1
|
Wei C, Heh CH, Chin SP. Exploring the Impact of LRRK2 WD40 G2294R Mutation on Conformation and Dimerisation Dynamics: Insights From Molecular Dynamics Simulation. J Cell Biochem 2025; 126:e70011. [PMID: 39996488 DOI: 10.1002/jcb.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/08/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
LRRK2 has gained prominence in treating Parkinson's disease as a potential drug target. Mutations in the WD40 domain, like G2294R, are notable for their influence on the stability and dimerisation of the LRRK2. Studies have shown that G2294R could result in the WD40 distortion and destabilised LRRK2 protein. However, the underlying mechanism remains unclear. To elucidate how the G2294R mutation in the WD40 domain affects the structural and functional conformation of LRRK2, the structure of WD40 G2294R was constructed using homology modelling, and the molecular dynamics simulations on G2294R and wild-type dimers and monomers were carried out. The results show that distortion mainly occurs in the areas of β3, L1, β5, L2, and β7. The dimerisation was enhanced through the conformational changes in the G2294R variant, while the domains show different contributions towards the dimerisation. Our study reveals the effects of G2294R on the WD40. It explores its role in dimerisation and distortion, which could contribute to developing novel WD40 inhibitors and elucidate the molecular mechanism of WD40 dimerisation-monomerisation equilibrium.
Collapse
Affiliation(s)
- Chuancheng Wei
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Tripathi A, Chauhan S, Khasa R. A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection. Viruses 2025; 17:74. [PMID: 39861863 PMCID: PMC11769230 DOI: 10.3390/v17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy. Extensive research has been conducted in developing effective antivirals for flavivirus. Various approaches have been extensively utilized in clinical trials for antiviral development, targeting virus entry, replication, polyprotein synthesis and processing, and egress pathways exploiting virus as well as host proteins. However, to date, no licensed antiviral drug exists to treat the diseases caused by these viruses. Understanding the mechanisms of host-pathogen interaction, host immunity, viral immune evasion, and disease pathogenesis is highly warranted to foster the development of antivirals. This review provides an extensively detailed summary of the most recent advances in the development of antiviral drugs to combat diseases.
Collapse
Affiliation(s)
- Aarti Tripathi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Shailendra Chauhan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Renu Khasa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA
| |
Collapse
|
3
|
Guntamadugu R, Ramakrishnan R, Darala G, Kothandan S. Molecular docking, simulations of animal peptides against the envelope protein of Dengue virus. J Biomol Struct Dyn 2023; 42:13386-13400. [PMID: 37929876 DOI: 10.1080/07391102.2023.2275183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Peptides are biologically active, small molecules with high specificity in its mode of action that can be effective at nanomolar concentrations. Peptide-based antiviral medicines have already been licensed and used to treat human immunodeficiency virus (HIV), influenza virus and hepatitis C virus. So far, no peptide drug has been approved for antiviral treatment against Dengue virus, and many are under clinical trials. Therefore, developing a reasonable peptide against the Dengue virus Envelope protein structure will be a successful strategy for treating Dengue. Hence, we investigated protein-protein docking interactions between 215 peptides retrieved from the AVP database against the envelope protein using Cluspro and HADDOCK followed by the evaluation of their allegenicity, toxicity and physicochemical characteristics investigation. Further validation of the protein-peptide complexes was performed with Molecular dynamics simulations and Molecular Mechanics Poisson-Boltzmann surface area (MMPBSA) analysis on the hit inhibitors. This study revealed that Indolicidin (-75.026 ± 1.54 KJ/mol) and Human Neutrophil peptide-1 (-71.6551 ± 2.112 KJ/mol) shows higher negative ΔG binding implicating their relative stabilization in the protein-peptide interactions during 100 ns of dynamic simulations. Also, both the peptides exhibited desirable physicochemical properties and were nonallergenic. Hence, we further aim to test these peptides by in vitro and in vivo studies to confirm their efficacy against Dengue virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reena Guntamadugu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Thandalam, Tamil Nadu, India
