1
|
Bell GJ, Agnandji ST, Asante KP, Ghansah A, Kamthunzi P, Emch M, Bailey JA. Impacts of Ecology, Parasite Antigenic Variation, and Human Genetics on RTS,S/AS01e Malaria Vaccine Efficacy. CURR EPIDEMIOL REP 2021; 8:79-88. [PMID: 34367877 PMCID: PMC8324449 DOI: 10.1007/s40471-021-00271-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Global malaria elimination has little chance of success without an effective vaccine. The first malaria vaccine, RTS,S/AS01e, demonstrated moderate efficacy against clinical malaria in phase III trials and is undergoing large-scale effectiveness trials in Africa. Importantly, the vaccine did not perform equally well between phase III study sites. Though reasons for the moderate efficacy and this variation are unclear, various mechanisms have been suggested. This review summarizes the recent literature on such mechanisms, with a focus on those involving landscape ecology, parasite antigenic variation, and human host genetic differences. RECENT FINDINGS Transmission intensity may have a role pre- and post-vaccination in modulating immune responses to the vaccine. Furthermore, malaria incidence may "rebound" in vaccinated populations living in high transmission intensity settings. There is growing evidence that both genetic variation in the parasite circumsporozoite protein and variation of human host genetic factors affect RTS,S vaccine efficacy. These genetic factors may be interacting in complex ways to produce variation in the natural and vaccine-induced immune responses that protect against malaria. SUMMARY Due to the modest efficacy of RTS,S/AS01e, the combinations of factors (ecological, parasite, human host) impacting its effectiveness must be clearly understood, as this information will be critical for implementation policy and future vaccine designs.
Collapse
Affiliation(s)
- Griffin J. Bell
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon ,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Michael Emch
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 USA ,Department of Geography, University of North Carolina, Chapel Hill 220 E Cameron Ave, Chapel Hill, NC 27599 USA
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick St, Rm 314B, Providence, RI 02912 USA
| |
Collapse
|
2
|
Pratt-Riccio LR, De Souza Perce-Da-Silva D, Da Costa Lima-Junior J, Pratt Riccio EK, Ribeiro-Alves M, Santos F, Arruda M, Camus D, Druilhe P, Oliveira-Ferreira J, Daniel-Ribeiro CT, Banic DM. Synthetic Antigens Derived from Plasmodium falciparum Sporozoite, Liver, and Blood Stages: Naturally Acquired Immune Response and Human Leukocyte Antigen Associations in Individuals Living in a Brazilian Endemic Area. Am J Trop Med Hyg 2017; 97:1581-1592. [PMID: 29016339 DOI: 10.4269/ajtmh.17-0359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Peptide vaccine strategies using Plasmodium-derived antigens have emerged as an attractive approach against malaria. However, relatively few studies have been conducted with malaria-exposed populations from non-African countries. Herein, the seroepidemiological profile against Plasmodium falciparum of naturally exposed individuals from a Brazilian malaria-endemic area against synthetic peptides derived from vaccine candidates circumsporozoite protein (CSP), liver stage antigen-1 (LSA-1), erythrocyte binding antigen-175 (EBA-175), and merozoite surface protein-3 (MSP-3) was investigated. Moreover, human leukocyte antigen (HLA)-DRB1* and HLA-DQB1* were evaluated to characterize genetic modulation of humoral responsiveness to these antigens. The study was performed using blood samples from 187 individuals living in rural malaria-endemic villages situated near Porto Velho, Rondônia State. Specific IgG and IgM antibodies and IgG subclasses were detected by enzyme-linked immunosorbent assay, and HLA-DRB1* and HLA-DQB1* low-resolution typing was performed by PCR-SSP. All four synthetic peptides were broadly recognized by naturally acquired antibodies. Regarding the IgG subclass profile, only CSP induced IgG1 and IgG3 antibodies, which is an important fact given that the acquisition of protective immunity appears to be associated with the cytophilicity of IgG1 and IgG3 antibodies. HLA-DRB1*11 and HLA-DQB1*7 had the lowest odds of responding to EBA-175. Our results showed that CSP, LSA-1, EBA, and MSP-3 are immunogenic in natural conditions of exposure and that anti-EBA antibody responses appear to be modulated by HLA class II antigens.
