1
|
Joshi R, Ahmadi H, Gardner K, Bright RK, Wang W, Li W. Advances in microfluidic platforms for tumor cell phenotyping: from bench to bedside. LAB ON A CHIP 2025; 25:856-883. [PMID: 39774602 PMCID: PMC11859771 DOI: 10.1039/d4lc00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Heterogeneities among tumor cells significantly contribute towards cancer progression and therapeutic inefficiency. Hence, understanding the nature of cancer through liquid biopsies and isolation of circulating tumor cells (CTCs) has gained considerable interest over the years. Microfluidics has emerged as one of the most popular platforms for performing liquid biopsy applications. Various label-free and labeling techniques using microfluidic platforms have been developed, the majority of which focus on CTC isolation from normal blood cells. However, sorting and profiling of various cell phenotypes present amongst those CTCs is equally important for prognostics and development of personalized therapies. In this review, firstly, we discuss the biophysical and biochemical heterogeneities associated with tumor cells and CTCs which contribute to cancer progression. Moreover, we discuss the recently developed microfluidic platforms for sorting and profiling of tumor cells and CTCs. These techniques are broadly classified into biophysical and biochemical phenotyping methods. Biophysical methods are further classified into mechanical and electrical phenotyping. While biochemical techniques have been categorized into surface antigen expressions, metabolism, and chemotaxis-based phenotyping methods. We also shed light on clinical studies performed with these platforms over the years and conclude with an outlook for the future development in this field.
Collapse
Affiliation(s)
- Rutwik Joshi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Hesaneh Ahmadi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Karl Gardner
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Robert K Bright
- Department of Immunology & Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
2
|
Shen Y, Guan X, Li S, Hou X, Yu J, Yin H, Shan X, Han X, Wang L, Zhou B, Li X, Sun L, Zhang Y, Xu H, Yue W. Exploiting a tumor softening targeted bomb for mechanical gene therapy of chemoresistant Triple-Negative breast cancer. CHEMICAL ENGINEERING JOURNAL 2024; 498:155217. [DOI: 10.1016/j.cej.2024.155217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
3
|
Massey A, Stewart J, Smith C, Parvini C, McCormick M, Do K, Cartagena-Rivera AX. Mechanical properties of human tumour tissues and their implications for cancer development. NATURE REVIEWS. PHYSICS 2024; 6:269-282. [PMID: 38706694 PMCID: PMC11066734 DOI: 10.1038/s42254-024-00707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 05/07/2024]
Abstract
The mechanical properties of cells and tissues help determine their architecture, composition and function. Alterations to these properties are associated with many diseases, including cancer. Tensional, compressive, adhesive, elastic and viscous properties of individual cells and multicellular tissues are mostly regulated by reorganization of the actomyosin and microtubule cytoskeletons and extracellular glycocalyx, which in turn drive many pathophysiological processes, including cancer progression. This Review provides an in-depth collection of quantitative data on diverse mechanical properties of living human cancer cells and tissues. Additionally, the implications of mechanical property changes for cancer development are discussed. An increased knowledge of the mechanical properties of the tumour microenvironment, as collected using biomechanical approaches capable of multi-timescale and multiparametric analyses, will provide a better understanding of the complex mechanical determinants of cancer organization and progression. This information can lead to a further understanding of resistance mechanisms to chemotherapies and immunotherapies and the metastatic cascade.
