1
|
Doherty W, Benson S, Pepdjonovic L, Koppes AN, Koppes RA. Cell Line and Media Composition Influence the Production of Giant Plasma Membrane Vesicles. ACS Biomater Sci Eng 2024; 10:1880-1891. [PMID: 38374716 PMCID: PMC10934252 DOI: 10.1021/acsbiomaterials.3c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Giant plasma membrane vesicles (GPMVs) have been utilized as a model to study phase separation in the plasma membrane. Additionally, GPMVs have been employed as vehicle for delivering molecular cargo, including small molecule drugs and nanoparticles. Nearly all examples of GPMV production use a defined salt buffer that is a stark contrast to typical cell culture medium. In this study, we demonstrate that the addition of formaldehyde and dithiothreitol to a standard culture medium was capable of generating GPMVs at a concentration equal to or higher than the traditional production buffer. These methods were evaluated for two human cell lines: kidney endothelial and Schwann cells (SCs). Morphological properties of the resultant GPMVs exhibited no significant differences between the two formulations. Factors such as pH and seeding density significantly influenced the production of GPMVs in both mediums. The cell type and seeding density was shown to influence the number of GPMVs to the greatest extent. SCs yield more GPMVs at higher seeding densities compared to endothelial cells. Stability of the membrane of the GPMVs produced in both mediums was evaluated by monitoring passive diffusion of two fluorescently tagged dextrans (3 and 10 kDa). Regardless of the production formulation or cell type, approximately 85% GPMVs are impermeable to either dextran. Cold storage for on-demand use and shipping are essential for broader use of GPMVs. Toward this aim, we have evaluated the GMPV number and morphologies following storage at -80 °C and in liquid nitrogen. A significant loss of the GPMV number, ∼30%, was observed following storage across production formulations as well as cell types. Our results indicate that smaller GMPVs, <5 μm are more stable for preservation. In conclusion, GPMVs can be produced in a broad range of formulations, exhibit a high degree of stability, and can undergo cold storage for further adoption.
Collapse
Affiliation(s)
- William Doherty
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Sarah Benson
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Lisa Pepdjonovic
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Abigail N. Koppes
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ryan A. Koppes
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Huang X, Hürlimann D, Spanke HT, Wu D, Skowicki M, Dinu IA, Dufresne ER, Palivan CG. Cell-Derived Vesicles with Increased Stability and On-Demand Functionality by Equipping Their Membrane with a Cross-Linkable Copolymer. Adv Healthc Mater 2022; 11:e2202100. [PMID: 36208079 PMCID: PMC11469159 DOI: 10.1002/adhm.202202100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/28/2023]
Abstract
Cell-derived vesicles retain the cytoplasm and much of the native cell membrane composition. Therefore, they are attractive for investigations of membrane biophysics, drug delivery systems, and complex molecular factories. However, their fragility and aggregation limit their applications. Here, the mechanical properties and stability of giant plasma membrane vesicles (GPMVs) are enhanced by decorating them with a specifically designed diblock copolymer, cholesteryl-poly[2-aminoethyl methacrylate-b-poly(ethylene glycol) methyl ether acrylate]. When cross-linked, this polymer brush enhances the stability of the GPMVs. Furthermore, the pH-responsiveness of the copolymer layer allows for a controlled cargo loading/release, which may enable various bioapplications. Importantly, the cross-linked-copolymer GPMVs are not cytotoxic and preserve in vitro membrane integrity and functionality. This effective strategy to equip the cell-derived vesicles with stimuli-responsive cross-linkable copolymers is expected to open a new route to the stabilization of natural membrane systems and overcome barriers to biomedical applications.