| | - Ranjani Ramakrishnan
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh, India
| | - Gowtham Darala
- Department of Computer Science, College of Engineering, Sri Venkateswara University, Tirupathi, Andhra Pradesh, India
| | - Sangeetha Kothandan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Thandalam, Tamil Nadu, India
| |
Collapse
|
4
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
5
|
Kodchakorn K, Kongtawelert P. Molecular dynamics study on the strengthening behavior of Delta and Omicron SARS-CoV-2 spike RBD improved receptor-binding affinity. PLoS One 2022; 17:e0277745. [PMID: 36395151 PMCID: PMC9671323 DOI: 10.1371/journal.pone.0277745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
The COVID-19 pandemic caused by a virus that can be transmitted from human to human via air droplets has changed the quality of life and economic systems all over the world. The viral DNA has mutated naturally over time leading to the diversity of coronavirus victims which has posed a serious threat to human security on a massive scale. The current variants have developed in a dominant way and are considered "Variants of Concern" by the World Health Organization (WHO). In this work, Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529) variants were obtained to evaluate whether naturally occurring mutations have strengthened viral infectivity. We apply reliable in silico structural dynamics and energetic frameworks of the mutated S-RBD protein for ACE2-binding to analyze and compare the structural information related to the wild-type. In particular, the hotspot residues at Q493, Q498, and N501 on the S-RBD protein were determined as contributing factors to the employment stability of the relevant binding interface. The L452R mutation induces an increment of the hydrogen bonds formed by changing the Q493 environment for ACE2 binding. Moreover, the Q493K exchange in Omicron enables the formation of two additional salt bridges, leading to a strong binding affinity by increased electrostatic interaction energy. These results could be used in proposing concrete informative data for a structure-based design engaged in finding better therapeutics against novel variants.
Collapse
Affiliation(s)
- Kanchanok Kodchakorn
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
6
|
Gallo G, Barcick U, Coelho C, Salardani M, Camacho MF, Cajado-Carvalho D, Loures FV, Serrano SMT, Hardy L, Zelanis A, Würtele M. A proteomics-MM/PBSA dual approach for the analysis of SARS-CoV-2 main protease substrate peptide specificity. Peptides 2022; 154:170814. [PMID: 35644302 PMCID: PMC9134770 DOI: 10.1016/j.peptides.2022.170814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
The main protease Mpro of SARS-CoV-2 is a well-studied major drug target. Additionally, it has been linked to this virus' pathogenicity, possibly through off-target effects. It is also an interesting diagnostic target. To obtain more data on possible substrates as well as to assess the enzyme's primary specificity a two-step approach was introduced. First, Terminal Amine Isobaric Labeling of Substrates (TAILS) was employed to identify novel Mpro cleavage sites in a mouse lung proteome library. In a second step, using a structural homology model, the MM/PBSA variant MM/GBSA (Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area) free binding energy calculations were carried out to determine relevant interacting amino acids. As a result, 58 unique cleavage sites were detected, including six that displayed glutamine at the P1 position. Furthermore, modeling results indicated that Mpro has a far higher potential promiscuity towards substrates than expected. The combination of proteomics and MM/PBSA modeling analysis can thus be useful for elucidating the specificity of Mpro, and thus open novel perspectives for the development of future peptidomimetic drugs against COVID-19, as well as diagnostic tools.
Collapse
Affiliation(s)
- Gloria Gallo
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Uilla Barcick
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Camila Coelho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Murilo Salardani
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Maurício F Camacho
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Daniela Cajado-Carvalho
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Flávio V Loures
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Leon Hardy
- Department of Physics, University of South Florida, Tampa, United States
| | - André Zelanis
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | - Martin Würtele
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil.