Collapse
Affiliation(s)
| | | | | | | | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST/AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Fátima Santos
- Laboratório Central de Saúde Pública (LACEN), Rondônia, Brazil
| | - Mercia Arruda
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fiocruz, Recife, Brazil
| | - Daniel Camus
- Service de Parasitologie-Mycologie, Faculte de Médecine, Lille, France
| | | | | | | | - Dalma Maria Banic
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Zhou F, Xu X, Wu S, Cui X, Fan L, Pan W. Influence of HLA-DRB1 Alleles on the Variations of Antibody Response to Tuberculosis Serodiagnostic Antigens in Active Tuberculosis Patients. PLoS One 2016; 11:e0165291. [PMID: 27788190 PMCID: PMC5082874 DOI: 10.1371/journal.pone.0165291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022] Open
Abstract
Serology-based tests for tuberculosis (TB) diagnosis, though rapid, efficient and easily implemented, have so far shown unsatisfactory levels of sensitivity and specificity, probably due to variations of the antibody response in TB patients. The number and types of seropositive antigens vary from individual to individual. The person-to-person variations of antigen recognition may be linked to genetic polymorphisms of the human leukocyte antigen (HLA) class II alleles. In the present study, we find that there is a significant increase in the frequency of HLA-DRB1*14 (P = 2.5×10−4) among subjects with high antibody response levels compared to those with low antibody levels. HLA-DRB1*15, the most frequent allelic group in the studied active TB population, positively correlates with subjects with low antibody response levels rather than subjects with high antibody response levels (P = 0.005), which indicates the loss of relevant antigens for screening of patients with this allelic group. The potential association between HLA-DRB1 allelic group and individual antigens implies that TB diagnostic yield could be improved by the addition of antigens screened at the proteome scale in infected subjects from the HLA-DRB1*15 allelic group.
Collapse
Affiliation(s)
- Fangbin Zhou
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xindong Xu
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Sijia Wu
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Xiaobing Cui
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
| | - Lin Fan
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- * E-mail: (WP); (LF)
| | - Weiqing Pan
- Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, Shanghai, China
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
- * E-mail: (WP); (LF)
| |
Collapse
|
4
|
Tomaz FMMB, da Cruz Furini AA, Capobianco MP, Póvoa MM, Trindade PCA, Fraga VD, Conceição LM, de Azevedo LR, Oliani SM, Cassiano GC, Cavasini CE, Dos Santos SEB, Machado RLD. Humoral immune responses against the malaria vaccine candidate antigen Plasmodium vivax AMA-1 and IL-4 gene polymorphisms in individuals living in an endemic area of the Brazilian Amazon. Cytokine 2015; 74:273-8. [PMID: 25922277 DOI: 10.1016/j.cyto.2015.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Several studies have recently demonstrated that the immune responses against malaria is governed by different factors, including the genetic components of the host. The IL-4 gene appears to be a strong candidate factor because of its role in the regulation of the Th2 response. The present study investigated the role of IL-4 polymorphisms in the development of IgG antibodies against PvAMA-1 and the IL-4 levels in individuals infected with Plasmodium vivax in a malaria endemic area in the Brazilian Amazon. METHODS The study sample included 83 patients who were diagnosed with P. vivax infection using thick smear and confirmed by nested-PCR. The IL-4 -590C>T and IL-4 -33C>T polymorphisms were genotyped by PCR-RFLP, and the intron 3 VNTR was genotyped by PCR. A standardised ELISA protocol was used to measure the total IgG against PvAMA-1. The cytokine/chemokine levels were measured using a Milliplex multiplex assay (Millipore). All of the subjects were genotyped with 48 ancestry informative markers to determine the proportions of African, European and Amerindian ancestry using STRUCTURE software. RESULTS Of the 83 patients, 60 (73%) produced IgG antibodies against PvAMA-1. A significant decrease in the percentage of respondents was observed among the primo-infected individuals. No significant differences were observed in the frequencies of genotypes and haplotypes among individuals who were positive or negative for IgG antibodies against PvAMA-1. Furthermore, no significant correlation was observed between the IL-4 polymorphisms, antibody levels, IL-4 levels, and parasitemia. CONCLUSIONS This study indicated that the polymorphisms identified in the IL-4 gene are not likely to play a role in the regulation of the antibody response against PvAMA-1 and IL-4 production in vivax malaria.
