1
|
Kacar M, Al-Hakim A, Savic S. Sequelae of B-Cell Depleting Therapy: An Immunologist's Perspective. BioDrugs 2025; 39:103-130. [PMID: 39680306 DOI: 10.1007/s40259-024-00696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
B-cell depleting therapy (BCDT) has revolutionised the treatment of B-cell malignancies and autoimmune diseases by targeting specific B-cell surface antigens, receptors, ligands, and signalling pathways. This narrative review explores the mechanisms, applications, and complications of BCDT, focusing on the therapeutic advancements since the introduction of rituximab in 1997. Various monoclonal antibodies and kinase inhibitors are examined for their roles in depleting B cells through antibody-dependent and independent mechanisms. The off-target effects, such as hypogammaglobulinemia, infections, and cytokine release syndrome, are discussed, emphasising the need for immunologists to identify and help manage these complications. The increasing prevalence of BCDT has necessitated the involvement of clinical immunologists in addressing treatment-associated immunological abnormalities, including persistent hypogammaglobulinemia and neutropenia. We highlight the importance of considering underlying inborn errors of immunity (IEI) in patients presenting with these complications. Furthermore, we discuss the impact of BCDT on other immune cell populations and the challenges in predicting and managing long-term immunological sequelae. The potential for novel BCDT agents targeting the BAFF/APRIL-TACI/BCMA axis and B-cell receptor signalling pathways to treat autoimmune disorders is also explored, underscoring the rapidly evolving landscape of B-cell targeted therapies.
Collapse
Affiliation(s)
- Mark Kacar
- Department of Allergy, University Clinic Golnik, Golnik, Slovenia
- Department of Allergy and Clinical Immunology, St James' University Hospital, Leeds, UK
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Adam Al-Hakim
- Department of Allergy and Clinical Immunology, St James' University Hospital, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Sinisa Savic
- Department of Allergy and Clinical Immunology, St James' University Hospital, Leeds, UK.
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
- NIHR Leeds Biomedical Research Centre, Leeds, UK.
| |
Collapse
|
2
|
van Stigt AC, Gualtiero G, Cinetto F, Dalm VA, IJspeert H, Muscianisi F. The biological basis for current treatment strategies for granulomatous disease in common variable immunodeficiency. Curr Opin Allergy Clin Immunol 2024; 24:479-487. [PMID: 39431514 PMCID: PMC11537477 DOI: 10.1097/aci.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
PURPOSE OF REVIEW The pathogenesis of granulomatous disease in common variable immunodeficiency (CVID) is still largely unknown, which hampers effective treatment. This review describes the current knowledge on the pathogenesis of granuloma formation in CVID and the biological basis of the current treatment options. RECENT FINDINGS Histological analysis shows that T and B cells are abundantly present in the granulomas that are less well organized and are frequently associated with lymphoid hyperplasia. Increased presence of activation markers such as soluble IL-2 receptor (sIL-2R) and IFN-ɣ, suggest increased Th1-cell activity. Moreover, B-cell abnormalities are prominent in CVID, with elevated IgM, BAFF, and CD21low B cells correlating with granulomatous disease progression. Innate immune alterations, as M2 macrophages and neutrophil dysregulation, indicate chronic inflammation. Therapeutic regimens include glucocorticoids, DMARDs, and biologicals like rituximab. SUMMARY Our review links the biological context of CVID with granulomatous disease or GLILD to currently prescribed therapies and potential targeted treatments.
Collapse
Affiliation(s)
- Astrid C. van Stigt
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Giulia Gualtiero
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED)
- Veneto Institute of Molecular Medicine (VIMM)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| | - Virgil A.S.H. Dalm
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Galant-Swafford J, Catanzaro J, Achcar RD, Cool C, Koelsch T, Bang TJ, Lynch DA, Alam R, Katial RK, Fernández Pérez ER. Approach to diagnosing and managing granulomatous-lymphocytic interstitial lung disease. EClinicalMedicine 2024; 75:102749. [PMID: 39170934 PMCID: PMC11338122 DOI: 10.1016/j.eclinm.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Granulomatous-lymphocytic interstitial lung disease (GLILD) is a lymphoproliferative and granulomatous pulmonary manifestation of primary immune deficiency diseases, notably common variable immunodeficiency (CVID), and is an important contributor of excess morbidity. As with all forms of ILD, the significance of utilizing a multidisciplinary team discussion to enhance diagnostic and treatment confidence of GLILD cannot be overstated. In this review, key clinical, radiological, and pathological features are integrated into a diagnostic algorithm to facilitate a consensus diagnosis. As the evidence for diagnosing and managing patients with GLILD is limited, the viewpoints discussed here are not meant to resolve current controversies. Instead, this review aims to provide a practical framework for diagnosing and evaluating suspected cases and emphasizes the importance of a multidisciplinary approach when caring for GLILD patients.
Collapse
Affiliation(s)
- Jessica Galant-Swafford
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Jason Catanzaro
- Department of Pediatrics, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rosane Duarte Achcar
- Department of Medicine, Division of Pathology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Carlyne Cool
- Department of Pathology, University of Colorado Health Sciences Center, 12605 East 16th Avenue, Denver, CO 80045, USA
| | - Tilman Koelsch
- Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Tami J. Bang
- Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - David A. Lynch
- Department of Radiology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rafeul Alam
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Rohit K. Katial
- Department of Medicine, Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Evans R. Fernández Pérez
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Interstitial Lung Disease Program, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
4
|
Samad A, Wobma H, Casey A. Innovations in the care of childhood interstitial lung disease associated with connective tissue disease and immune-mediated disorders. Pediatr Pulmonol 2024; 59:2321-2337. [PMID: 38837875 DOI: 10.1002/ppul.27068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Childhood interstitial lung disease (chILD) associated with connective tissue and immune mediated disorders is the second most common chILD diagnostic category. As knowledge of the molecular and genetic underpinnings of these rare disorders advances, the recognized clinical spectrum of associated pulmonary manifestations continues to expand. Pulmonary complications of these diseases, including ILD, confer increased risk for morbidity and mortality and contribute to increased complexity for providers tasked with managing the multiple organ systems that can be impacted in these systemic disorders. While pulmonologists play an important role in diagnosis and management of these conditions, thankfully they do not have to work alone. In collaboration with a multidisciplinary team of subspecialists, the pulmonary and other systemic manifestations of these conditions can be managed effectively together. The goal of this review is to familiarize the reader with the classic patterns of chILD and other pulmonary complications associated with primary immune-mediated disorders (monogenic inborn errors of immunity) and acquired systemic autoimmune and autoinflammatory diseases. In addition, this review will highlight current, emerging, and innovative therapeutic strategies and will underscore the important role of multidisciplinary management to improving outcomes for these patients.