Collapse
Affiliation(s)
- Andrew Massey
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jamie Stewart
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Cameron Parvini
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Moira McCormick
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kun Do
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Alexander X. Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Panzetta V, Musella I, Fusco S, Netti PA. ECM Mechanoregulation in Malignant Pleural Mesothelioma. Front Bioeng Biotechnol 2022; 10:797900. [PMID: 35237573 PMCID: PMC8883334 DOI: 10.3389/fbioe.2022.797900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Malignant pleural mesothelioma is a relatively rare, but devastating tumor, because of the difficulties in providing early diagnosis and effective treatments with conventional chemo- and radiotherapies. Patients usually present pleural effusions that can be used for diagnostic purposes by cytological analysis. This effusion cytology may take weeks or months to establish and has a limited sensitivity (30%-60%). Then, it is becoming increasingly urgent to develop alternative investigative methods to support the diagnosis of mesothelioma at an early stage when this cancer can be treated successfully. To this purpose, mechanobiology provides novel perspectives into the study of tumor onset and progression and new diagnostic tools for the mechanical characterization of tumor tissues. Here, we report a mechanical and biophysical characterization of malignant pleural mesothelioma cells as additional support to the diagnosis of pleural effusions. In particular, we examined a normal mesothelial cell line (Met5A) and two epithelioid mesothelioma cell lines (REN and MPP89), investigating how malignant transformation can influence cellular function like proliferation, cell migration, and cell spreading area with respect to the normal ones. These alterations also correlated with variations in cytoskeletal mechanical properties that, in turn, were measured on substrates mimicking the stiffness of patho-physiological ECM.
Collapse
Affiliation(s)
- Valeria Panzetta
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Ida Musella
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo A. Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| |
Collapse
|
5
|
Yang C, Wu S, Mou Z, Zhou Q, Zhang Z, Chen Y, Ou Y, Chen X, Dai X, Xu C, Liu N, Jiang H. Transcriptomic Analysis Identified ARHGAP Family as a Novel Biomarker Associated With Tumor-Promoting Immune Infiltration and Nanomechanical Characteristics in Bladder Cancer. Front Cell Dev Biol 2021; 9:657219. [PMID: 34307347 PMCID: PMC8294098 DOI: 10.3389/fcell.2021.657219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Bladder cancer (BCa) is a common lethal urinary malignancy worldwide. The role of ARHGAP family genes in BCa and its association with immuno-microenvironment remain largely unknown. ARHGAP family expression and immune infiltration in BCa were analyzed by bioinformatics analysis. Then, we investigated cell proliferation, invasion, and migration in vivo and in vitro of the ARHGAP family. Furthermore, atomic force microscopy (AFM) was employed in measuring cellular mechanical properties of BCa cells. The results demonstrated that ARHGAP family genes correlate with a tumor-promoting microenvironment with a lower Th1/Th2 cell ratio, higher DC cell infiltration, higher Treg cell infiltration, and T-cell exhaustion phenotype. Silencing ARHGAP5, ARHGAP17, and ARHGAP24 suppressed BCa cell proliferation, migration, and metastasis. Knocking down of ARHGAPs in T24 cells caused a relatively higher Young’s modulus and lower adhesive force and cell height. Taken together, ARHGAP family genes promote BCa progressing through establishing a tumor-promoting microenvironment and promoting cancer progression.
Collapse
Affiliation(s)
- Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheyu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ghassemi P, Harris KS, Ren X, Foster BM, Langefeld CD, Kerr BA, Agah M. Comparative Study of Prostate Cancer Biophysical and Migratory Characteristics via Iterative Mechanoelectrical Properties (iMEP) and Standard Migration Assays. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 321:128522. [PMID: 32863589 PMCID: PMC7455013 DOI: 10.1016/j.snb.2020.128522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This study reveals a new microfluidic biosensor consisting of a multi-constriction microfluidic device with embedded electrodes for measuring the biophysical attributes of single cells. The biosensing platform called the iterative mechano-electrical properties (iMEP) analyzer captures electronic records of biomechanical and bioelectrical properties of cells. The iMEP assay is used in conjunction with standard migration assays, such as chemotaxis-based Boyden chamber and scratch wound healing assays, to evaluate the migratory behavior and biophysical properties of prostate cancer cells. The three cell lines evaluated in the study each represent a stage in the standard progression of prostate cancer, while the fourth cell line serves as a normal/healthy counterpart. Neither the scratch assay nor the chemotaxis assay could fully differentiate the four cell lines. Furthermore, there was not a direct correlation between wound healing rate or the migratory rate with the cells' metastatic potential. However, the iMEP assay, through its multiparametric dataset, could distinguish between all four cell line populations with p-value < 0.05. Further studies are needed to determine if iMEP signatures can be used for a wider range of human cells to assess the tumorigenicity of a cell population or the metastatic potential of cancer cells.