| |
Collapse
|
7
|
Recalde-Reyes DP, Rodríguez-Salazar CA, Castaño-Osorio JC, Giraldo MI. PD1 CD44 antiviral peptide as an inhibitor of the protein-protein interaction in dengue virus invasion. Peptides 2022; 153:170797. [PMID: 35378215 PMCID: PMC10807690 DOI: 10.1016/j.peptides.2022.170797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023]
Abstract
Dengue virus (DENV) infection is mediated by the interaction between the virus envelope protein and cellular receptors of the host cells. In this study, we designed peptides to inhibit protein-protein interaction between dengue virus and CD44 receptor, which is one of the receptors used by DENV for entry. In silico model complexes were designed between domain III of the viral envelope protein of dengue virus 2 and the domain of human CD44 receptor using ClusPro 2.0, (https://cluspro.bu.edu/login.php), and inhibition peptides were designed with Rosetta Online-Server(http://rosie.rosettacommons.org/peptiderive). We identified one linear antiviral peptide of 18 amino acids derived from the human CD44 receptor, PD1 CD44. It did not show hemolysis or toxicity in HepG2 or BHK cell lines, nor did it stimulate the release of IL-1β, IL-6, TNF-α, and IFN-γ, below 100 µM. It had an IC50 of 13.8 µM and maximum effective dose of 54.9 µM evaluated in BHK cells. The decrease in plaque-forming units/mL for DENV1, DENV2, DENV3, and DENV4 was 99.60%, 99.40%, 97.80%, and 70.50%, respectively, and similar results were obtained by RT-qPCR. Non-structural protein 1 release was decreased in pre- and co-treatment but not in post-treatment. Competition assays between the DN59 peptide, envelope protein, and the fragment of domain III "MDKLQLKGMSYSMCTGKF" of the viral envelope of DENV2 and PD1 CD44 showed that our peptide lost its antiviral activity. We demonstrated that our peptide decreased endosome formation, and we propose that it binds to the envelope protein of DENV, inhibiting viral invasion/fusion.
Collapse
Affiliation(s)
- Delia Piedad Recalde-Reyes
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander Von Humboldt, Armenia 630003, Colombia.
| | - Carlos Andrés Rodríguez-Salazar
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia; Molecular Biology and Virology Laboratory, Faculty of Medicine and Health Sciences, Corporación Universitaria Empresarial Alexander Von Humboldt, Armenia 630003, Colombia
| | - Jhon Carlos Castaño-Osorio
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia.
| | - María Isabel Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555,USA.
| |
Collapse
|
8
|
Sundar S, Piramanayagam S, Natarajan J. A review on structural genomics approach applied for drug discovery against three vector-borne viral diseases: Dengue, Chikungunya and Zika. Virus Genes 2022; 58:151-171. [PMID: 35394596 DOI: 10.1007/s11262-022-01898-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/22/2022] [Indexed: 12/22/2022]
Abstract
Structural genomics involves the advent of three-dimensional structures of the genome encoded proteins through various techniques available. Numerous structural genomics research groups have been developed across the globe and they contribute enormously to the identification of three-dimensional structures of various proteins. In this review, we have discussed the applications of the structural genomics approach towards the discovery of potential lead-like molecules against the genomic drug targets of three vector-borne diseases, namely, Dengue, Chikungunya and Zika. Currently, all these three diseases are associated with the most important global public health problems and significant economic burden in tropical countries. Structural genomics has accelerated the identification of novel drug targets and inhibitors for the treatment of these diseases. We start with the current development status of the drug targets and antiviral drugs against these three diseases and conclude by describing challenges that need to be addressed to overcome the shortcomings in the process of drug discovery.
Collapse
Affiliation(s)
- Shobana Sundar
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | | | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
9
|
Norshidah H, Vignesh R, Lai NS. Updates on Dengue Vaccine and Antiviral: Where Are We Heading? Molecules 2021; 26:molecules26226768. [PMID: 34833860 PMCID: PMC8620506 DOI: 10.3390/molecules26226768] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Approximately 100–400 million people from more than 100 countries in the tropical and subtropical world are affected by dengue infections. Recent scientific breakthroughs have brought new insights into novel strategies for the production of dengue antivirals and vaccines. The search for specific dengue inhibitors is expanding, and the mechanisms for evaluating the efficacy of novel drugs are currently established, allowing for expedited translation into human trials. Furthermore, in the aftermath of the only FDA-approved vaccine, Dengvaxia, a safer and more effective dengue vaccine candidate is making its way through the clinical trials. Until an effective antiviral therapy and licensed vaccine are available, disease monitoring and vector population control will be the mainstays of dengue prevention. In this article, we highlighted recent advances made in the perspectives of efforts made recently, in dengue vaccine development and dengue antiviral drug.