Collapse
Affiliation(s)
- Aaida Samad
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Holly Wobma
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Buso H, Discardi C, Bez P, Muscianisi F, Ceccato J, Milito C, Firinu D, Landini N, Jones MG, Felice C, Rattazzi M, Scarpa R, Cinetto F. Sarcoidosis versus Granulomatous and Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency: A Comparative Review. Biomedicines 2024; 12:1503. [PMID: 39062076 PMCID: PMC11275071 DOI: 10.3390/biomedicines12071503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcoidosis and Granulomatous and Lymphocytic Interstitial Lung Diseases (GLILD) are two rare entities primarily characterised by the development of Interstitial Lung Disease (ILD) in the context of systemic immune dysregulation. These two conditions partially share the immunological background and pathologic findings, with granuloma as the main common feature. In this narrative review, we performed a careful comparison between sarcoidosis and GLILD, with an overview of their main similarities and differences, starting from a clinical perspective and ending with a deeper look at the immunopathogenesis and possible target therapies. Sarcoidosis occurs in immunocompetent individuals, whereas GLILD occurs in patients affected by common variable immunodeficiency (CVID). Moreover, peculiar extrapulmonary manifestations and radiological and histological features may help distinguish the two diseases. Despite that, common pathogenetic pathways have been suggested and both these disorders can cause progressive impairment of lung function and variable systemic granulomatous and non-granulomatous complications, leading to significant morbidity, reduced quality of life, and survival. Due to the rarity of these conditions and the extreme clinical variability, there are still many open questions concerning their pathogenesis, natural history, and optimal management. However, if studied in parallel, these two entities might benefit from each other, leading to a better understanding of their pathogenesis and to more tailored treatment approaches.
Collapse
Affiliation(s)
- Helena Buso
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Claudia Discardi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Jessica Ceccato
- Haematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padova, 35124 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35131 Padova, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Nicholas Landini
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 YD, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Carla Felice
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Marcello Rattazzi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| |
Collapse
|
6
|
Khreisat A, Xin V, Dado C. Granulomatous Lymphocyte Interstitial Lung Disease: A Rare Complication of Common Variable Immunodeficiency Managed With Azathioprine and Rituximab. Cureus 2024; 16:e59399. [PMID: 38689676 PMCID: PMC11060838 DOI: 10.7759/cureus.59399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Granulomatous lymphocytic interstitial lung disease (GL-ILD) is a rare, non-infectious pulmonary manifestation of common variable immunodeficiency (CVID). Diagnosing and managing GLILD remains challenging due to its poorly understood pathogenesis and high mortality. We present a complex case of a young female with CVID associated with lung and spinal cord involvement managed with azathioprine and rituximab.
Collapse
Affiliation(s)
- Ali Khreisat
- Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, USA
| | - Vickie Xin
- Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, USA
| | - Christopher Dado
- Pulmonary and Critical Care Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, USA
| |
Collapse
|
7
|
Remiker A, Bolling K, Verbsky J. Common Variable Immunodeficiency. Med Clin North Am 2024; 108:107-121. [PMID: 37951645 DOI: 10.1016/j.mcna.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Common variable immunodeficiency (CVID) is the most common primary immune deficiency characterized by impaired production of specific immunoglobulin. The clinical manifestations are heterogeneous including acquisition of recurrent bacterial infections after a period of wellness, lymphoproliferation, autoimmunity, pulmonary disease, liver disease, enteropathy, granulomas, and an increased risk of malignancy. The etiology of CVID is largely unknown, with a considerable number of patients having an underlying genetic defect causing immune dysregulation. The antibody deficiency found in CVID is treated with lifelong immunoglobulin therapy, which is preventative of the majority of infections when given regularly.
Collapse
Affiliation(s)
- Allison Remiker
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA.
| | - Kristina Bolling
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA
| | - James Verbsky
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA; Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
8
|
Peng XP, Al-Ddafari MS, Caballero-Oteyza A, El Mezouar C, Mrovecova P, Dib SE, Massen Z, Smahi MCE, Faiza A, Hassaïne RT, Lefranc G, Aribi M, Grimbacher B. Next generation sequencing (NGS)-based approach to diagnosing Algerian patients with suspected inborn errors of immunity (IEIs). Clin Immunol 2023; 256:109758. [PMID: 37678716 DOI: 10.1016/j.clim.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
The advent of next-generation sequencing (NGS) technologies has greatly expanded our understanding of both the clinical spectra and genetic landscape of inborn errors of immunity (IEIs). Endogamous populations may be enriched for unique, ancestry-specific disease-causing variants, a consideration that significantly impacts molecular testing and analysis strategies. Herein, we report on the application of a 2-step NGS-based testing approach beginning with targeted gene panels (TGPs) tailored to specific IEI subtypes and reflexing to whole exome sequencing (WES) if negative for Northwest Algerian patients with suspected IEIs. Our overall diagnostic yield of 57% is comparable to others broadly applying short-read NGS to IEI detection, but data from our localized cohort show some similarities and differences from NGS studies performed on larger regional IEI cohorts. This suggests the importance of tailoring diagnostic strategies to local demographics and needs, but also highlights ongoing concerns inherent to the application of genomics for clinical IEI diagnostics.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| | - Moudjahed Saleh Al-Ddafari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - Andres Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany
| | - Chahrazed El Mezouar
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Pavla Mrovecova
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - Saad Eddin Dib
- Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Zoheir Massen
- Pediatric Department, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Algeria
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria; Specialized Mother-Child Hospital of Tlemcen, Department of Neonatology, Faculty of Medicine, University of Tlemcen, Algeria
| | - Alddafari Faiza
- Department of Internal Medicine, Medical Center University of Tlemcen, Faculty of Medicine, University of Tlemcen, Tlemcen, Algeria
| | | | - Gérard Lefranc
- Institute of Human Genetics, UMR 9002 CNRS-University of Montpellier, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Algeria.