Collapse
Affiliation(s)
- Parham Ghassemi
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Koran S. Harris
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Xiang Ren
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brittni M. Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, 27157, United States
| | - Bethany A. Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Masoud Agah
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Lu Z, Wang Z, Li D. Application of atomic force microscope in diagnosis of single cancer cells. BIOMICROFLUIDICS 2020; 14:051501. [PMID: 32922587 PMCID: PMC7474552 DOI: 10.1063/5.0021592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Changes in mechanical properties of cells are closely related to a variety of diseases. As an advanced technology on the micro/nano scale, atomic force microscopy is the most suitable tool for information acquisition of living cells in human body fluids. AFMs are able to measure and characterize the mechanical properties of cells which can be used as effective markers to distinguish between different cell types and cells in different states (benign or cancerous). Therefore, they can be employed to obtain additional information to that obtained via the traditional biochemistry methods for better identifying and diagnosing cancer cells for humans, proposing better treatment methods and prognosis, and unravelling the pathogenesis of the disease. In this report, we review the use of AFMs in cancerous tissues, organs, and cancer cells cultured in vitro to obtain cellular mechanical properties, demonstrate and summarize the results of AFMs in cancer biology, and look forward to possible future applications and the direction of development.
Collapse
Affiliation(s)
- Zhengcheng Lu
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| | - Zuobin Wang
- Authors to whom correspondence should be addressed: and
| | - Dayou Li
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| |
Collapse
|
8
|
Massey AE, Doxtater KA, Yallapu MM, Chauhan SC. Biophysical changes caused by altered MUC13 expression in pancreatic cancer cells. Micron 2020; 130:102822. [PMID: 31927412 DOI: 10.1016/j.micron.2019.102822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal cancers in the United States. This is partly due to the difficulty in early detection of this disease as well as poor therapeutic responses to currently available regimens. Our previous reports suggest that mucin 13 (MUC13, a transmembrane mucin common to gastrointestinal cells) is aberrantly expressed in this disease state, and has been implicated with a worsened prognosis and an enhanced metastatic potential in PanCa. However, virtually no information currently exists to describe the biophysical ramifications of this protein. METHODS To demonstrate the biophysical effect of MUC13 in PanCa, we generated overexpressing and knockdown model cell lines for PanCa and subsequently subjected them to various biophysical experiments using atomic force microscopy (AFM) and cellular aggregation studies. RESULTS AFM-based nanoindentation data showed significant biophysical effects with MUC13 modulation in PanCa cells. The overexpression of MUC13 in Panc-1 cells led to an expected decrease in modulus, and a corresponding decrease in adhesion. With MUC13 knockdown, HPAF-II cells exhibited an increased modulus and adhesion. These results were confirmed with altered cell-cell adhesion as seen with aggregation assays. CONCLUSIONS MUC13 led to significant biophysical changes in PanCa cells and which exhibited characteristic phenotypic changes in cells demonstrated in previous work from our lab. This work gives insight into the use of biophysical measurements that could be used to help diagnose or monitor cancers as well as determine the effects of genetic alterations at a mechanical level.
Collapse
Affiliation(s)
- Andrew E Massey
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States
| | - Kyle A Doxtater
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, United States.