Collapse
Affiliation(s)
- Xinan Huang
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
| | - Dimitri Hürlimann
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| | - Hendrik T. Spanke
- Laboratory for Soft and Living MaterialsDepartment of MaterialsETH ZurichVladimir‐Prelog‐Weg 5Zurich8093Switzerland
| | - Dalin Wu
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
| | - Michal Skowicki
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| | - Ionel Adrian Dinu
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| | - Eric R. Dufresne
- Laboratory for Soft and Living MaterialsDepartment of MaterialsETH ZurichVladimir‐Prelog‐Weg 5Zurich8093Switzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselBPR1096, Mattenstrasse 24aBasel4058Switzerland
- NCCR‐Molecular Systems EngineeringBPR1095, Mattenstrasse 24aBasel4058Switzerland
| |
Collapse
|
3
|
Sezgin E. Giant plasma membrane vesicles to study plasma membrane structure and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183857. [PMID: 34990591 DOI: 10.1016/j.bbamem.2021.183857] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
The plasma membrane (PM) is a highly heterogenous structure intertwined with the cortical actin cytoskeleton and extracellular matrix. This complex architecture makes it difficult to study the processes taking place at the PM. Model membrane systems that are simple mimics of the PM overcome this bottleneck and allow us to study the biophysical principles underlying the processes at the PM. Among them, cell-derived giant plasma membrane vesicles (GPMVs) are considered the most physiologically relevant system, retaining the compositional complexity of the PM to a large extent. GPMVs have become a key tool in membrane research in the last few years. In this review, I will provide a brief overview of this system, summarize recent applications and discuss the limitations.
Collapse
Affiliation(s)
- Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden.
| |
Collapse
|
4
|
Teiwes NK, Mey I, Baumann PC, Strieker L, Unkelbach U, Steinem C. Pore-Spanning Plasma Membranes Derived from Giant Plasma Membrane Vesicles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25805-25812. [PMID: 34043315 DOI: 10.1021/acsami.1c06404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Giant plasma membrane vesicles (GPMVs) are a highly promising model system for the eukaryotic plasma membrane. The unresolved challenge, however, is a path to surface-based structures that allows accessibility to both sides of the plasma membrane through high-resolution techniques. Such an approach would pave the way to advanced chip-based technologies for the analysis of complex cell surfaces to study the roles of membrane proteins, host-pathogen interactions, and many other bioanalytical and sensing applications. This study reports the generation of planar supported plasma membranes and for the first-time pore-spanning plasma membranes (PSPMs) derived from pure GPMVs that are spread on activated solid and highly ordered porous silicon substrates. GPMVs were produced by two different vesiculation agents and were first investigated with respect to their growth behavior and phase separation. Second, these GPMVs were spread onto silicon substrates to form planar supported plasma membrane patches. PSPMs were obtained by spreading of pure GPMVs on oxygen-plasma activated porous substrates with pore diameters of 3.5 μm. Fluorescence micrographs unambiguously showed that the PSPMs partially phase separate in a mobile ordered phase surrounded by a disordered phase, which was supported by cholesterol extraction using methyl-β-cyclodextrin.
Collapse
Affiliation(s)
- Nikolas K Teiwes
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
| | - Ingo Mey
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
| | - Phila C Baumann
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
| | - Lena Strieker
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
| | - Ulla Unkelbach
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
| | - Claudia Steinem
- Georg-August Universität, Institut für Organische und Biomolekulare Chemie, Tammannstaße 2, 37077 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Jia C, Shi J, Han T, Yu ACH, Qin P. Plasma Membrane Blebbing Dynamics Involved in the Reversibly Perforated Cell by Ultrasound-Driven Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:733-750. [PMID: 33358511 DOI: 10.1016/j.ultrasmedbio.2020.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The perforation of plasma membrane by ultrasound-driven microbubbles (i.e., sonoporation) provides a temporary window for transporting macromolecules into the cytoplasm that is promising with respect to drug delivery and gene therapy. To improve the efficacy of delivery while ensuring biosafety, membrane resealing and cell recovery are required to help sonoporated cells defy membrane injury and regain their normal function. Blebs are found to accompany the recovery of sonoporated cells. However, the spatiotemporal characteristics of blebs and the underlying mechanisms remain unclear. With a customized platform for ultrasound exposure and 2-D/3-D live single-cell imaging, localized membrane perforation was induced with ultrasound-driven microbubbles, and the cellular responses were monitored using multiple fluorescent probes. The results indicated that localized blebs undergoing four phases (nucleation, expansion, pausing and retraction) on a time scale of tens of seconds to minutes were specifically involved in the reversibly sonoporated cells. The blebs spatially correlated with the membrane perforation site and temporally lagged (about tens of seconds to minutes) the resealing of perforated membrane. Their diameter (about several microns) and lifetime (about tens of seconds to minutes) positively correlated with the degree of sonoporation. Further studies revealed that intracellular calcium transients might be an upstream signal for triggering blebbing nucleation; exocytotic lysosomes not only contributed to resealing of the perforated membrane, but also to the increasing bleb volume during expansion; and actin components accumulation facilitated bleb retraction. These results provide new insight into the short-term strategies that the sonoporated cell employs to recover on membrane perforation and to remodel membrane structure and a biophysical foundation for sonoporation-based therapy.