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany.
| |
Collapse
|
9
|
Mongkonsritragoon W, Srivastava R, Seth D, Navalpakam A, Poowuttikul P. Non-infectious Pulmonary Complications in Children with Primary Immunodeficiency. Clin Med Insights Pediatr 2023; 17:11795565231196431. [PMID: 37692068 PMCID: PMC10492501 DOI: 10.1177/11795565231196431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
Primary immune deficiency (PID) is a large group of diseases characterized by defective immune function, leading to recurrent infections, and immune dysregulation. Clinical presentations, severity, and complications differ for each disease, based on the components of the immune system that are impacted. When patients with PID present with respiratory symptoms, infections should be initially suspected, investigated, and promptly managed. However, non-infectious complications of PID also frequently occur and can lead to significant morbidity and mortality. They can involve both the upper and lower respiratory systems, resulting in various presentations that mimic infectious diseases. Thus, clinicians should be able to detect these conditions and make an appropriate referral to an immunologist and a pulmonologist for further management. In this article, we use case-based scenarios to review the differential diagnosis, investigation, and multidisciplinary treatment of non-infectious pulmonary complications in patients with primary immune deficiencies.
Collapse
Affiliation(s)
- Wimwipa Mongkonsritragoon
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Ruma Srivastava
- Division of Pulmonary Medicine, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
- Division of Pulmonary Medicine, Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Divya Seth
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Aishwarya Navalpakam
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Pavadee Poowuttikul
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| |
Collapse
|
10
|
Lui VG, Ghosh T, Rymaszewski A, Chen S, Baxter RM, Kong DS, Ghosh D, Routes JM, Verbsky JW, Hsieh EWY. Dysregulated Lymphocyte Antigen Receptor Signaling in Common Variable Immunodeficiency with Granulomatous Lymphocytic Interstitial Lung Disease. J Clin Immunol 2023; 43:1311-1325. [PMID: 37093407 PMCID: PMC10524976 DOI: 10.1007/s10875-023-01485-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE A subset of common variable immunodeficiency (CVID) patients either presents with or develops autoimmune and lymphoproliferative complications, such as granulomatous lymphocytic interstitial lung disease (GLILD), a major cause of morbidity and mortality in CVID. While a myriad of phenotypic lymphocyte derangements has been associated with and described in GLILD, defects in T and B cell antigen receptor (TCR/BCR) signaling in CVID and CVID with GLILD (CVID/GLILD) remain undefined, hindering discovery of biomarkers for disease monitoring, prognostic prediction, and personalized medicine approaches. METHODS To identify perturbations of immune cell subsets and TCR/BCR signal transduction, we applied mass cytometry analysis to peripheral blood mononuclear cells (PBMCs) from healthy control participants (HC), CVID, and CVID/GLILD patients. RESULTS Patients with CVID, regardless of GLILD status, had increased frequency of HLADR+CD4+ T cells, CD57+CD8+ T cells, and CD21lo B cells when compared to healthy controls. Within these cellular populations in CVID/GLILD patients only, engagement of T or B cell antigen receptors resulted in discordant downstream signaling responses compared to CVID. In CVID/GLILD patients, CD21lo B cells showed perturbed BCR-mediated phospholipase C gamma and extracellular signal-regulated kinase activation, while HLADR+CD4+ T cells and CD57+CD8+ T cells displayed disrupted TCR-mediated activation of kinases most proximal to the receptor. CONCLUSION Both CVID and CVID/GLILD patients demonstrate an activated T and B cell phenotype compared to HC. However, only CVID/GLILD patients exhibit altered TCR/BCR signaling in the activated lymphocyte subsets. These findings contribute to our understanding of the mechanisms of immune dysregulation in CVID with GLILD.
Collapse
Affiliation(s)
- Victor G Lui
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA
| | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, USA
| | - Amy Rymaszewski
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shaoying Chen
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Asthma, Allergy, and Clinical Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ryan M Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA
| | - Daniel S Kong
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, USA
| | - John M Routes
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James W Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena W Y Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, 12800 East 19Th Ave, Mail Stop 8333, RC1 North P18-8117, Aurora, CO, 80045, USA.
- Department of Pediatrics, Section of Allergy and Immunology, School of Medicine, University of Colorado, Aurora, CO, USA.
- Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
11
|
Bintalib HM, van de Ven A, Jacob J, Davidsen JR, Fevang B, Hanitsch LG, Malphettes M, van Montfrans J, Maglione PJ, Milito C, Routes J, Warnatz K, Hurst JR. Diagnostic testing for interstitial lung disease in common variable immunodeficiency: a systematic review. Front Immunol 2023; 14:1190235. [PMID: 37223103 PMCID: PMC10200864 DOI: 10.3389/fimmu.2023.1190235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Common variable immunodeficiency related interstitial lung disease (CVID-ILD, also referred to as GLILD) is generally considered a manifestation of systemic immune dysregulation occurring in up to 20% of people with CVID. There is a lack of evidence-based guidelines for the diagnosis and management of CVID-ILD. Aim To systematically review use of diagnostic tests for assessing patients with CVID for possible ILD, and to evaluate their utility and risks. Methods EMBASE, MEDLINE, PubMed and Cochrane databases were searched. Papers reporting information on the diagnosis of ILD in patients with CVID were included. Results 58 studies were included. Radiology was the investigation modality most commonly used. HRCT was the most reported test, as abnormal radiology often first raised suspicion of CVID-ILD. Lung biopsy was used in 42 (72%) of studies, and surgical lung biopsy had more conclusive results compared to trans-bronchial biopsy (TBB). Analysis of broncho-alveolar lavage was reported in 24 (41%) studies, primarily to exclude infection. Pulmonary function tests, most commonly gas transfer, were widely used. However, results varied from normal to severely impaired, typically with a restrictive pattern and reduced gas transfer. Conclusion Consensus diagnostic criteria are urgently required to support accurate assessment and monitoring in CVID-ILD. ESID and the ERS e-GLILDnet CRC have initiated a diagnostic and management guideline through international collaboration. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022276337.