| |
Collapse
|
9
|
Stylianou A, Kontomaris SV, Grant C, Alexandratou E. Atomic Force Microscopy on Biological Materials Related to Pathological Conditions. SCANNING 2019; 2019:8452851. [PMID: 31214274 PMCID: PMC6535871 DOI: 10.1155/2019/8452851] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 05/16/2023]
Abstract
Atomic force microscopy (AFM) is an easy-to-use, powerful, high-resolution microscope that allows the user to image any surface and under any aqueous condition. AFM has been used in the investigation of the structural and mechanical properties of a wide range of biological matters including biomolecules, biomaterials, cells, and tissues. It provides the capacity to acquire high-resolution images of biosamples at the nanoscale and allows at readily carrying out mechanical characterization. The capacity of AFM to image and interact with surfaces, under physiologically relevant conditions, is of great importance for realistic and accurate medical and pharmaceutical applications. The aim of this paper is to review recent trends of the use of AFM on biological materials related to health and sickness. First, we present AFM components and its different imaging modes and we continue with combined imaging and coupled AFM systems. Then, we discuss the use of AFM to nanocharacterize collagen, the major fibrous protein of the human body, which has been correlated with many pathological conditions. In the next section, AFM nanolevel surface characterization as a tool to detect possible pathological conditions such as osteoarthritis and cancer is presented. Finally, we demonstrate the use of AFM for studying other pathological conditions, such as Alzheimer's disease and human immunodeficiency virus (HIV), through the investigation of amyloid fibrils and viruses, respectively. Consequently, AFM stands out as the ideal research instrument for exploring the detection of pathological conditions even at very early stages, making it very attractive in the area of bio- and nanomedicine.
Collapse
Affiliation(s)
- Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2238, Cyprus
| | - Stylianos-Vasileios Kontomaris
- Mobile Radio Communications Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou, Athens 15780, Greece
- Athens Metropolitan College, Sorou 74, Marousi 15125, Greece
| | - Colin Grant
- Hitachi High-Technologies Europe, Techspace One, Keckwick Lane, Warrington WA4 4AB, UK
| | - Eleni Alexandratou
- Biomedical Optics and Applied Biophysics Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechniou, Athens 15780, Greece
| |
Collapse
|
10
|
Chemotherapeutic resistance: a nano-mechanical point of view. Biol Chem 2018; 399:1433-1446. [DOI: 10.1515/hsz-2018-0274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
AbstractChemotherapeutic resistance is one of the main obstacles for cancer remission. To understand how cancer cells acquire chemotherapeutic resistance, biochemical studies focusing on drug target alteration, altered cell proliferation, and reduced susceptibility to apoptosis were performed. Advances in nano-mechanobiology showed that the enhanced mechanical deformability of cancer cells accompanied by cytoskeletal alteration is a decisive factor for cancer development. Furthermore, atomic force microscopy (AFM)–based nano-mechanical studies showed that chemotherapeutic treatments reinforced the mechanical stiffness of drug-sensitive cancer cells. However, drug-resistant cancer cells did not show such mechanical responses following chemotherapeutic treatments. Interestingly, drug-resistant cancer cells are mechanically heterogeneous, with a subpopulation of resistant cells showing higher stiffness than their drug-sensitive counterparts. The signaling pathways involving Rho, vinculin, and myosin II were found to be responsible for these mechanical alterations in drug-resistant cancer cells. In the present review, we highlight the mechanical aspects of chemotherapeutic resistance, and suggest how mechanical studies can contribute to unravelling the multifaceted nature of chemotherapeutic resistance.