Collapse
Affiliation(s)
- Franciele Maira Moreira Batista Tomaz
- Microorganism Research Center, Department of Dermatological, Infectious, and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil.
| | - Adriana Antônia da Cruz Furini
- Microorganism Research Center, Department of Dermatological, Infectious, and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil.
| | - Marcela Petrolini Capobianco
- Microorganism Research Center, Department of Dermatological, Infectious, and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil; Júlio de Mesquita Filho, Universidade Estadual Paulista, São José do Rio Preto, São Paulo State, Brazil.
| | | | - Pamella Cristina Alves Trindade
- Microorganism Research Center, Department of Dermatological, Infectious, and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil.
| | - Valéria Daltibari Fraga
- Microorganism Research Center, Department of Dermatological, Infectious, and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil.
| | - Luciana Moran Conceição
- Microorganism Research Center, Department of Dermatological, Infectious, and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil.
| | - Lucas Ribeiro de Azevedo
- Júlio de Mesquita Filho, Universidade Estadual Paulista, São José do Rio Preto, São Paulo State, Brazil.
| | - Sônia Maria Oliani
- Júlio de Mesquita Filho, Universidade Estadual Paulista, São José do Rio Preto, São Paulo State, Brazil.
| | - Gustavo Capatti Cassiano
- Microorganism Research Center, Department of Dermatological, Infectious, and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil; Júlio de Mesquita Filho, Universidade Estadual Paulista, São José do Rio Preto, São Paulo State, Brazil.
| | - Carlos Eugênio Cavasini
- Microorganism Research Center, Department of Dermatological, Infectious, and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil.
| | | | - Ricardo Luiz Dantas Machado
- Microorganism Research Center, Department of Dermatological, Infectious, and Parasitic Diseases, Faculdade de Medicina de São José do Rio Preto, São Paulo, Brazil; Júlio de Mesquita Filho, Universidade Estadual Paulista, São José do Rio Preto, São Paulo State, Brazil; Evandro Chagas Institute, MS/SVS, Ananindeua, Pará, Brazil.
| |
Collapse
|
5
|
Lima-Junior JC, Rodrigues-da-Silva RN, Banic DM, Jiang J, Singh B, Fabrício-Silva GM, Porto LCS, Meyer EVS, Moreno A, Rodrigues MM, Barnwell JW, Galinski MR, de Oliveira-Ferreira J. Influence of HLA-DRB1 and HLA-DQB1 alleles on IgG antibody response to the P. vivax MSP-1, MSP-3α and MSP-9 in individuals from Brazilian endemic area. PLoS One 2012; 7:e36419. [PMID: 22649493 PMCID: PMC3359319 DOI: 10.1371/journal.pone.0036419] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/01/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The antibody response generated during malaria infections is of particular interest, since the production of specific IgG antibodies is required for acquisition of clinical immunity. However, variations in antibody responses could result from genetic polymorphism of the HLA class II genes. Given the increasing focus on the development of subunit vaccines, studies of the influence of class II alleles on the immune response in ethnically diverse populations is important, prior to the implementation of vaccine trials. METHODS AND FINDINGS In this study, we evaluated the influence of HLA-DRB1* and -DQB1* allelic groups on the naturally acquired humoral response from Brazilian Amazon individuals (n = 276) against P. vivax Merozoite Surface Protein-1 (MSP-1), MSP-3α and MSP-9 recombinant proteins. Our results provide information concerning these three P. vivax antigens, relevant for their role as immunogenic surface proteins and vaccine candidates. Firstly, the studied population was heterogeneous presenting 13 HLA-DRB1* and 5 