Collapse
Affiliation(s)
- Caixia Jia
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianmin Shi
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Han
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Zartner L, Garni M, Craciun I, Einfalt T, Palivan CG. How Can Giant Plasma Membrane Vesicles Serve as a Cellular Model for Controlled Transfer of Nanoparticles? Biomacromolecules 2020; 22:106-115. [PMID: 32648740 DOI: 10.1021/acs.biomac.0c00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cellular model systems are essential platforms used across multiple research fields for exploring the fundaments of biology and biochemistry. Here, we present giant plasma membrane vesicles (GPMVs) as a platform of cell-like compartments that will facilitate the study of particles within a biorelevant environment and promote their further development. We studied how cellularly taken up nanoparticles (NPs) can be transferred into formed GPMVs and which are the molecular factors that play a role in successful transfer (size, concentration, and surface charge along with 3 different cell lines: HepG2, HeLa, and Caco-2). We observed that polystyrene (PS) carboxylated NPs with a size of 40 and 100 nm were successfully and efficiently transferred to GPMVs derived from all cell lines. We then investigated the distribution of NPs inside formed GPMVs and established the average number of NPs/GPMVs and the percentage of all GPMVs with NPs in their cavity. We pave the way for GPMV usage as superior cell-like mimics in medically relevant applications.
Collapse
Affiliation(s)
- Luisa Zartner
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, P.O. Box 3350, CH-4002 Basel, Switzerland
| | - Martina Garni
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, P.O. Box 3350, CH-4002 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, P.O. Box 3350, CH-4002 Basel, Switzerland
| | - Tomaž Einfalt
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, P.O. Box 3350, CH-4002 Basel, Switzerland
| |
Collapse
|
7
|
Einfalt T, Garni M, Witzigmann D, Sieber S, Baltisberger N, Huwyler J, Meier W, Palivan CG. Bioinspired Molecular Factories with Architecture and In Vivo Functionalities as Cell Mimics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901923. [PMID: 32099756 PMCID: PMC7029636 DOI: 10.1002/advs.201901923] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Indexed: 05/28/2023]
Abstract
Despite huge need in the medical domain and significant development efforts, artificial cells to date have limited composition and functionality. Although some artificial cells have proven successful for producing therapeutics or performing in vitro specific reactions, they have not been investigated in vivo to determine whether they preserve their architecture and functionality while avoiding toxicity. Here, these limitations are overcome and customizable cell mimic is achieved-molecular factories (MFs)-by supplementing giant plasma membrane vesicles derived from donor cells with nanometer-sized artificial organelles (AOs). MFs inherit the donor cell's natural cytoplasm and membrane, while the AOs house reactive components and provide cell-like architecture and functionality. It is demonstrated that reactions inside AOs take place in a close-to-nature environment due to the unprecedented level of complexity in the composition of the MFs. It is further demonstrated that in a zebrafish vertebrate animal model, these cell mimics show no apparent toxicity and retain their integrity and function. The unique advantages of highly varied composition, multicompartmentalized architecture, and preserved functionality in vivo open new biological avenues ranging from the study of biorelevant processes in robust cell-like environments to the production of specific bioactive compounds.
