse
|
15
|
Libby CJ, McConathy J, Darley-Usmar V, Hjelmeland AB. The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology. Cancer Res 2019; 80:5-16. [PMID: 31575548 DOI: 10.1158/0008-5472.can-19-1169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/04/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of intratumoral heterogeneity in cancer continues to evolve, with current models incorporating single-cell signatures to explore cell-cell interactions and differentiation state. The transition between stem and differentiation states in nonneoplastic cells requires metabolic plasticity, and this plasticity is increasingly recognized to play a central role in cancer biology. The insights from hematopoietic and neural stem cell differentiation pathways were used to identify cancer stem cells in leukemia and gliomas. Similarly, defining metabolic heterogeneity and fuel-switching signals in nonneoplastic stem cells may also give important insights into the corresponding molecular mechanisms controlling metabolic plasticity in cancer. These advances are important, because metabolic adaptation to anticancer therapeutics is rooted in this inherent metabolic plasticity and is a therapeutic challenge to be overcome.
Collapse
Affiliation(s)
- Catherine J Libby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
16
|
Kang MA, Lee J, Ha SH, Lee CM, Kim KM, Jang KY, Park SH. Interleukin4Rα (IL4Rα) and IL13Rα1 Are Associated with the Progress of Renal Cell Carcinoma through Janus Kinase 2 (JAK2)/Forkhead Box O3 (FOXO3) Pathways. Cancers (Basel) 2019; 11:cancers11091394. [PMID: 31540495 PMCID: PMC6770213 DOI: 10.3390/cancers11091394] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022] Open
Abstract
Specific kinds of interleukin (IL) receptors are known to mediate lymphocyte proliferation and survival. However, recent reports have suggested that the high expression of IL4Rα and IL13Rα1 in tumor tissue might be associated with tumorigenesis in several kinds of tumor. We found that a significant association between mRNA level of IL4Rα or IL13Rα1 and the poor prognosis of renal cell carcinoma (RCC) from the public database (http://www.oncolnc.org/). Then, we evaluated the clinicopathological significance of the immunohistochemical expression of IL4Rα and IL13Rα1 in 199 clear cell RCC (CCRCC) patients. The individual and co-expression patterns of IL4Rα and IL13Rα1 were significantly associated with cancer-specific survival (CSS) and relapse-free survival (RFS) in univariate analysis. Multivariate analysis indicated IL4Rα-positivity and co-expression of IL4Rα and IL13Rα1 as the independent indicators of shorter CSS and RFS of CCRCC patients. For the in vitro evaluation of the oncogenic role of IL4Rα and IL13Rα1 in RCC, we knock-downed IL4Rα or IL13Rα1 and observed that the cell proliferation rate was decreased, and the apoptosis rate was increased in A498 and ACHN cells. Furthermore, we examined the possible role of Janus kinase 2 (JAK2), well-known down-stream tyrosine kinase under the heterodimeric receptor complex of IL4Rα and IL13Rα1. Interestingly, JAK2 interacted with Forkhead box O3 (FOXO3) to cause tyrosine-phosphorylation of FOXO3. Silencing IL4Rα or JAK2 in A498 and ACHN cells reduced the interaction between JAK2 and FOXO3. Moreover, pharmacological inhibition of JAK2 induced the nuclear localization of FOXO3, leading to increase apoptosis and decrease cell proliferation rate in A498 and ACHN cells. Taken together, these results suggest that IL4Rα and IL13Rα1 might be involved in the progression of RCC through JAK2/FOXO3 pathway, and their expression might be used as the novel prognostic factor and therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Mi-Ae Kang
- Department of Biological Science, Gachon University, Seongnam 13120, Korea.
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea.
| | - Sang Hoon Ha
- Division of Biotechnology, Chonbuk National University, Iksan 54596, Korea.
| | - Chang Min Lee
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju 54896, Korea.
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical, Chonbuk National University, Jeonju 54896, Korea.
- Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju 54896, Korea.
