1
|
Ding EA, Yokokura TJ, Wang R, Kumar S. Dissecting neurofilament tail sequence-phosphorylation-structure relationships with multicomponent reconstituted protein brushes. Proc Natl Acad Sci U S A 2024; 121:e2410109121. [PMID: 39602260 PMCID: PMC11626179 DOI: 10.1073/pnas.2410109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Neurofilaments (NFs) are multisubunit, bottlebrush-shaped intermediate filaments abundant in the axonal cytoskeleton. Each NF subunit contains a long intrinsically disordered tail domain, which protrudes from the NF core to form a "brush" surrounding each NF. Precisely how the tails' variable charge patterns and repetitive phosphorylation sites mediate their conformation within the brush remains an open question in axonal biology. We address this problem by grafting recombinant NF tail protein constructs NF-Light, -Medium, and -Heavy (NFL, NFM, and NFH) to surfaces, yielding protein brushes of defined stoichiometry that can be phosphorylated in vitro. Atomic force microscopy measurements reveal that brush height depends on composition monotonically but not always linearly for binary NFL:NFM or NFL:NFH systems, and that NFM-based brushes are highly extended, while brushes incorporating the much larger NFH are surprisingly compact even after multisite phosphorylation. Complementary self-consistent field theory (SCFT) predicts multilayer brush morphologies for NFM and phosphorylated NFH brushes. Further experiments and SCFT analysis with designed mutants reveal that N-terminal negative charges in the NFH tail repel phosphorylated residues to generate the multilayer morphology, while the C-terminal charge-neutral region contributes to multilayer brush morphology but not total brush height. Charge-shuffled NFM variants show that charge segregation promotes brush collapse near physiological ionic strengths. Collectively, this study supports a role for NFM in establishing a dynamic range for NF brush conformation, lending insight into previous in vitro and in vivo findings. More broadly, this work establishes a platform for dissecting contributions of disordered protein sequence to conformation at interfaces.
Collapse
Affiliation(s)
- Erika A. Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Takashi J. Yokokura
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Department of Bioengineering, University of California, Berkeley, CA94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA94158
| |
Collapse
|
2
|
Ding EA, Kumar S. Neurofilament Biophysics: From Structure to Biomechanics. Mol Biol Cell 2024; 35:re1. [PMID: 38598299 PMCID: PMC11151108 DOI: 10.1091/mbc.e23-11-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Neurofilaments (NFs) are multisubunit, neuron-specific intermediate filaments consisting of a 10-nm diameter filament "core" surrounded by a layer of long intrinsically disordered protein (IDP) "tails." NFs are thought to regulate axonal caliber during development and then stabilize the mature axon, with NF subunit misregulation, mutation, and aggregation featuring prominently in multiple neurological diseases. The field's understanding of NF structure, mechanics, and function has been deeply informed by a rich variety of biochemical, cell biological, and mouse genetic studies spanning more than four decades. These studies have contributed much to our collective understanding of NF function in axonal physiology and disease. In recent years, however, there has been a resurgence of interest in NF subunit proteins in two new contexts: as potential blood- and cerebrospinal fluid-based biomarkers of neuronal damage, and as model IDPs with intriguing properties. Here, we review established principles and more recent discoveries in NF structure and function. Where possible, we place these findings in the context of biophysics of NF assembly, interaction, and contributions to axonal mechanics.
Collapse
Affiliation(s)
- Erika A. Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
3
|
Theoretical Modeling of Chemical Equilibrium in Weak Polyelectrolyte Layers on Curved Nanosystems. Polymers (Basel) 2020; 12:polym12102282. [PMID: 33027995 PMCID: PMC7601300 DOI: 10.3390/polym12102282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Surface functionalization with end-tethered weak polyelectrolytes (PE) is a versatile way to modify and control surface properties, given their ability to alter their degree of charge depending on external cues like pH and salt concentration. Weak PEs find usage in a wide range of applications, from colloidal stabilization, lubrication, adhesion, wetting to biomedical applications such as drug delivery and theranostics applications. They are also ubiquitous in many biological systems. Here, we present an overview of some of the main theoretical methods that we consider key in the field of weak PE at interfaces. Several applications involving engineered nanoparticles, synthetic and biological nanopores, as well as biological macromolecules are discussed to illustrate the salient features of systems involving weak PE near an interface or under (nano)confinement. The key feature is that by confining weak PEs near an interface the degree of charge is different from what would be expected in solution. This is the result of the strong coupling between structural organization of weak PE and its chemical state. The responsiveness of engineered and biological nanomaterials comprising weak PE combined with an adequate level of modeling can provide the keys to a rational design of smart nanosystems.