Collapse
Affiliation(s)
- Heba M. Bintalib
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Department of Respiratory Care, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Annick van de Ven
- Departments of Internal Medicine & Allergology, Rheumatology & Clinical Immunology, University Medical Center Groningen, Groningen, Netherlands
| | - Joseph Jacob
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Satsuma Lab, Centre for Medical Image Computing, University College London (UCL), London, United Kingdom
| | - Jesper Rømhild Davidsen
- South Danish Center for Interstitial Lung Diseases (SCILS), Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Børre Fevang
- Centre for Rare Disorders, Division of Paediatric and Adolescent Health, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Leif G. Hanitsch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin, Germany
| | - Marion Malphettes
- Department of Clinic Immunopathology, Hôpital Saint-Louis, Paris, France
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Childrens Hospital, University Medical Center Utrecht (UMC), Utrecht, Netherlands
| | - Paul J. Maglione
- Section of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - John Routes
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Medicine, Microbiology and Immunology, Medical College Wisconsin, Milwaukee, WI, United States
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John R. Hurst
- University College London (UCL) Respiratory, University College London, London, United Kingdom
| |
Collapse
|
12
|
Fevang B. Treatment of inflammatory complications in common variable immunodeficiency (CVID): current concepts and future perspectives. Expert Rev Clin Immunol 2023; 19:627-638. [PMID: 36996348 DOI: 10.1080/1744666x.2023.2198208] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Patients with Common variable immunodeficiency (CVID) have a high frequency of inflammatory complications like autoimmune cytopenias, interstitial lung disease and enteropathy. These patients have poor prognosis and effective, timely and safe treatment of inflammatory complications in CVID are essential, but guidelines and consensus on therapy are often lacking. AREAS COVERED This review will focus on current medical treatment of inflammatory complications in CVID and point out some future perspectives based on literature indexed in PubMed. There are a number of good observational studies and case reports on treatment of specific complications but randomized controlled trials are scarce. EXPERT OPINION In clinical practice, the most urgent issues that need to be addressed are the preferred treatment of GLILD, enteropathy and liver disease. Treating the underlying immune dysregulation and immune exhaustion in CVID is an alternative approach that potentially could alleviate these and other organ-specific inflammatory complications. Therapies of potential interest and wider use in CVID include mTOR-inhibitors like sirolimus, JAK-inhibitors like tofacitinib, the monoclonal IL-12/23 antibody ustekinumab, the anti-BAFF antibody belimumab and abatacept. For all inflammatory complications, there is a need for prospective therapeutic trials, preferably randomized controlled trials, and multi-center collaborations with larger cohorts of patients will be essential.
Collapse
Affiliation(s)
- Børre Fevang
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Mustafa SS, Rider NL, Jolles S. Immunosuppression in Patients With Primary Immunodeficiency-Walking the Line. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:3088-3096. [PMID: 36049628 DOI: 10.1016/j.jaip.2022.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Individuals with primary immunodeficiency (PIDD) experience not only infectious complications but also immune dysregulation leading to autoimmunity, inflammation, and lymphoproliferative manifestations. Management of these complications often requires treatment with additional immunosuppressive medications, which pose an additional risk of infectious complications. Immunosuppression in individuals with PIDD therefore requires careful assessment and consideration of risks and benefits. Medications should be closely monitored, and strategies for risk mitigation of adverse events considered, such as exposure reduction, appropriate vaccination, use of antibiotics/antivirals, and optimization of immunoglobulin replacement therapy. In a subset of individuals who are not tolerating immune modulation or experiencing disease progression despite appropriate interventions, hematopoietic stem-cell transplantation is a management option.
Collapse
Affiliation(s)
- S Shahzad Mustafa
- Rochester Regional Health, Division of Allergy, Immunology, and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, NY; Liberty University College of Osteopathic Medicine and the Liberty Mountain, Chair, Division of Clinical Informatics; Associate Professor of Pediatrics, Allergy-Immunology Medical Group, Rochester, NY.
| | - Nicholas L Rider
- Liberty University College of Osteopathic Medicine and the Liberty Mountain Medical Group, Lynchburg, Va
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
14
|
Yazdanpanah N, Rezaei N. Autoimmune disorders associated with common variable immunodeficiency: prediction, diagnosis, and treatment. Expert Rev Clin Immunol 2022; 18:1265-1283. [PMID: 36197300 DOI: 10.1080/1744666x.2022.2132938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency. Due to the wide spectrum of the CVID manifestations, the differential diagnosis becomes complicated, ends in a diagnostic delay and increased morbidity and mortality rates. Autoimmunity is one of the important complications associated with CVID. While immunoglobulin replacement therapy has considerably decreased the mortality rate in CVID patients, mainly infection-related mortality, other complications such as autoimmunity appeared prevalent and, in some cases, life threatening. AREAS COVERED In this article, genetics, responsible immune defects, autoimmune manifestations in different organs, and the diagnosis and treatment processes in CVID patients are reviewed, after searching the literature about these topics. EXPERT OPINION Considering the many phenotypes of CVID and the fact that it remained undiagnosed until older ages, it is important to include various manifestations of CVID in the differential diagnosis. Due to the different manifestations of CVID, including autoimmune diseases, interdisciplinary collaboration of physicians from different fields is highly recommended, as discussed in the manuscript. Meanwhile, it is important to determine which patients could benefit from genetic diagnostic studies since such studies are not necessary for establishing the diagnosis of CVID.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Cabanero-Navalon MD, Garcia-Bustos V, Forero-Naranjo LF, Baettig-Arriagada EJ, Núñez-Beltrán M, Cañada-Martínez AJ, Forner Giner MJ, Catalán-Cáceres N, Martínez Francés M, Moral Moral P. Integrating Clinics, Laboratory, and Imaging for the Diagnosis of Common Variable Immunodeficiency-Related Granulomatous-Lymphocytic Interstitial Lung Disease. Front Immunol 2022; 13:813491. [PMID: 35281075 PMCID: PMC8906473 DOI: 10.3389/fimmu.2022.813491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Background Granulomatous–lymphocytic interstitial lung disease (GLILD) is a distinct clinic-radio-pathological interstitial lung disease (ILD) that develops in 9% to 30% of patients with common variable immunodeficiency (CVID). Often related to extrapulmonary dysimmune disorders, it is associated with long-term lung damage and poorer clinical outcomes. The aim of this study was to explore the potential use of the integration between clinical parameters, laboratory variables, and developed CT scan scoring systems to improve the diagnostic accuracy of non-invasive tools. Methods A retrospective cross-sectional study of 50 CVID patients was conducted in a referral unit of primary immune deficiencies. Clinical variables including demographics and comorbidities; analytical parameters including immunoglobulin levels, lipid metabolism, and lymphocyte subpopulations; and radiological and lung function test parameters were collected. Baumann’s GLILD score system was externally validated by two observers in high-resolution CT (HRCT) scans. We developed an exploratory predictive model by elastic net and Bayesian regression, assessed its discriminative capacity, and internally validated it using bootstrap resampling. Results Lymphadenopathies (adjusted OR 9.42), splenomegaly (adjusted OR 6.25), Baumann’s GLILD score (adjusted OR 1.56), and CD8+ cell count (adjusted OR 0.9) were included in the model. The larger range of values of the validated Baumann’s GLILD HRCT scoring system gives it greater predictability. Cohen’s κ statistic was 0.832 (95% CI 0.70–0.90), showing high concordance between both observers. The combined model showed a very good discrimination capacity with an internally validated area under the curve (AUC) of 0.969. Conclusion Models integrating clinics, laboratory, and CT scan scoring methods may improve the accuracy of non-invasive diagnosis of GLILD and might even preclude aggressive diagnostic tools such as lung biopsy in selected patients.