Collapse
|
11
|
Park S. Mechanical Alteration Associated With Chemotherapeutic Resistance of Breast Cancer Cells. J Cancer Prev 2018; 23:87-92. [PMID: 30003069 PMCID: PMC6037207 DOI: 10.15430/jcp.2018.23.2.87] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 11/07/2022] Open
Abstract
Background The mechanical deformability of cancer cells has attracted particular attention as an emerging biomarker for the prediction of anti-cancer drug sensitivity. Nevertheless, it has not been possible to establish a general rubric for the identification of drug susceptibility in breast cancer cells from a mechanical perspective. In the present study, we investigated the mechanical alteration associated with resistance to adjuvant therapy in breast cancer cells. Methods We performed an ‘atomic force microscopy (AFM)-based nanomechanical study’ on ‘drug-sensitive (MCF-7)’ and ‘drug-resistant (MCF-7/ADR)’ breast cancer cells. We also conducted cell viability tests to evaluate the difference in doxorubicin responsiveness between two breast cancer cell lines. We carried out a wound closure experiment to investigate the motility changes associated with chemotherapeutic resistance. To elucidate the changes in molecular alteration that accompany chemotherapeutic resistance, we investigated the expression of vinculin and integrin-linked kinase-1–which are proteins involved in substrate adhesion and the actin cytoskeleton–using Western blotting analysis. Results A MTT assay confirmed that the dose-dependent efficacy of doxorubicin was reduced in MCF-7/ADR cells compared to that in MCF-7 cells. The wound assay revealed enhanced two-dimensional motility in the MCF-7/ADR cells. The AFM mechanical assay showed evidence that the drug-resistant breast cancer cells exhibited a significant decrease in mechanical deformability compared to their drug-sensitive counterparts. The mechanical alteration in the MCF-7/ADR cells was accompanied by upregulated vinculin expression. Conclusions The obtained results manifestly showed that the altered mechanical signatures–including mechanical deformability and motility–were closely related with drug resistance in the breast cancer cells. We believe that this investigation has improved our understanding of the chemotherapeutic susceptibility of breast cancer cells.
Collapse
Affiliation(s)
- Soyeun Park
- College of Pharmacy, Keimyung University, Daegu, Korea
| |
Collapse
|
12
|
Bhat SV, Sultana T, Körnig A, McGrath S, Shahina Z, Dahms TES. Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time. Sci Rep 2018; 8:8305. [PMID: 29844489 PMCID: PMC5973941 DOI: 10.1038/s41598-018-26433-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/04/2018] [Indexed: 11/14/2022] Open
Abstract
There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.
Collapse
Affiliation(s)
- Supriya V Bhat
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Taranum Sultana
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - André Körnig
- JPK Instruments, JPK Instruments AG, Colditzstr. 34-36, 12099, Berlin, Germany
| | - Seamus McGrath
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| |
Collapse
|
13
|
Kim JK, Louhghalam A, Lee G, Schafer BW, Wirtz D, Kim DH. Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat Commun 2017; 8:2123. [PMID: 29242553 PMCID: PMC5730574 DOI: 10.1038/s41467-017-02217-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022] Open
Abstract
The distinct spatial architecture of the apical actin cables (or actin cap) facilitates rapid biophysical signaling between extracellular mechanical stimuli and intracellular responses, including nuclear shaping, cytoskeletal remodeling, and the mechanotransduction of external forces into biochemical signals. These functions are abrogated in lamin A/C-deficient mouse embryonic fibroblasts that recapitulate the defective nuclear organization of laminopathies, featuring disruption of the actin cap. However, how nuclear lamin A/C mediates the ability of the actin cap to regulate nuclear morphology remains unclear. Here, we show that lamin A/C expressing cells can form an actin cap to resist nuclear deformation in response to physiological mechanical stresses. This study reveals how the nuclear lamin A/C-mediated formation of the perinuclear apical actin cables protects the nuclear structural integrity from extracellular physical disturbances. Our findings highlight the role of the physical interactions between the cytoskeletal network and the nucleus in cellular mechanical homeostasis.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Arghavan Louhghalam
- Department of Civil and Environmental Engineering, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
| | - Geonhui Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Benjamin W Schafer
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Civil Engineering, The John Hopkins University, Baltimore, MD, 21218, USA
| | - Denis Wirtz
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, The John Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Departments of Pathology and Oncology and Sydney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
14
|
Li M, Liu L, Xi N, Wang Y. Atomic force microscopy studies on cellular elastic and viscoelastic properties. SCIENCE CHINA-LIFE SCIENCES 2017; 61:57-67. [DOI: 10.1007/s11427-016-9041-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/07/2017] [Indexed: 01/03/2023]
|
15
|
Li M, Dang D, Liu L, Xi N, Wang Y. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Trans Nanobioscience 2017; 16:523-540. [PMID: 28613180 DOI: 10.1109/tnb.2017.2714462] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.