Collapse
|
4
|
Khan MI, Hasan F, Mahmud KAHA, Adnan A. Recent Computational Approaches on Mechanical Behavior of Axonal Cytoskeletal Components of Neuron: A Brief Review. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42493-020-00043-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Osmanovic D, Rabin Y. Effect of Grafting on Aggregation of Intrinsically Disordered Proteins. Biophys J 2018; 114:534-538. [PMID: 29395045 DOI: 10.1016/j.bpj.2017.08.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/15/2017] [Accepted: 08/28/2017] [Indexed: 01/08/2023] Open
Abstract
A significant part of the proteome is composed of intrinsically disordered proteins (IDPs). These proteins do not fold into a well-defined structure and behave like ordinary polymers. In this work, we consider IDPs that have the tendency to aggregate, model them as heteropolymers that contain a small number of associating monomers, and use computer simulations to compare the aggregation of such IDPs that are grafted to a surface or free in solution. We then discuss how such grafting may affect the analysis of in vitro experiments and could also be used to suppress harmful aggregation.
Collapse
Affiliation(s)
- Dino Osmanovic
- Department of Physics of Living Systems, MIT, Cambridge, Massachusetts; Department of Physics, Bar-Ilan University, Ramat-Gan, Israel.
| | - Yitzhak Rabin
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
6
|
Malka-Gibor E, Kornreich M, Laser-Azogui A, Doron O, Zingerman-Koladko I, Harapin J, Medalia O, Beck R. Phosphorylation-Induced Mechanical Regulation of Intrinsically Disordered Neurofilament Proteins. Biophys J 2017; 112:892-900. [PMID: 28297648 DOI: 10.1016/j.bpj.2016.12.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/30/2016] [Accepted: 12/29/2016] [Indexed: 01/11/2023] Open
Abstract
The biological function of protein assemblies has been conventionally equated with a unique three-dimensional protein structure and protein-specific interactions. However, in the past 20 years it has been found that some assemblies contain long flexible regions that adopt multiple structural conformations. These include neurofilament proteins that constitute the stress-responsive supportive network of neurons. Herein, we show that the macroscopic properties of neurofilament networks are tuned by enzymatic regulation of the charge found on the flexible protein regions. The results reveal an enzymatic (phosphorylation) regulation of macroscopic properties such as orientation, stress response, and expansion in flexible protein assemblies. Using a model that explains the attractive electrostatic interactions induced by enzymatically added charges, we demonstrate that phosphorylation regulation is far richer and versatile than previously considered.
Collapse
Affiliation(s)
- Eti Malka-Gibor
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Micha Kornreich
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Adi Laser-Azogui
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Doron
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | - Irena Zingerman-Koladko
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel
| | - Jan Harapin
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Ohad Medalia
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel; Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Roy Beck
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Kirkcaldie MTK, Dwyer ST. The third wave: Intermediate filaments in the maturing nervous system. Mol Cell Neurosci 2017; 84:68-76. [PMID: 28554564 DOI: 10.1016/j.mcn.2017.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 01/16/2023] Open
Abstract
Intermediate filaments are critical for the extreme structural specialisations of neurons, providing integrity in dynamic environments and efficient communication along axons a metre or more in length. As neurons mature, an initial expression of nestin and vimentin gives way to the neurofilament triplet proteins and α-internexin, substituted by peripherin in axons outside the CNS, which physically consolidate axons as they elongate and find their targets. Once connection is established, these proteins are transported, assembled, stabilised and modified, structurally transforming axons and dendrites as they acquire their full function. The interaction between these neurons and myelinating glial cells optimises the structure of axons for peak functional efficiency, a property retained across their lifespan. This finely calibrated structural regulation allows the nervous system to maintain timing precision and efficient control across large distances throughout somatic growth and, in maturity, as a plasticity mechanism allowing functional adaptation.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia.