Collapse
Affiliation(s)
- Marta Dafne Cabanero-Navalon
- Primary Immune Deficiencies Unit, Department of Internal Medicine of the University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Victor Garcia-Bustos
- Primary Immune Deficiencies Unit, Department of Internal Medicine of the University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | | | - María Núñez-Beltrán
- Primary Immune Deficiencies Unit, Department of Internal Medicine of the University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | | | - Nelly Catalán-Cáceres
- Department of Allergology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | - Pedro Moral Moral
- Primary Immune Deficiencies Unit, Department of Internal Medicine of the University and Polytechnic Hospital La Fe, Valencia, Spain
| |
Collapse
|
16
|
Pulmonary Manifestations of Primary Humoral Deficiencies. Can Respir J 2022; 2022:7140919. [PMID: 35440951 PMCID: PMC9013573 DOI: 10.1155/2022/7140919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 01/13/2023] Open
Abstract
Primary immunodeficiencies are a group of conditions characterized by developmental or functional alterations in the immune system caused by hereditary genetic defects. Primary immunodeficiencies may affect either the innate or the adaptive (humoral and cellular) immune system. Pulmonary complications in primary humoral deficiencies are frequent and varied and are associated with high morbidity and mortality rates. The types of complications include bronchiectasis secondary to recurrent respiratory infections and interstitial pulmonary involvement, which can be associated with autoimmune cytopenias, lymphoproliferation, and a range of immunological manifestations. Early detection is key to timely management. Immunoglobulin replacement therapy reduces the severity of disease, the frequency of exacerbations, and hospital admissions in some primary humoral deficiencies. Therefore, the presence of pulmonary disease with concomitant infectious and/or autoimmune complications should raise suspicion of primary humoral deficiencies and warrants a request for immunoglobulin determination in blood. Once diagnosis is confirmed; early immunoglobulin replacement therapy will improve the course of the disease. Further studies are needed to better understand the pathogenesis of pulmonary disease related to primary humoral deficiencies and favor the development of targeted therapies that improve the prognosis of patients.
Collapse
|
17
|
Chou EY, Pelz BJ, Chiu AM, Soung PJ. All that Wheezes is not Asthma or Bronchiolitis. Crit Care Clin 2022; 38:213-229. [DOI: 10.1016/j.ccc.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Abstract
Over the past 20 years, the rapid evolution in the diagnosis and treatment of primary immunodeficiencies (PI) and the recognition of immune dysregulation as a feature in some have prompted the use of "inborn errors of immunity" (IEI) as a more encompassing term used to describe these disorders [1, 2] . This article aims to review the future of therapy of PI/IEI (referred to IEI throughout this paper). Historically, immune deficiencies have been characterized as monogenic disorders resulting in immune deficiencies affecting T cells, B cells, combination of T and B cells, or innate immune disorders. More recently, immunologists are also recognizing a variety of phenotypes associated with one genotype or similar phenotypes across genotypes and a role for incomplete penetrance or variable expressivity of some genes causing inborn errors of immunity [3]. The IUIS classification of immune deficiencies (IEIs) has evolved over time to include 10 categories, with disorders of immune dysregulation accounting for a new subset, some treatable with small molecule inhibitors or biologics. [1] Until recently, management options were limited to prompt treatment of infections, gammaglobulin replacement, and possibly bone marrow transplant depending on the defect. Available therapies have expanded to include small molecule inhibitors, biologics, gene therapy, and the use of adoptive transfer of virus-specific T cells to fight viral infections in immunocompromised patients. Several significant contributions to the field of clinical immunology have fueled the rapid advancement of therapies over the past two decades. Among these are educational efforts to recruit young immunologists to the field resulting in the growth of a world-wide community of clinicians and investigators interested in rare diseases, efforts to increase awareness of IEI globally contributing to international collaborations, along with advancements in diagnostic genetic testing, newborn screening, molecular biology techniques, gene correction, use of immune modulators, and ex vivo expansion of engineered T cells for therapeutic use. The development and widespread use of newborn screening have helped to identify severe combined immune deficiency (SCID) earlier resulting in better outcomes [4]. Continual improvements and accessibility of genetic sequencing have helped to identify new IEI diseases at an accelerated pace [5]. Advances in gene therapy and bone marrow transplant have made treatments possible in otherwise fatal diseases. Furthermore, the increased awareness of IEI across the world has driven networks of immunologists working together to improve the diagnosis and treatment of these rare diseases. These improvements in the diagnosis and treatment of IEI noted over the past 20 years bring hope for a better future for the IEI community. This paper will review future directions in a few of the newer therapies emerging for IEI. For easy reference, most of the diseases discussed in this paper are briefly described in a summary table, in the order mentioned within the paper (Appendix).