DQB1* allelic groups with a higher frequency of HLA-DRB1*04 and HLA-DQB1*03. The proteins studied were broadly immunogenic in a naturally exposed population with high frequency of IgG antibodies against PvMSP1-19 (86.7%), PvMSP-3 (77%) and PvMSP-9 (76%). Moreover, HLA-DRB1*04 and HLA-DQB1*03 alleles were associated with a higher frequency of IgG immune responses against five out of nine antigens tested, while HLA-DRB1*01 was associated with a high frequency of non-responders to repetitive regions of PvMSP-9, and the DRB1*16 allelic group with the low frequency of responders to PvMSP3 full length recombinant protein. CONCLUSIONS HLA-DRB1*04 alleles were associated with high frequency of antibody responses to five out of nine recombinant proteins tested in Rondonia State, Brazil. These features could increase the success rate of future clinical trials based on these vaccine candidates.
Collapse
Affiliation(s)
- Josué C. Lima-Junior
- Laboratory of Immunoparasitology, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | | | - Dalma M. Banic
- Laboratório de Simulídeos e Oncocercose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Jianlin Jiang
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Balwan Singh
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Gustavo M. Fabrício-Silva
- Histocompatibility and Cryopreservation Laboratory, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Luís C. S. Porto
- Histocompatibility and Cryopreservation Laboratory, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Esmeralda V. S. Meyer
- Laboratório de Simulídeos e Oncocercose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Alberto Moreno
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maurício M. Rodrigues
- Centro de Terapia Celular e Molecular (CTCMol), Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - John W. Barnwell
- Division of Parasitic Diseases, CDC/National Center for Infectious Diseases, Atlanta, Georgia, United States of America
| | - Mary R. Galinski
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | | |
Collapse
|
6
|
Storti-Melo LM, da Costa DR, Souza-Neiras WC, Cassiano GC, Couto VSCD, Póvoa MM, Soares IDS, de Carvalho LH, Arevalo-Herrera M, Herrera S, Rossit ARB, Cordeiro JA, de Mattos LC, Machado RLD. Influence of HLA-DRB-1 alleles on the production of antibody against CSP, MSP-1, AMA-1, and DBP in Brazilian individuals naturally infected with Plasmodium vivax. Acta Trop 2012; 121:152-5. [PMID: 22107686 DOI: 10.1016/j.actatropica.2011.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 09/19/2011] [Accepted: 10/12/2011] [Indexed: 11/16/2022]
Abstract
We evaluated the influence of allelic frequency of the human leukocyte antigen (HLA) -DRB1 on the acquisition of antibody response against malaria sporozoite and merozoite peptides in patients with Plasmodium vivax malaria acquired in endemic areas of Brazil. IgG antibodies were detected by enzyme-linked immunosorbent assay against four peptides of circumsporozoite protein (CSP) (amino, carboxyl, and VK210 and VK247 repeats) and peptides of merozoite surface protein 1 (MSP-1), apical membrane antigen 1 (AMA-1), and Duffy-binding protein (DBP). We found an association between HLA-DR3 and HLA-DR5 alleles and lack of antibody response to CSP amino terminal, as well as an association between HLA-DR3 and the highest antibody response to MSP1 (Pv200L). In conclusion, we suggest a potential regulatory role of the HLA-DRB1 alleles in the production of antibodies to a conserved region of P. vivax CSP and MSP1 in Brazilian population exposed to malaria.
Collapse
Affiliation(s)
- Luciane Moreno Storti-Melo
- Departamento de Biociências, Campus Universitário Prof. Alberto Carvalho, Universidade Federal de Sergipe, Itabaiana, SE, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|