| | - Samuel T Dwyer
- School of Medicine, Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia
| |
Collapse
|
8
|
Kornreich M, Malka-Gibor E, Zuker B, Laser-Azogui A, Beck R. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins. PHYSICAL REVIEW LETTERS 2016; 117:148101. [PMID: 27740787 DOI: 10.1103/physrevlett.117.148101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 05/02/2023]
Abstract
What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.
Collapse
Affiliation(s)
- Micha Kornreich
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Eti Malka-Gibor
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Ben Zuker
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Adi Laser-Azogui
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Roy Beck
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Vickers J, Kirkcaldie M, Phipps A, King A. Alterations in neurofilaments and the transformation of the cytoskeleton in axons may provide insight into the aberrant neuronal changes of Alzheimer’s disease. Brain Res Bull 2016; 126:324-333. [DOI: 10.1016/j.brainresbull.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/09/2023]
|
10
|
Kirkcaldie MTK, Collins JM. The axon as a physical structure in health and acute trauma. J Chem Neuroanat 2016; 76:9-18. [PMID: 27233660 DOI: 10.1016/j.jchemneu.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/22/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
The physical structure of neurons - dendrites converging on the soma, with an axon conveying activity to distant locations - is uniquely tied to their function. To perform their role, axons need to maintain structural precision in the soft, gelatinous environment of the central nervous system and the dynamic, flexible paths of nerves in the periphery. This requires close mechanical coupling between axons and the surrounding tissue, as well as an elastic, robust axoplasm resistant to pinching and flattening, and capable of sustaining transport despite physical distortion. These mechanical properties arise primarily from the properties of the internal cytoskeleton, coupled to the axonal membrane and the extracellular matrix. In particular, the two large constituents of the internal cytoskeleton, microtubules and neurofilaments, are braced against each other and flexibly interlinked by specialised proteins. Recent evidence suggests that the primary function of neurofilament sidearms is to structure the axoplasm into a linearly organised, elastic gel. This provides support and structure to the contents of axons in peripheral nerves subject to bending, protecting the relatively brittle microtubule bundles and maintaining them as transport conduits. Furthermore, a substantial proportion of axons are myelinated, and this thick jacket of membrane wrappings alters the form, function and internal composition of the axons to which it is applied. Together these structures determine the physical properties and integrity of neural tissue, both under conditions of normal movement, and in response to physical trauma. The effects of traumatic injury are directly dependent on the physical properties of neural tissue, especially axons, and because of axons' extreme structural specialisation, post-traumatic effects are usually characterised by particular modes of axonal damage. The physical realities of axons in neural tissue are integral to both normal function and their response to injury, and require specific consideration in evaluating research models of neurotrauma.
Collapse
Affiliation(s)
- Matthew T K Kirkcaldie
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia.
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, Faculty of Health, University of Tasmania, Australia
| |
Collapse
|
11
|
Kornreich M, Malka-Gibor E, Laser-Azogui A, Doron O, Herrmann H, Beck R. Composite bottlebrush mechanics: α-internexin fine-tunes neurofilament network properties. SOFT MATTER 2015; 11:5839-5849. [PMID: 26100609 DOI: 10.1039/c5sm00662g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Neuronal cytoplasmic intermediate filaments are principal structural and mechanical elements of the axon. Their expression during embryonic development follows a differential pattern, while their unregulated expression is correlated to neurodegenerative diseases. The largest neurofilament proteins of medium (NF-M) and high molecular weight (NF-H) were shown to modulate the axonal architecture and inter-filament spacing. However, the individual roles of the remaining α-internexin (α-Inx) and neurofilament of low molecular weight (NF-L) proteins in composite filaments remained elusive. In contrast to previous predictions, we show that when co-assembled with NF-M, the shortest and the least charged α-Inx protein increases inter-filament spacing. These findings suggest a novel structural explanation for the expression pattern of neurofilament proteins during embryonic development. We explain our results by an analysis of ionic cross-links between the disordered polyampholytic C-terminal tails and suggest that a collapsed conformation of the α-Inx tail domain interferes with tail cross-linking near the filament backbone.