Collapse
Affiliation(s)
- Harun Norshidah
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia
| | - Ramachandran Vignesh
- Faculty of Medicine, Universiti Kuala Lumpur-Royal College of Medicine Perak, Ipoh 30450, Perak, Malaysia;
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia;
- Correspondence:
| |
Collapse
|
10
|
Panchal R, Bapat S, Mukherjee S, Chowdhary A. In silico binding analysis of lutein and rosmarinic acid against envelope domain III protein of dengue virus. Indian J Pharmacol 2021; 53:471-479. [PMID: 34975135 PMCID: PMC8764985 DOI: 10.4103/ijp.ijp_576_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/29/2020] [Accepted: 11/11/2021] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The study was performed to evaluate in silico binding ability of lutein and rosmarinic acid (RA) with the envelope domain III (EDIII) proteins of the four serotypes of dengue virus (DENV), enlightening potential antiviral activity of the two compounds. MATERIALS AND METHODS EDIII protein structures for the four DENV serotypes were retrieved from RCSB Protein data bank (PDB) and used as receptors. Four ligands of lutein and four of RA were selected from the ZINC database and used for computational molecular docking and ligand interaction analysis with the four receptors using bioinformatics tools like AutoDock Vina and Molecular Operating Environment (MOE) software. RESULTS The EDIII of the four serotypes demonstrated significant interaction with ligands of lutein and RA. RA ligand ZINC899870, particularly presented best-binding energy values of 6.4, -7.0, and 6.9 kcal/mol with EDIII of serotype DENV-1, DENV-2, and DENV-4 respectively. Whereas, lutein ligand, ZINC14879959 presented best-binding energy value of 7.9 kcal/mol for EDIII of serotype DENV-3. From the results predicted by MOE, the hydroxyl (OH) of 3, 4-dihydroxyphenyl group of RA ligand ZINC899870 is actively involved in interaction with all four serotypes. CONCLUSION RA is a competent candidate for further evaluation of potential in vitro antiviral activity that can be effective in conferring protection against the four serotypes of DENV.
Collapse
Affiliation(s)
- Ritesh Panchal
- School of Science, Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Sanket Bapat
- MIT School of Bioengineering Science and Research, ADT University, Pune, India
| | - Sandeepan Mukherjee
- Department of Virology, Haffkin Institute for Training, Research and Testing, Mumbai, India
| | - Abhay Chowdhary
- Department of Microbiology, D. Y. Patil School of Medicine, Navi Mumbai, India
| |
Collapse
|
11
|
Protein-Protein Interactions: Insight from Molecular Dynamics Simulations and Nanoparticle Tracking Analysis. Molecules 2021; 26:molecules26185696. [PMID: 34577167 PMCID: PMC8472368 DOI: 10.3390/molecules26185696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Protein-protein interaction plays an essential role in almost all cellular processes and biological functions. Coupling molecular dynamics (MD) simulations and nanoparticle tracking analysis (NTA) assay offered a simple, rapid, and direct approach in monitoring the protein-protein binding process and predicting the binding affinity. Our case study of designed ankyrin repeats proteins (DARPins)—AnkGAG1D4 and the single point mutated AnkGAG1D4-Y56A for HIV-1 capsid protein (CA) were investigated. As reported, AnkGAG1D4 bound with CA for inhibitory activity; however, it lost its inhibitory strength when tyrosine at residue 56 AnkGAG1D4, the most key residue was replaced by alanine (AnkGAG1D4-Y56A). Through NTA, the binding of DARPins and CA was measured by monitoring the increment of the hydrodynamic radius of the AnkGAG1D4-gold conjugated nanoparticles (AnkGAG1D4-GNP) and AnkGAG1D4-Y56A-GNP upon interaction with CA in buffer solution. The size of the AnkGAG1D4-GNP increased when it interacted with CA but not AnkGAG1D4-Y56A-GNP. In addition, a much higher binding free energy (∆GB) of AnkGAG1D4-Y56A (−31 kcal/mol) obtained from MD further suggested affinity for CA completely reduced compared to AnkGAG1D4 (−60 kcal/mol). The possible mechanism of the protein-protein binding was explored in detail by decomposing the binding free energy for crucial residues identification and hydrogen bond analysis.