Collapse
|
16
|
Wang Y, Xu C, Jiang N, Zheng L, Zeng J, Qiu C, Yang H, Xie S. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy. SCANNING 2016; 38:558-563. [PMID: 26750438 DOI: 10.1002/sca.21300] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 05/17/2023]
Abstract
Breast cancer has been one of the most common malignant tumors threatening female health with high incidence. Cell mechanics is becoming an important issue and could serves as a potential indicator for early cancer diagnosis. In this study, atomic force microscopy (AFM) was applied to characterize and compare the surface nanostructure and viscoelasticity of different breast cell lines. Our results show that breast cancerous cells MCF-7 exhibit more disorganized filamentous cytoskeleton structure with increased membrane roughness compared to benign breast cells MCF-10A (P < 0.05). The viscoelastic properties, including elasticity and viscosity, are significantly different between the two cell lines. MCF-7 displays reduced elasticity and viscosity, indicating that breast cancer cells are softer and more fluid than benign counterpart. Our findings provide new insights into the biophysical changes of cells during tumor transformation and suggest it could be used for early cancer detection at single cell level. SCANNING 38:558-563, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuhua Wang
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P.R. China
| | - Chaoxian Xu
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P.R. China
| | - Ningcheng Jiang
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P.R. China
| | - Liqin Zheng
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P.R. China
| | - Jinshu Zeng
- Department of Ultrasonic Medical, The First Affiliated Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Caimin Qiu
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P.R. China
| | - Hongqin Yang
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P.R. China
| | - Shusen Xie
- Institute of Laser and Optoelectronics Technology, Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, P.R. China
| |
Collapse
|
17
|
Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy. J Biol Phys 2016; 42:551-569. [PMID: 27438703 DOI: 10.1007/s10867-016-9423-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
Methotrexate is a commonly used anti-cancer chemotherapy drug. Cellular mechanical properties are fundamental parameters that reflect the physiological state of a cell. However, so far the role of cellular mechanical properties in the actions of methotrexate is still unclear. In recent years, probing the behaviors of single cells with the use of atomic force microscopy (AFM) has contributed much to the field of cell biomechanics. In this work, with the use of AFM, the effects of methotrexate on the viscoelastic properties of four types of cells were quantitatively investigated. The inhibitory and cytotoxic effects of methotrexate on the proliferation of cells were observed by optical and fluorescence microscopy. AFM indenting was used to measure the changes of cellular viscoelastic properties (Young's modulus and relaxation time) by using both conical tip and spherical tip, quantitatively showing that the stimulation of methotrexate resulted in a significant decrease of both cellular Young's modulus and relaxation times. The morphological changes of cells induced by methotrexate were visualized by AFM imaging. The study improves our understanding of methotrexate action and offers a novel way to quantify drug actions at the single-cell level by measuring cellular viscoelastic properties, which may have potential impacts on developing label-free methods for drug evaluation.
Collapse
|
18
|
Li M, Liu L, Xiao X, Xi N, Wang Y. Viscoelastic Properties Measurement of Human Lymphocytes by Atomic Force Microscopy Based on Magnetic Beads Cell Isolation. IEEE Trans Nanobioscience 2016; 15:398-411. [DOI: 10.1109/tnb.2016.2547639] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Park S. Nano-mechanical Phenotype as a Promising Biomarker to Evaluate Cancer Development, Progression, and Anti-cancer Drug Efficacy. J Cancer Prev 2016; 21:73-80. [PMID: 27390735 PMCID: PMC4933430 DOI: 10.15430/jcp.2016.21.2.73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 12/03/2022] Open
Abstract
Since various bio-mechanical assays have been introduced for studying mechanical properties of biological samples, much progress has been made in cancer biology. It has been noted that enhanced mechanical deformability can be used as a marker for cancer diagnosis. The relation between mechanical compliances and the metastatic potential of cancer cells has been suggested to be a promising prognostic marker. Although it is yet to be conclusive about its clinical application due to the complexity in the tissue integrity, the nano-mechanical compliance of human cell samples has been evaluated by several groups as a promising marker in diagnosing cancer development and anticipating its progression. In this review, we address the mechanical properties of diverse cancer cells obtained by atomic force microscopy-based indentation experiments and reiterate prognostic relations between the nano-mechanical compliance and cancer progression. We also review the nano-mechanical responses of cancer cells to the anti-cancer drug treatment in order to interrogate a possible use of nano-mechanical compliance as a means to evaluate the effectiveness of anti-cancer drugs.