Collapse
Affiliation(s)
- Tomaž Einfalt
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Martina Garni
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Dominik Witzigmann
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Sandro Sieber
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Niklaus Baltisberger
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Jörg Huwyler
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Wolfgang Meier
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| |
Collapse
|
8
|
Jansen C, Tobita C, Umemoto EU, Starkus J, Rysavy NM, Shimoda LMN, Sung C, Stokes AJ, Turner H. Calcium-dependent, non-apoptotic, large plasma membrane bleb formation in physiologically stimulated mast cells and basophils. J Extracell Vesicles 2019; 8:1578589. [PMID: 30815238 PMCID: PMC6383620 DOI: 10.1080/20013078.2019.1578589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Abstract
Large membrane derangements in the form of non-detaching blebs or membrane protrusions occur in a variety of cell stress and physiological situations and do not always reflect apoptotic processes. They have been studied in model mast cells under conditions of cell stress, but their potential physiological relevance to mast cell function and formation in primary mast cells or basophils have not been addressed. In the current study, we examine the large, non-detaching, non-apoptotic, membrane structures that form in model and primary mast cells under conditions of stimulation that are relevant to allergy, atopy and Type IV delayed hypersensitivity reactions. We characterized the inflation kinetics, dependency of formation upon external free calcium and striking geometric consistency of formation for large plasma membrane blebs (LPMBs). We describe that immunologically stimulated LPMBs in mast cells are constrained to form in locations where dissociation of the membrane-associated cytoskeleton occurs. Mast cell LPMBs decorate with wheat germ agglutinin, suggesting that they contain plasma membrane (PM) lectins. Electrophysiological capacitance measurements support a model where LPMBs are not being formed from internal membranes newly fused into the PM, but rather arise from stretching of the existing membrane, or inflation and smoothing of a micro-ruffled PM. This study provides new insights into the physiological manifestations of LPMB in response to immunologically relevant stimuli and in the absence of cell stress, death or apoptotic pathways.
Collapse
Affiliation(s)
- C Jansen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - C Tobita
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i.,Undergraduate Program in Biology, Chaminade University, Honolulu, Hawai'i
| | - E U Umemoto
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - J Starkus
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - N M Rysavy
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - L M N Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - C Sung
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| | - A J Stokes
- John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawai'i
| | - H Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, Hawai'i
| |
Collapse
|
9
|
Gaur D, Yogalakshmi Y, Kulanthaivel S, Agarwal T, Mukherjee D, Prince A, Tiwari A, Maiti TK, Pal K, Giri S, Saleem M, Banerjee I. Osteoblast-Derived Giant Plasma Membrane Vesicles Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Deepanjali Gaur
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Yamini Yogalakshmi
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Senthilguru Kulanthaivel
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Tarun Agarwal
- Department of Biotechnology; Indian Institute of Technology Kharagpur; West Bengal 721302 India
| | - Devdeep Mukherjee
- Department of Biotechnology; Indian Institute of Technology Kharagpur; West Bengal 721302 India
| | - Ashutosh Prince
- Department of Life Science; National Institute of Technology Rourkela; Odisha 769008 India
| | - Anuj Tiwari
- Department of Life Science; National Institute of Technology Rourkela; Odisha 769008 India
| | - Tapas K. Maiti
- Department of Biotechnology; Indian Institute of Technology Kharagpur; West Bengal 721302 India
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| | - Supratim Giri
- Department of Chemistry; National Institute of Technology Rourkela; Odisha 769008 India
| | - Mohammed Saleem
- Department of Life Science; National Institute of Technology Rourkela; Odisha 769008 India
| | - Indranil Banerjee
- Department of Biotechnology and Medical Engineering; National Institute of Technology Rourkela; Odisha 769008 India
| |
Collapse
|
10
|
Rysavy NM, Shimoda LMN, Dixon AM, Speck M, Stokes AJ, Turner H, Umemoto EY. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells. BIOARCHITECTURE 2015; 4:127-37. [PMID: 25759911 DOI: 10.1080/19490992.2014.995516] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation.