Collapse
Affiliation(s)
- M Kornreich
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, 69978 Tel Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
12
|
Order and disorder in intermediate filament proteins. FEBS Lett 2015; 589:2464-76. [PMID: 26231765 DOI: 10.1016/j.febslet.2015.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
Abstract
Intermediate filaments (IFs), important components of the cytoskeleton, provide a versatile, tunable network of self-assembled proteins. IF proteins contain three distinct domains: an α-helical structured rod domain, flanked by intrinsically disordered head and tail domains. Recent studies demonstrated the functional importance of the disordered domains, which differ in length and amino-acid sequence among the 70 different human IF genes. Here, we investigate the biophysical properties of the disordered domains, and review recent findings on the interactions between them. Our analysis highlights key components governing IF functional roles in the cytoskeleton, where the intrinsically disordered domains dictate protein-protein interactions, supramolecular assembly, and macro-scale order.
Collapse
|
13
|
Pregent S, Lichtenstein A, Avinery R, Laser-Azogui A, Patolsky F, Beck R. Probing the interactions of intrinsically disordered proteins using nanoparticle tags. NANO LETTERS 2015; 15:3080-3087. [PMID: 25822629 DOI: 10.1021/acs.nanolett.5b00073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structural plasticity of intrinsically disordered proteins serves as a rich area for scientific inquiry. Such proteins lack a fix three-dimensional structure but can interact with multiple partners through numerous weak bonds. Nevertheless, this intrinsic plasticity possesses a challenging hurdle in their characterization. We underpin the intermolecular interactions between intrinsically disordered neurofilaments in various hydrated conditions, using grafted gold nanoparticle (NP) tags. Beyond its biological significance, this approach can be applied to modify the surface interaction of NPs for the creation of future tunable "smart" hybrid biomaterials.
Collapse
Affiliation(s)
- Stive Pregent
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Amir Lichtenstein
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Ram Avinery
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Adi Laser-Azogui
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Fernando Patolsky
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Roy Beck
- †School of Physics and Astronomy, ‡Center for Nanoscience and Nanotechnology and §School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Laser-Azogui A, Kornreich M, Malka-Gibor E, Beck R. Neurofilament assembly and function during neuronal development. Curr Opin Cell Biol 2015; 32:92-101. [PMID: 25635910 DOI: 10.1016/j.ceb.2015.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 01/06/2015] [Accepted: 01/09/2015] [Indexed: 02/06/2023]
Abstract
Studies on the assembly of neuronal intermediate filaments (IFs) date back to the early work of Alzheimer. Developing neurons express a series of IF proteins, sequentially, at distinct stages of mammalian cell differentiation. This correlates with altered morphologies during the neuronal development, including axon outgrowth, guidance and conductivity. Importantly, neuronal IFs that fail to properly assemble into a filamentous network are a hallmark of neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's, and Parkinson's disease. Traditional structural methodologies fail to fully describe neuronal IF assembly, interactions and resulting function due to IFs structural plasticity, particularly in their C-terminal domains. We review here current progress in the field of neuronal-specific IFs, a dominant component affecting the cytoskeletal structure and function of neurons.
Collapse
Affiliation(s)
- Adi Laser-Azogui
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Micha Kornreich
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Eti Malka-Gibor
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Roy Beck
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
15
|
Lee J, Kim S, Chang R, Jayanthi L, Gebremichael Y. Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation. J Chem Phys 2013; 138:015103. [DOI: 10.1063/1.4773297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|