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Work in the past decade has revealed key functions of the evolutionary conserved transcription factors Forkhead box O (FOXO) in the maintenance of homeostatic hematopoiesis. Here the diverse array of FOXO functions in normal and diseased hematopoietic stem and progenitor cells is reviewed and the main findings in the past decade are highlighted. Future work should reveal FOXO-regulated networks whose alterations contribute to hematological disorders. RECENT FINDINGS Recent studies have identified unanticipated FOXO functions in hematopoiesis including in hematopoietic stem and progenitor cells (HSPC), erythroid cells, and immune cells. These findings suggest FOXO3 is critical for the regulation of mitochondrial and metabolic processes in hematopoietic stem cells, the balanced lineage determination, the T and B homeostasis, and terminal erythroblast maturation and red blood cell production. In aggregate these findings highlight the context-dependent function of FOXO in hematopoietic cells. Recent findings also question the nature of FOXO's contribution to heme malignancies as well as the mechanisms underlying FOXO's regulation in HSPC. SUMMARY FOXO are safeguards of homeostatic hematopoiesis. FOXO networks and their regulators and coactivators in HSPC are greatly complex and less well described. Identifications and characterizations of these FOXO networks in disease are likely to uncover disease-promoting mechanisms.
Collapse
|
18
|
Zhao K, Wang Z, Hackert T, Pitzer C, Zöller M. Tspan8 and Tspan8/CD151 knockout mice unravel the contribution of tumor and host exosomes to tumor progression. J Exp Clin Cancer Res 2018; 37:312. [PMID: 30541597 PMCID: PMC6292129 DOI: 10.1186/s13046-018-0961-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The tetraspanins Tspan8 and CD151 promote metastasis, exosomes (Exo) being suggested to be important in the crosstalk between tumor and host. The contribution of Tspan8 and CD151 to host versus tumor-derived exosome (TEX) activities being not defined, we approached the questions using 3-methylcholanthrene-induced (MCA) tumors from wt, Tspan8ko, CD151ko and Tspan8/CD151 (db)ko mice, implanted into tetraspanin-competent and deficient hosts. METHODS Tumor growth and dissemination, hematopoiesis and angiogenesis were surveyed in wild type (wt), Tspan8ko, CD151ko and dbko mice bearing tetraspanin-competent and -deficient MCA tumors. In vitro studies using tumor cells, bone marrow cells (BMC) and endothelial cells (EC) elaborated the mechanism of serum (s)Exo- and TEX-induced target modulation. RESULTS Tumors grew in autochthonous and syngeneic hosts differing in Tspan8- and/or CD151-competence. However, Tspan8ko- and/or CD151ko-tumor cell dissemination and settlement in metastatic organs was significantly reduced in the autochthonous host, and less severely in the wt-host. Impaired wt-MCA tumor dissemination in the ko-host confirmed a contribution of host- and tumor-Tspan8/-CD151 to tumor cell dissemination, delivery of sExo and TEX being severely impaired by a Tspan8ko/CD151ko. Coculturing tumor cells, BMC and EC with sExo and TEX revealed minor defects in epithelial mesenchymal transition and apoptosis resistance of ko tumors. Strongly reduced migratory and invasive capacity of Tspan8ko/CD151ko-MCA relies on distorted associations with integrins and CAM and missing Tspan8/CD151-promoted recruitment of proteases. The defects, differing between Tspan8ko- and CD151ko-MCA, were rescued by wt-TEX and, less efficiently Tspan8ko- and CD151ko-TEX. Minor defects in hematopoietic progenitor maturation were based on the missing association of hematopoietic growth factors /- receptors with CD151 and, less pronounced, Tspan8. Rescue of impaired angiogenesis in ko mice by wt-sExo and promotion of angiogenesis by TEX depended on the association of Tspan8 and CD151 with GPCR and RTK in EC and tumor cells. CONCLUSIONS Tspan8-/CD151-TEX play central roles in tumor progression. Tspan8-/CD151-sExo and TEX contribute by stimulating angiogenesis. Tspan8 and CD151 fulfill these tasks by associating with function-relevant proteins, the additive impact of Tspan8 and CD151 relying on differences in preferred associations. The distinct Tspan8 and CD151 contributions suggest a blockade of TEX-Tspan8 and -CD151 promising for therapeutic intervention.