Collapse
Affiliation(s)
- Elena Perez
- Allergy Associates of the Palm Beaches, North Palm Beach, FL, USA.
| |
Collapse
|
19
|
Esenboga S, Oguz B, Cagdas D, Karaatmaca B, Emiralioglu N, Yalcin E, Dogru D, Ozcelik U, Kiper N, Tezcan İ. Respiratory system findings in pediatric patients with primary immunodeficiency. Pediatr Pulmonol 2021; 56:4011-4019. [PMID: 34499824 DOI: 10.1002/ppul.25657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Pulmonary involvement which can be infectious or noninfectious is one of the most frequent complications in patients with primary immunodeficiency (PID). OBJECTIVE The aim of this study is to assess the pulmonary system of the pediatric patients with PID and report the demographical, clinical, and radiological findings regarding the underlying PID. METHODS The present study included pediatric patients who were receiving immunoglobulin replacement therapy (IGRT) for PID (combined immunodeficiency [CVID] (23), common variable immunodeficiency (15), and agamaglobulinemia [10]) so far or newly diagnosed and started IGRT at Hacettepe University Immunology Department, between January 2015 and January 2018. RESULTS A total of 48 patients (60.4% male), aged 9.9 (6.1-14) years were included. Time of delay in the diagnosis of immundeficiency was 2.27 (interquartile range: 1.0-6.75) years. CVID patients exhibited higher respiratory system symptoms, as well as a history of recurrent lung infection and hospitalization. Hilar and mediastinal lymphadenopathies, peribronchial thickening, and bronchiectasis were the most common pulmonary complications and more than three lung lobes were affected in 69%. Among the newly diagnosed patients, bronchiectasis was present in 25% and more than three lobes were affected in 62.5%. Although pulmonary nodules and mediastinal lymphadenopathy were frequently computed tomography findings in our patients, only two patients (4.16%) were diagnosed with interstitial lung disease. CONCLUSION Although bronchiectasis is predominantly reported as a long-term complication in adult patients with PID, half of our pediatric patient cohort with PID had bronchiectasis, even the newly diagnosed patients. Long-term follow-up is needed to assess the extent to which these pulmonary complications that develop in the natural course of the disease can be prevented by IGRT.
Collapse
Affiliation(s)
- Saliha Esenboga
- Division of Immunology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Berna Oguz
- Department of Radiology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Division of Immunology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Betül Karaatmaca
- Department of Allergy and Immunology, Ankara City Hospital, Ankara, Turkey
| | - Nagehan Emiralioglu
- Division of Pulmonology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ebru Yalcin
- Division of Pulmonology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Dogru
- Division of Pulmonology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Uğur Ozcelik
- Division of Pulmonology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Nural Kiper
- Division of Pulmonology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| | - İlhan Tezcan
- Division of Immunology, Department of Pediatrics, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
20
|
Perlman DM, Sudheendra MT, Racilla E, Allen TL, Joshi A, Bhargava M. Granulomatous-Lymphocytic Interstitial Lung Disease Mimicking Sarcoidosis. SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2021; 38:e2021025. [PMID: 34744421 PMCID: PMC8552568 DOI: 10.36141/svdld.v38i3.11114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 11/07/2022]
Abstract
Common variable immunodeficiency (CVID) is one of the most common primary immunodeficiency disorders characterized by hypogammaglobulinemia and inadequate antibody response to immunizations. The impaired antibody response occurs due to the failure of B cells to differentiate into plasma cells resulting in low immunoglobulins levels and increased frequency of infections. Granulomatous and Lymphocytic Interstitial Lung Disease (GLILD) is a non-infectious complication of CVID that is seen in 10-30% of cases. GLILD is a multisystem inflammatory disease involving the lungs, lymph node, liver, spleen and gastrointestinal tract that mimics sarcoidosis. This report describes a series of cases who presented with dyspnea, recurrent respiratory infections or autoimmunity and on further evaluation revealed features suggestive of GLILD. There is very limited understanding of GLILD in terms of clinical presentation, the histo-pathological logical findings, and the diagnostic criteria by itself are limited. A diagnosis of GLILD is established in cases of CVID when there is evidence of lymphoproliferation, cytopenia, autoimmune processes and a lung biopsy demonstrating lymphocytic interstitial pneumonia, follicular bronchiolitis, lymphoid hyperplasia, and/or non-necrotizing granulomas. We review the treatment strategies, including replacement of immunoglobulin and agents targeting B and T lymphocytes. Systematic characterization of GLILD cases and long term follow up studies are sorely needed to understand the natural history of GLILD.
Collapse
Affiliation(s)
- David M Perlman
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine University of Minnesota Medical School, Minneapolis, MN, USA
| | - Muthya Tejasvini Sudheendra
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine University of Minnesota Medical School, Minneapolis, MN, USA
| | - Emilian Racilla
- Department of Lab Medicine and Pathology, University of Minnesota Medical School, Minneapolis MN, USA
| | - Tadashi L Allen
- Department of Radiology, University of Minnesota Medical School, Minneapolis MN, USA
| | - Avni Joshi
- Division of Allergy and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Maneesh Bhargava
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
21
|
Rodina Y, Deripapa E, Shvets O, Mukhina A, Roppelt A, Yuhacheva D, Laberko A, Burlakov V, Abramov D, Tereshchenko G, Novichkova G, Shcherbina A. Rituximab and Abatacept Are Effective in Differential Treatment of Interstitial Lymphocytic Lung Disease in Children With Primary Immunodeficiencies. Front Immunol 2021; 12:704261. [PMID: 34566961 PMCID: PMC8458825 DOI: 10.3389/fimmu.2021.704261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022] Open
Abstract
Background Interstitial lymphocytic lung disease (ILLD), a recently recognized complication of primary immunodeficiencies (PID), is caused by immune dysregulation, abnormal bronchus-associated lymphoid tissue (BALT) hyperplasia, with subsequent progressive loss of pulmonary function. Various modes of standard immunosuppressive therapy for ILLD have been shown as only partially effective. Objectives To retrospectively evaluate the safety and efficacy of abatacept or rituximab in treatment of ILLD in children with PID. Methods 29 children (median age 11 years) with various forms of PID received one of the two therapy regimens predominantly based on the lesions’ immunohistopathology: children with prevalent B-cell lung infiltration received rituximab (n = 16), and those with predominantly T-cell infiltration received abatacept (n = 17). Clinical and radiological symptoms were assessed using a severity scale developed for the study. Results The targeted therapy with abatacept (A) or rituximab (R) enabled long-term control of clinical (A 3.4 ± 1.3 vs. 0.6 ± 0.1; R 2.8 ± 1 vs. 0.7 ± 0.05, p < 0.01) and radiological (A 18.4 ± 3.1 vs. 6.0 ± 2.0; R 30 ± 7.1 vs. 10 ± 1.7, p < 0.01) symptoms of ILLD in both groups and significantly improved patients’ quality of life, as measured by the total scale (TS) score of 57 ± 2.1 in treatment recipients vs. 31.2 ± 1.9 before therapy (p < 0.01). Conclusions ILLD histopathology should be considered when selecting treatment. Abatacept and rituximab are effective and safe in differential treatment of ILLD in children.