Collapse
|
12
|
King E, Aitchison E, Li H, Luo R. Recent Developments in Free Energy Calculations for Drug Discovery. Front Mol Biosci 2021; 8:712085. [PMID: 34458321 PMCID: PMC8387144 DOI: 10.3389/fmolb.2021.712085] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
The grand challenge in structure-based drug design is achieving accurate prediction of binding free energies. Molecular dynamics (MD) simulations enable modeling of conformational changes critical to the binding process, leading to calculation of thermodynamic quantities involved in estimation of binding affinities. With recent advancements in computing capability and predictive accuracy, MD based virtual screening has progressed from the domain of theoretical attempts to real application in drug development. Approaches including the Molecular Mechanics Poisson Boltzmann Surface Area (MM-PBSA), Linear Interaction Energy (LIE), and alchemical methods have been broadly applied to model molecular recognition for drug discovery and lead optimization. Here we review the varied methodology of these approaches, developments enhancing simulation efficiency and reliability, remaining challenges hindering predictive performance, and applications to problems in the fields of medicine and biochemistry.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Erick Aitchison
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
- Department of Materials Science and Engineering, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| |
Collapse
|
13
|
Poh CL, Lalani S. Strategies to identify and develop antiviral peptides. VITAMINS AND HORMONES 2021; 117:17-46. [PMID: 34420580 DOI: 10.1016/bs.vh.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The emergence and re-emergence of viral pathogens capable of causing epidemics or pandemics pose a serious healthcare burden. Small molecule antivirals used in conventional therapy have given rise to the severe problem of viral resistance against them. Peptides are generally considered safe, effective and are less likely to induce viral resistance. Antiviral peptides can be identified from screening of phage display of combinational peptide libraries, peptide array libraries or designed against viral targets. Limitations of peptides such as bioavailability can be improved with chemical modifications. Nanotechnology can further improve the stability of peptides in systemic circulation and enhance the antiviral activity of peptides, making them an appealing therapeutic option.
Collapse
Affiliation(s)
- Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, Subang Jaya, Selangor, Malaysia.
| | - Salima Lalani
- Centre for Virus and Vaccine Research, Sunway University, Subang Jaya, Selangor, Malaysia; Department of Biological Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
14
|
S AH, Pujar GV, Sethu AK, Bhagyalalitha M, Singh M. Dengue structural proteins as antiviral drug targets: Current status in the drug discovery & development. Eur J Med Chem 2021; 221:113527. [PMID: 34020338 DOI: 10.1016/j.ejmech.2021.113527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023]
Abstract
Dengue virus belongs to the class of RNA viruses and subclass of enveloped single-stranded positive-sense RNA virus. It causes dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS), where DHF and DSS are life-threatening. Even though dengue is an age-old disease, it is still a mystery and continues to be a global threat. Numerous attempts have been carried out in the past few decades to eradicate the virus through vaccine and antiviral drugs, but still battle continues. In this review, the possible drug targets for discovery and development of potential antiviral drugs against structural proteins of dengue virus, the current development status of the antiviral drugs against dengue around the world, and challenges that need to be addressed to overcome the shortcomings in the process of drug discovery have been discussed.
Collapse
Affiliation(s)
- Akshatha H S
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurubasavaraj V Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India.