Collapse
Affiliation(s)
- Soyeun Park
- College of Pharmacy, Keimyung University, Daegu,
Korea
| |
Collapse
|
20
|
Park S, Jang WJ, Jeong CH. Nano-biomechanical Validation of Epithelial–Mesenchymal Transition in Oral Squamous Cell Carcinomas. Biol Pharm Bull 2016; 39:1488-95. [DOI: 10.1248/bpb.b16-00266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Stylianou A, Stylianopoulos T. Atomic Force Microscopy Probing of Cancer Cells and Tumor Microenvironment Components. BIONANOSCIENCE 2015. [DOI: 10.1007/s12668-015-0187-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Seo YH, Jo YN, Oh YJ, Park S. Nano-mechanical reinforcement in drug-resistant ovarian cancer cells. Biol Pharm Bull 2015; 38:389-95. [PMID: 25757920 DOI: 10.1248/bpb.b14-00604] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanical properties of cells are considered promising biomarkers for the early detection of cancer and the testing of drug efficacy against it. Nevertheless, generalized correlations between drug resistance and the nano-mechanical properties of cancer cells are yet to be defined due to the lack of necessary studies. In this study, we conducted atomic force microscopy (AFM)-based nano-mechanical measurements of cisplatin-sensitive (A2780) and cisplatin-resistant (A2780cis) ovarian cancer cells. The difference in the efficacy of cisplatin between A2780 and A2780cis was confirmed in the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. We observed that the cisplatin-resistant ovarian cancer cells were more motile than cisplatin-sensitive cells based on the results of the wound closure experiment, and the AFM experiments showed that drug resistance induced nano-mechanical stiffening of the ovarian cancer cells. Increased mechanical stiffness caused by cisplatin resistance was consistent with the confocal microscopy images showing more distinct actin stress fibers in A2780cis than in A2780 cells. The down regulation of vinculin implicated the actin-driven elongation as a major motile mode for A2780cis cells. Our results consistently indicated that the acquisition of drug resistance in ovarian cancer cells induces an extensive reorganization of the actin cytoskeleton, which governs the cellular mechanical properties, motility, and possibly intracellular drug transportation.
Collapse
|
23
|
Gkretsi V, Stylianou A, Papageorgis P, Polydorou C, Stylianopoulos T. Remodeling Components of the Tumor Microenvironment to Enhance Cancer Therapy. Front Oncol 2015; 5:214. [PMID: 26528429 PMCID: PMC4604307 DOI: 10.3389/fonc.2015.00214] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/22/2015] [Indexed: 12/18/2022] Open
Abstract
Solid tumor pathophysiology is characterized by an abnormal microenvironment that guides tumor progression and poses barriers to the efficacy of cancer therapies. Most common among tumor types are abnormalities in the structure of the tumor vasculature and stroma. Remodeling the tumor microenvironment with the aim to normalize any aberrant properties has the potential to improve therapy. In this review, we discuss structural abnormalities of the tumor microenvironment and summarize the therapeutic strategies that have been developed to normalize tumors as well as their potential to enhance therapy. Finally, we present different in vitro models that have been developed to analyze and better understand the effects of the tumor microenvironment on cancer cell behavior.
Collapse
Affiliation(s)
- Vasiliki Gkretsi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia , Cyprus
| | - Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia , Cyprus
| | - Panagiotis Papageorgis
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia , Cyprus ; Program in Biological Sciences, Department of Health Sciences, European University Cyprus , Nicosia , Cyprus
| | - Christiana Polydorou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia , Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia , Cyprus
| |
Collapse
|