Collapse
Affiliation(s)
- Yulia Rodina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - E Deripapa
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - O Shvets
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A Mukhina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A Roppelt
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - D Yuhacheva
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A Laberko
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - V Burlakov
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - D Abramov
- Department of Pathology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - G Tereshchenko
- Department of Radiology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - G Novichkova
- Department of Hematology, Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
22
|
Berbers RM, van der Wal MM, van Montfrans JM, Ellerbroek PM, Dalm VASH, van Hagen PM, Leavis HL, van Wijk F. Chronically Activated T-cells Retain Their Inflammatory Properties in Common Variable Immunodeficiency. J Clin Immunol 2021; 41:1621-1632. [PMID: 34247288 PMCID: PMC8452589 DOI: 10.1007/s10875-021-01084-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 12/04/2022]
Abstract
Purpose Immune dysregulation complications cause significant morbidity and mortality in common variable immunodeficiency (CVID), but the underlying pathophysiology is poorly understood. While CVID is primarily considered a B-cell defect, resulting in the characteristic hypogammaglobulinemia, T-cells may also contribute to immune dysregulation complications. Here, we aim to further characterize T-cell activation and regulation in CVID with immune dysregulation (CVIDid). Methods Flow cytometry was performed to investigate T-cell differentiation, activation and intracellular cytokine production, negative regulators of immune activation, regulatory T-cells (Treg), and homing markers in 12 healthy controls, 12 CVID patients with infections only (CVIDio), and 20 CVIDid patients. Results Both CD4 + and CD8 + T-cells in CVIDid showed an increased activation profile (HLA-DR + , Ki67 + , IFNγ +) when compared to CVIDio, with concomitant upregulation of negative regulators of immune activation PD1, LAG3, CTLA4, and TIGIT. PD1 + and LAG3 + subpopulations contained equal or increased frequencies of cells with the capacity to produce IFNγ, Ki67, and/or GzmB. The expression of PD1 correlated with serum levels of CXCL9, 10, and 11. Treg frequencies were normal to high in CVIDid, but CVIDid Tregs had reduced CTLA-4 expression, especially on CD27 + effector Tregs. Increased migratory capacity to inflamed and mucosal tissue was also observed in CVIDid T-cells. Conclusion CVIDid was characterized by chronic activation of peripheral T-cells with preserved inflammatory potential rather than functional exhaustion, and increased tissue migratory capacity. While Treg numbers were normal in CVIDid Tregs, low levels of CTLA-4 indicate possible Treg dysfunction. Combined studies of T-cell dysfunction and circulating inflammatory proteins may direct future treatment strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01084-6.
Collapse
Affiliation(s)
- Roos-Marijn Berbers
- Department of Rheumatology and Clinical Immunology, University Medical Center and Utrecht University, Utrecht, The Netherlands
| | - M Marlot van der Wal
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Pauline M Ellerbroek
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Immunology, Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Immunology, Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center and Utrecht University, Utrecht, The Netherlands.
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
23
|
Fevang B, Warnatz K, Hurst JR. Editorial: Interstitial Lung Disease in Primary Immunodeficiencies. Front Immunol 2021; 12:699126. [PMID: 34305936 PMCID: PMC8296640 DOI: 10.3389/fimmu.2021.699126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Børre Fevang
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,Centre for Rare Diseases, Oslo University Hospital, Oslo, Norway
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John R Hurst
- UCL Respiratory, University College London, London, United Kingdom
| |
Collapse
|
24
|
Kamimaki C, Yamamoto M, Sawazumi T, Kudo M, Kaneko T. A functionally improved case of obstructive impairment caused by systemic lupus erythematosus. Breathe (Sheff) 2021; 17:200288. [PMID: 34295418 PMCID: PMC8291943 DOI: 10.1183/20734735.0288-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/12/2021] [Indexed: 11/23/2022] Open
Abstract
A 67-year-old Asian woman presented with dyspnoea on exertion and wheezing. She had been diagnosed with systemic lupus erythematosus (SLE) and bronchial asthma at the ages of 42 and 50 years, respectively. Her SLE was stable with the use of 1 mg of daily prednisolone for more than 5 years. To control her bronchial asthma a combination of a low-dose inhaled corticosteroid (ICS) and long-acting β2-agonist (LABA) (125/5 µg of fluticasone/formoterol), 10 mg of montelukast and 400 mg of theophylline were prescribed. She had a smoking history of 28 pack-years and quit smoking at the age of 45 years. Pulmonary lymphoproliferative diseases are often associated with collagen diseases. In addition to treatment of the primary disease, additional treatments may be considered depending on the pathology presented in the case.https://bit.ly/3vKqsls
Collapse
Affiliation(s)
- Chisato Kamimaki
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Masaki Yamamoto
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Tomoe Sawazumi
- Dept of Diagnostic Pathology, Yokohama City University Medical Center, Yokohama, Japan
| | - Makoto Kudo
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Takeshi Kaneko
- Dept of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
25
|