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Meduri Bhagyalalitha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| |
Collapse
|
15
|
Arumugam AC, Agharbaoui FE, Khazali AS, Yusof R, Abd Rahman N, Ahmad Fuaad AAH. Computational-aided design: minimal peptide sequence to block dengue virus transmission into cells. J Biomol Struct Dyn 2020; 40:5026-5035. [PMID: 33382015 DOI: 10.1080/07391102.2020.1866074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dengue virus (DV) infection is one of the main public health concerns, affecting approximately 390 million people worldwide, as reported by the World Health Organization. Yet, there is no antiviral treatment for DV infection. Therefore, the development of potent and nontoxic anti-DV, as a complement for the existing treatment strategies, is urgently needed. Herein, we investigate a series of small peptides inhibitors of DV antiviral activity targeting the entry process as the promising strategy to block DV infection. The peptides were designed based on our previously reported peptide sequence, DN58opt (TWWCFYFCRRHHPFWFFYRHN), to identify minimal effective inhibitory sequence through molecular docking and dynamics studies. The in silico designed peptides were synthesized using conventional Fmoc solid-phase peptide synthesis chemistry, purified by RP-HPLC and characterized using LCMS. Later, they were screened for their antiviral activity. One of the peptides, AC 001, was able to reduce about 40% of DV plaque formation. This observation correlates well with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis - AC 001 showed the most favorable binding affinity through 60 ns simulations. Pairwise residue decomposition analysis has revealed four key residues that contributed to the binding of these peptides into the DV2 E protein pocket. This work identifies the minimal peptide sequence required to inhibit DV replication and explains the behavior observed on an atomic level using computational study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aathe Cangaree Arumugam
- Faculty of Science, Department of Chemistry, DDDRG, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Ahmad Suhail Khazali
- Faculty of Medicine, Department of Molecular Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Faculty of Applied Sciences, Universiti Teknologi Mara, Arau, Perlis, Malaysia
| | - Rohana Yusof
- Faculty of Medicine, Department of Molecular Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Faculty of Science, Department of Chemistry, DDDRG, Universiti Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
16
|
Cardoso WB, Mendanha SA. Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors. J Mol Struct 2020; 1225:129143. [PMID: 32863430 PMCID: PMC7443253 DOI: 10.1016/j.molstruc.2020.129143] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
We consider possible repurposed-drugs candidates against SARS-CoV-2. 10 different HIV protease inhibitors were investigated. In silico simulations were used to study protease inhibitors for SARS-CoV-2.
In this paper we investigate 10 different HIV protease inhibitors (HPIs) as possible repurposed-drugs candidates against SARS-CoV-2. To this end, we execute molecular docking and molecular dynamics simulations. The in silico data demonstrated that, despite their molecular differences, all HPIs presented a similar behavior for the parameters analyzed, with the exception of Nelfinavir that showed better results for most of the molecular dynamics parameters in comparison with the N3 inhibitor.
Collapse
Affiliation(s)
- Wesley B Cardoso
- Instituto de Física, Universidade Federal de Goiás, 74.690-900, Goiânia, Goiás, Brazil
| | - Sebastião A Mendanha
- Instituto de Física, Universidade Federal de Goiás, 74.690-900, Goiânia, Goiás, Brazil
| |
Collapse
|
17
|
Troost B, Smit JM. Recent advances in antiviral drug development towards dengue virus. Curr Opin Virol 2020; 43:9-21. [PMID: 32795907 DOI: 10.1016/j.coviro.2020.07.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/09/2020] [Indexed: 01/29/2023]
Abstract
Despite the high disease burden of dengue virus, there is no approved antiviral treatment or broadly applicable vaccine to treat or prevent dengue virus infection. In the last decade, many antiviral compounds have been identified but only few have been further evaluated in pre-clinical or clinical trials. This review will give an overview of the direct-acting and host-directed antivirals identified to date. Furthermore, important parameters for further development that is, drug properties including efficacy, specificity and stability, pre-clinical animal testing, and combinational drug therapy will be discussed.