Collapse
Key Words
- ABCA, ABC binding cassette family A
- CRAC, calcium release activated channel
- GPMV, giant plasma membrane vesicle
- ITIM, immunoreceptor tyrosine based inhibitory motif
- PLA2, phospholipase A2
- PLSCR, phospholipid scramblase
- PMA, phorbol 12,13-myristate acetate
- RBL, rat basophilic leukemia
- RFU, relative fluorescence units
- ROI, region of interest
- TMEM, transmembrane protein
- TMEM16F
- WGA, wheat germ agglutinin
- mast cells
- membrane lipids
- phosphatidylserine
Collapse
Affiliation(s)
- Noel M Rysavy
- a Laboratory of Immunology and Signal Transduction ; Department of Biology; Chaminade University ; Honolulu , Hawai'i USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Sugiyama T, Pramanik MK, Yumura S. Microtubule-Mediated Inositol Lipid Signaling Plays Critical Roles in Regulation of Blebbing. PLoS One 2015; 10:e0137032. [PMID: 26317626 PMCID: PMC4552846 DOI: 10.1371/journal.pone.0137032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/11/2015] [Indexed: 12/12/2022] Open
Abstract
Cells migrate by extending pseudopods such as lamellipodia and blebs. Although the signals leading to lamellipodia extension have been extensively investigated, those for bleb extension remain unclear. Here, we investigated signals for blebbing in Dictyostelium cells using a newly developed assay to induce blebbing. When cells were cut into two pieces with a microneedle, the anucleate fragments vigorously extended blebs. This assay enabled us to induce blebbing reproducibly, and analyses of knockout mutants and specific inhibitors identified candidate molecules that regulate blebbing. Blebs were also induced in anucleate fragments of leukocytes, indicating that this assay is generally applicable to animal cells. After cutting, microtubules in the anucleate fragments promptly depolymerized, followed by the extension of blebs. Furthermore, when intact cells were treated with a microtubule inhibitor, they frequently extended blebs. The depolymerization of microtubules induced the delocalization of inositol lipid phosphatidylinositol 3,4,5-trisphosphate from the cell membrane. PI3 kinase-null cells frequently extended blebs, whereas PTEN-null cells extended fewer blebs. From these observations, we propose a model in which microtubules play a critical role in bleb regulation via inositol lipid metabolism.
Collapse
Affiliation(s)
- Tatsuroh Sugiyama
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Md. Kamruzzaman Pramanik
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Microbiology & Industrial Irradiation Division, IFRB, AERE, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | - Shigehiko Yumura
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- * E-mail:
| |
Collapse
|
12
|
Levental KR, Levental I. Giant plasma membrane vesicles: models for understanding membrane organization. CURRENT TOPICS IN MEMBRANES 2015; 75:25-57. [PMID: 26015280 DOI: 10.1016/bs.ctm.2015.03.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology.
Collapse
Affiliation(s)
- Kandice R Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston - Medical School, Houston, TX, USA
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston - Medical School, Houston, TX, USA
| |
Collapse
|
13
|
Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage. PLoS One 2013; 8:e73499. [PMID: 24023686 PMCID: PMC3758302 DOI: 10.1371/journal.pone.0073499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA) and sodium (Nav) channels trigger excitotoxic neuron death. Na+, Ca++ and H2O influx into affected neurons elicits swelling (increased cell volume) and pathological blebbing (disassociation of the plasma membrane’s bilayer from its spectrin-actomyosin matrix). Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM)-based force spectroscopy) upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine). Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be feasible.
Collapse
|
14
|
Shelat PB, Plant LD, Wang JC, Lee E, Marks JD. The membrane-active tri-block copolymer pluronic F-68 profoundly rescues rat hippocampal neurons from oxygen-glucose deprivation-induced death through early inhibition of apoptosis. J Neurosci 2013; 33:12287-99. [PMID: 23884935 PMCID: PMC3721839 DOI: 10.1523/jneurosci.5731-12.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 01/01/2023] Open
Abstract
Pluronic F-68, an 80% hydrophilic member of the Pluronic family of polyethylene-polypropylene-polyethylene tri-block copolymers, protects non-neuronal cells from traumatic injuries and rescues hippocampal neurons from excitotoxic and oxidative insults. F-68 interacts directly with lipid membranes and restores membrane function after direct membrane damage. Here, we demonstrate the efficacy of Pluronic F-68 in rescuing rat hippocampal neurons from apoptosis after oxygen-glucose deprivation (OGD). OGD progressively decreased neuronal survival over 48 h in a severity-dependent manner, the majority of cell death occurring after 12 h after OGD. Administration of F-68 for 48 h after OGD rescued neurons from death in a dose-dependent manner. At its optimal concentration (30 μm), F-68 rescued all neurons that would have died after the first hour after OGD. This level of rescue persisted when F-68 administration was delayed 12 h after OGD. F-68 did not alter electrophysiological parameters controlling excitability, NMDA receptor-activated currents, or NMDA-induced increases in cytosolic calcium concentrations. However, F-68 treatment prevented phosphatidylserine externalization, caspase activation, loss of mitochondrial membrane potential, and BAX translocation to mitochondria, indicating that F-68 alters apoptotic mechanisms early in the intrinsic pathway of apoptosis. The profound neuronal rescue provided by F-68 after OGD and the high level of efficacy with delayed administration indicate that Pluronic copolymers may provide a novel, membrane-targeted approach to rescuing neurons after brain ischemia. The ability of membrane-active agents to block apoptosis suggests that membranes or their lipid components play prominent roles in injury-induced apoptosis.