Collapse
Affiliation(s)
- Kun Zhao
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Zhe Wang
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
- Present Address: Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Institute of Pharmacology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|
19
|
Nie W, Ni D, Ma X, Zhang Y, Gao Y, Peng C, Zhang X. miR‑122 promotes proliferation and invasion of clear cell renal cell carcinoma by suppressing Forkhead box O3. Int J Oncol 2018; 54:559-571. [PMID: 30483771 PMCID: PMC6317650 DOI: 10.3892/ijo.2018.4636] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) serve an important role in renal cancer, but renal cancer miRNA expression data remains inconsistent. Therefore, there is a requirement for integrated analysis of these data. An increasing number of studies demonstrate that miR‑122 is dysregulated in numerous cancer types, including liver, lung and breast cancer, yet its role in clear cell renal cell carcinoma (ccRCC) remains unclear. In the present study, an integrated analysis of four ccRCC miRNAs expression datasets was performed and the expression of miR‑122 in the present cohort was validated. The effects of cell proliferation, colony formation, migration and invasion of ccRCC cells in vitro were assayed following transfection with miR‑122 mimics and inhibitor. The target gene of miR‑122 was confirmed using a luciferase reporter assay, and a xenograft mouse model was used to determine the effect of miR‑122 in ccRCC tumorigenicity in vivo. The present results demonstrated that patients with ccRCC with an increased miR‑122 level in tumor tissues had a shortened metastasis‑free survival time as indicated by The Cancer Genome Atlas‑Kidney Renal Clear Cell Carcinoma dataset and the present ccRCC cohort. Overexpression of miR‑122 in 786‑O cells improved cell proliferation, colony formation, migration and invasion, while knockdown of miR‑122 in SN12‑PM6 cells inhibited cell growth, colony formation, migration and invasion. Western blot analysis and luciferase reporter assays were used to identify FOXO3 as a direct target of miR‑122. The present results indicate that miR‑122 serves a tumor‑promoting role by direct targeting FOXO3 in ccRCC.
Collapse
Affiliation(s)
- Wenyuan Nie
- Department of Urology, Chinese People's Liberation Army, 89th Hospital, Weifang, Shandong 261000, P.R. China
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xin Ma
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, P.R. China
| | - Yu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, P.R. China
| | - Yu Gao
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, P.R. China
| | - Cheng Peng
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, P.R. China
| | - Xu Zhang
- Department of Urology, State Key Laboratory of Kidney Diseases, Chinese People's Liberation Army General Hospital, PLA Medical School, Beijing 100853, P.R. China
| |
Collapse
|
20
|
Ito K, Bonora M, Ito K. Metabolism as master of hematopoietic stem cell fate. Int J Hematol 2018; 109:18-27. [PMID: 30219988 DOI: 10.1007/s12185-018-2534-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
HSCs have a fate choice when they divide; they can self-renew, producing new HSCs, or produce daughter cells that will mature to become committed cells. Technical challenges, however, have long obscured the mechanics of these choices. Advances in flow-sorting have made possible the purification of HSC populations, but available HSC-enriched fractions still include substantial heterogeneity, and single HSCs have proven extremely difficult to track and observe. Advances in single-cell approaches, however, have led to the identification of a highly purified population of hematopoietic stem cells (HSCs) that make a critical contribution to hematopoietic homeostasis through a preference for self-renewing division. Metabolic cues are key regulators of this cell fate choice, and the importance of controlling the population and quality of mitochondria has recently been highlighted to maintain the equilibrium of HSC populations. Leukemic cells also demand tightly regulated metabolism, and shifting the division balance of leukemic cells toward commitment has been considered as a promising therapeutic strategy. A deeper understanding of precisely how specific modes of metabolism control HSC fate is, therefore, of great biological interest, and more importantly will be critical to the development of new therapeutic strategies that target HSC division balance for the treatment of hematological disease.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Massimo Bonora
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
21
|