Collapse
Affiliation(s)
- Berit Troost
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolanda M Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
18
|
Peptides targeting dengue viral nonstructural protein 1 inhibit dengue virus production. Sci Rep 2020; 10:12933. [PMID: 32737386 PMCID: PMC7395749 DOI: 10.1038/s41598-020-69515-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses manipulate the life cycle in host cells via the use of viral properties and host machineries. Development of antiviral peptides against dengue virus (DENV) infection has previously been concentrated on blocking the actions of viral structural proteins and enzymes in virus entry and viral RNA processing in host cells. In this study, we proposed DENV NS1, which is a multifunctional non-structural protein indispensable for virus production, as a new target for inhibition of DENV infection by specific peptides. We performed biopanning assays using a phage-displayed peptide library and identified 11 different sequences of 12-mer peptides binding to DENV NS1. In silico analyses of peptide-protein interactions revealed 4 peptides most likely to bind to DENV NS1 at specific positions and their association was analysed by surface plasmon resonance. Treatment of Huh7 cells with these 4 peptides conjugated with N-terminal fluorescent tag and C-terminal cell penetrating tag at varying time-of-addition post-DENV infection could inhibit the production of DENV-2 in a time- and dose-dependent manner. The inhibitory effects of the peptides were also observed in other virus serotypes (DENV-1 and DENV-4), but not in DENV-3. These findings indicate the potential application of peptides targeting DENV NS1 as antiviral agents against DENV infection.
Collapse
|
19
|
Anasir MI, Ramanathan B, Poh CL. Structure-Based Design of Antivirals against Envelope Glycoprotein of Dengue Virus. Viruses 2020; 12:v12040367. [PMID: 32225021 PMCID: PMC7232406 DOI: 10.3390/v12040367] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Dengue virus (DENV) presents a significant threat to global public health with more than 500,000 hospitalizations and 25,000 deaths annually. Currently, there is no clinically approved antiviral drug to treat DENV infection. The envelope (E) glycoprotein of DENV is a promising target for drug discovery as the E protein is important for viral attachment and fusion. Understanding the structure and function of DENV E protein has led to the exploration of structure-based drug discovery of antiviral compounds and peptides against DENV infections. This review summarizes the structural information of the DENV E protein with regards to DENV attachment and fusion. The information enables the development of antiviral agents through structure-based approaches. In addition, this review compares the potency of antivirals targeting the E protein with the antivirals targeting DENV multifunctional enzymes, repurposed drugs and clinically approved antiviral drugs. None of the current DENV antiviral candidates possess potency similar to the approved antiviral drugs which indicates that more efforts and resources must be invested before an effective DENV drug materializes.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
| | - Babu Ramanathan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
| | - Chit Laa Poh
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
- Correspondence: ; Tel.: +60-3-7491-8622; Fax: +60-3-5635-8633
| |
Collapse
|
20
|
Ghufran M, Rehman AU, Shah M, Ayaz M, Ng HL, Wadood A. In-silico design of peptide inhibitors of K-Ras target in cancer disease. J Biomol Struct Dyn 2019; 38:5488-5499. [DOI: 10.1080/07391102.2019.1704880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mehreen Ghufran
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ashfaq Ur Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, South Korea
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Pakistan
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
21
|
Comparing AutoDock and Vina in Ligand/Decoy Discrimination for Virtual Screening. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214538] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AutoDock and Vina are two of the most widely used protein–ligand docking programs. The fact that these programs are free and available under an open source license, also makes them a very popular first choice for many users and a common starting point for many virtual screening campaigns, particularly in academia. Here, we evaluated the performance of AutoDock and Vina against an unbiased dataset containing 102 protein targets, 22,432 active compounds and 1,380,513 decoy molecules. In general, the results showed that the overall performance of Vina and AutoDock was comparable in discriminating between actives and decoys. However, the results varied significantly with the type of target. AutoDock was better in discriminating ligands and decoys in more hydrophobic, poorly polar and poorly charged pockets, while Vina tended to give better results for polar and charged binding pockets. For the type of ligand, the tendency was the same for both Vina and AutoDock. Bigger and more flexible ligands still presented a bigger challenge for these docking programs. A set of guidelines was formulated, based on the strengths and weaknesses of both docking program and their limits of validation.
Collapse
|