Collapse
Affiliation(s)
- Phullara B. Shelat
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | - Leigh D. Plant
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | - Janice C. Wang
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | - Elizabeth Lee
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | - Jeremy D. Marks
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
15
|
Minai L, Yeheskely-Hayon D, Golan L, Bisker G, Dann EJ, Yelin D. Optical nanomanipulations of malignant cells: controlled cell damage and fusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1732-1739. [PMID: 22431265 DOI: 10.1002/smll.201102304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/21/2011] [Indexed: 05/31/2023]
Abstract
Specifically targeting and manipulating living cells is a key challenge in biomedicine and in cancer research in particular. Several studies have shown that nanoparticles irradiated by intense lasers are capable of conveying damage to nearby cells for various therapeutic and biological applications. In this work ultrashort laser pulses and gold nanospheres are used for the generation of localized, nanometric disruptions on the membranes of specifically targeted cells. The high structural stability of the nanospheres and the resonance pulse irradiation allow effective means for controlling the induced nanometric effects. The technique is demonstrated by inducing desired death mechanisms in epidermoid carcinoma and Burkitt lymphoma cells, and initiating efficient cell fusion between various cell types. Main advantages of the presented approach include low toxicity, high specificity, and high flexibility in the regulation of cell damage and cell fusion, which would allow it to play an important role in various future clinical and scientific applications.
Collapse
Affiliation(s)
- Limor Minai
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
16
|
Archuleta MN, McDermott JE, Edwards JS, Resat H. An adaptive coarse graining method for signal transduction in three dimensions. FUNDAMENTA INFORMATICAE 2012; 118:10.3233/FI-2012-720. [PMID: 24357890 PMCID: PMC3865981 DOI: 10.3233/fi-2012-720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The spatio-temporal landscape of the plasma membrane regulates activation and signal transduction of membrane bound receptors by restricting their two-dimensional mobility and by inducing receptor clustering. This regulation also extends to complex formation between receptors and adaptor proteins, which are the intermediate signaling molecules involved in cellular signaling that relay the received cues from cell surface to cytoplasm and eventually to the nucleus. Although their investigation poses challenging technical difficulties, there is a crucial need to understand the impact of the receptor diffusivity, clustering, and spatial heterogeneity, and of receptor-adaptor protein complex formation on the cellular signal transduction patterns. Building upon our earlier studies, we have developed an adaptive coarse-grained Monte Carlo method that can be used to investigate the role of diffusion, clustering and membrane corralling on receptor association and receptor-adaptor protein complex formation dynamics in three dimensions. The new Monte Carlo lattice based approach allowed us to introduce spatial resolution on the 2-D plasma membrane and to model the cytoplasm in three-dimensions. Being a multi-resolution approach, our new method makes it possible to represent various parts of the cellular system at different levels of detail and enabled us to utilize the locally homogeneous assumption when justified (e.g., cytoplasmic region away from the cell membrane) and avoid its use when high spatial resolution is needed (e.g., cell membrane and cytoplasmic region near the membrane) while keeping the required computational complexity manageable. Our results have shown that diffusion has a significant impact on receptor-receptor dimerization and receptor-adaptor protein complex formation kinetics. We have observed an "adaptor protein hopping" mechanism where the receptor binding proteins may hop between receptors to form short-lived transient complexes. This increased residence time of the adaptor proteins near cell membrane and their ability to frequently change signaling partners may explain the increase in signaling efficiency when receptors are clustered. We also hypothesize that the adaptor protein hopping mechanism can cause concurrent or sequential activation of multiple signaling pathways, thus leading to crosstalk between diverse biological functions.
Collapse
Affiliation(s)
- Michelle N Archuleta
- Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jason E McDermott
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jeremy S Edwards
- Molecular Genetics and Microbiology Department, UNM Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Haluk Resat
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|