Ito K, Ito K. Hematopoietic stem cell fate through metabolic control. Exp Hematol 2018; 64:1-11. [PMID: 29807063 DOI: 10.1016/j.exphem.2018.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 01/02/2023]
Abstract
Hematopoietic stem cells maintain a quiescent state in the bone marrow to preserve their self-renewal capacity, but also undergo cell divisions as required. Organelles such as the mitochondria sustain cumulative damage during these cell divisions and this damage may eventually compromise the cells' self-renewal capacity. Hematopoietic stem cell divisions result in either self-renewal or differentiation, with the balance between the two affecting hematopoietic homeostasis directly; however, the heterogeneity of available hematopoietic stem cell-enriched fractions, together with the technical challenges of observing hematopoietic stem cell behavior, has long hindered the analysis of individual hematopoietic stem cells and prevented the elucidation of this process. Recent advances in genetic models, metabolomics analyses, and single-cell approaches have revealed the contributions made to hematopoietic stem cell self-renewal by metabolic cues, mitochondrial biogenesis, and autophagy/mitophagy, which have highlighted mitochondrial quality control as a key factor in the equilibrium of hematopoietic stem cells. A deeper understanding of precisely how specific modes of metabolism control hematopoietic stem cells fate at the single-cell level is therefore not only of great biological interest, but will also have clear clinical implications for the development of therapies for hematological diseases.
Collapse
Affiliation(s)
- Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA; Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein Cancer Center and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
22
|
Abstract
Purpose of Review Functional decline of hematopoiesis that occurs in the elderly, or in patients who receive therapies that trigger cellular senescence effects, results in a progressive reduction in the immune response and an increased incidence of myeloid malignancy. Intracellular signals in hematopoietic stem cells and progenitors (HSC/P) mediate systemic, microenvironment, and cell-intrinsic effector aging signals that induce their decline. This review intends to summarize and critically review our advances in the understanding of the intracellular signaling pathways responsible for HSC decline during aging and opportunities for intervention. Recent Findings For a long time, aging of HSC has been thought to be an irreversible process imprinted in stem cells due to the cell intrinsic nature of aging. However, recent murine models and human correlative studies provide evidence that aging is associated with molecular signaling pathways, including oxidative stress, metabolic dysfunction, loss of polarity and an altered epigenome. These signaling pathways provide potential targets for prevention or reversal of age-related changes. Summary Here we review our current understanding of the signalling pathways that are differentially activated or repressed during HSC/P aging, focusing on the oxidative, metabolic, biochemical and structural consequences downstream, and cell-intrinsic, systemic, and environmental influences.
Collapse
|
23
|
Ma J, Matkar S, He X, Hua X. FOXO family in regulating cancer and metabolism. Semin Cancer Biol 2018; 50:32-41. [PMID: 29410116 DOI: 10.1016/j.semcancer.2018.01.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023]
Abstract
FOXO proteins are a sub-group of a superfamily of forkhead box (FOX)-containing transcription factors (TFs). FOXOs play an important role in regulating a plethora of biological activities ranging from development, cell signaling, and tumorigenesis to cell metabolism. Here we mainly focus on reviewing the role of FOXOs in regulating tumor and metabolism. Moreover, how crosstalk among various pathways influences the function of FOXOs will be reviewed. Further, the paradoxical role for FOXOs in controlling the fate of cancer and especially resistance/sensitivity of cancer to the class of drugs that target PI3K/AKT will also be reviewed. Finally, how FOXOs regulate crosstalk between common cancer pathways and cell metabolism pathways, and how these crosstalks affect the fate of the cancer will be discussed.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin, Heilongjiang 150040, China.
| | - Smita Matkar
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | - Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Abramson Cancer Center, Institute of Diabetes, Obesity, and Metabolism (IDOM), University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|