Thoré P, Jaïs X, Savale L, Dorfmuller P, Boucly A, Devilder M, Meyrignac O, Pichon J, Mankikian J, Riou M, Boiffard E, Boissin C, De Groote P, Chabanne C, Gagnadoux F, Bergeron A, Noel N, Sitbon O, Humbert M, Montani D. Pulmonary Hypertension in Patients with Common Variable Immunodeficiency. J Clin Immunol 2021; 41:1549-1562. [PMID: 34110542 DOI: 10.1007/s10875-021-01064-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Common variable immunodeficiency (CVID) is known to cause infectious, inflammatory, and autoimmune manifestations. Pulmonary hypertension (PH) is an unusual complication of CVID with largely unknown characteristics and mechanisms. METHODS We report the clinical, functional, hemodynamics, radiologic and histologic characteristics, and outcomes of CVID-associated PH patients from the French PH Network. RESULTS Ten patients were identified. The median (range) age at CVID diagnosis was 36.5 (4-49) years and the median delay between CVID and PH diagnosis was 12 (0-30) years. CVID-associated PH affected predominantly women (female-to-male ratio 9:1). Most patients were New York Heart Association functional class III with a severe hemodynamic profile and frequent portal hypertension (n = 6). Pulmonary function tests were almost normal in 70% of patients and showed a mild restrictive syndrome in 30% of patients while the diffusing capacity for carbon monoxide was decreased in all but one patient. High-resolution computed tomography found enlarged mediastinal nodes, mild interstitial infiltration with reticulations and nodules. Two patients had a CIVD-interstitial lung disease, and one presented with bronchiectasis. Pathologic assessment of lymph nodes performed in 5 patients revealed the presence of granulomas (n = 5) and follicular lymphoid hyperplasia (n = 3). At last follow-up (median 24.5 months), 9 patients were alive, and one patient died of Hodgkin disease. CONCLUSION PH is a possible complication of CVID whose pathophysiological mechanisms, while still unclear, would be due to the inflammatory nature of CVID. CVID-associated PH presents as precapillary PH with multiple possible causes, acting in concert in some patients: a portal hypertension, a pulmonary vascular remodeling, sometimes a pulmonary parenchymal involvement and occasionally an extrinsic compression by mediastinal lymphadenopathies, which would be consistent with its classification in group 5 of the current PH classification.
Collapse
Affiliation(s)
- Pierre Thoré
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Centre Hospitalier Régional Universitaire (CHRU) de Nancy, Department of Pneumology, Hôpital Brabois, Vandoeuvre-lès-Nancy, France.,INSERM UMR_S 1116 "Défaillance Cardiovasculaire Aigüe Et Chronique", School of Medicine of Nancy, University of Lorraine, Nancy, France
| | - Xavier Jaïs
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,School of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Laurent Savale
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,School of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Peter Dorfmuller
- Department of Pathology, University Hospital of Giessen and Marburg (UKGM), Giessen, Germany
| | - Athénaïs Boucly
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,School of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Matthieu Devilder
- School of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Radiology, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Olivier Meyrignac
- School of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Radiology, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Jérémie Pichon
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,School of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Julie Mankikian
- Centre Hospitalier Régional Universitaire (CHRU) de Tours, Department of Pneumology, Hôpital Bretonneau, Tours, France
| | - Marianne Riou
- Department of Pneumology, Centre Hospitalier Universitaire (CHU) de Strasbourg, Nouvel Hôpital Civil (NHC) de Strasbourg, Strasbourg, France
| | - Emmanuel Boiffard
- Centre Hospitalier Départemental (CHD) de Vendée, Department of Cardiology, Hôpital de La Roche sur Yon, La Roche sur Yon, France
| | - Clément Boissin
- Centre Hospitalier Universitaire (CHU) de Montpellier, Department of Pneumology, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - Pascal De Groote
- Centre Hospitalier Universitaire (CHU) de Lille, Department of Cardiology, Hôpital Albert Calmette, Lille, France.,Inserm U1167, Institut Pasteur de Lille, Lille, France
| | - Céline Chabanne
- Department of Cardiology and Vascular Diseases, Cardio-pneumologic Center, Centre Hospitalier Universitaire (CHU) de Rennes, Rennes, France
| | - Frédéric Gagnadoux
- Department of Pneumology, Centre Hospitalier Universitaire (CHU) D'Angers, Angers, France.,INSERM U1063, School of Medicine, Angers, France
| | - Anne Bergeron
- Université de Paris, Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Pneumology, Hôpital Saint-Louis, Paris, France.,INSERM UMR_S 1153 "Centre de Recherche Épidémiologie Et Statistique Sorbonne Paris Cité (CRESS)", Hôpital Saint-Louis, Paris, France
| | - Nicolas Noel
- School of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Internal Medicine and Immunology, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,UMR INSERM/CEA 1184, Le Kremlin-Bicêtre, France
| | - Olivier Sitbon
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,School of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,School of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France. .,School of Medicine, University Paris-Saclay, Le Kremlin-Bicêtre, France. .,INSERM UMR_S 999 "Pulmonary Hypertension: Pathophysiology and Novel Therapies", Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| |
Collapse
|
26
|
Bode SFN, Rohr J, Müller Quernheim J, Seidl M, Speckmann C, Heinzmann A. Pulmonary granulomatosis of genetic origin. Eur Respir Rev 2021; 30:30/160/200152. [PMID: 33927005 PMCID: PMC9488645 DOI: 10.1183/16000617.0152-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
Granulomatous inflammation of the lung can be a manifestation of different conditions and can be caused by endogenous inflammation or external triggers. A multitude of different genetic mutations can either predispose patients to infections with granuloma-forming pathogens or cause autoinflammatory disorders, both leading to the phenotype of pulmonary granulomatosis. Based on a detailed patient history, physical examination and a diagnostic approach including laboratory workup, pulmonary function tests (PFTs), computed tomography (CT) scans, bronchoscopy with bronchoalveolar lavage (BAL), lung biopsies and specialised microbiological and immunological diagnostics, a correct diagnosis of an underlying cause of pulmonary granulomatosis of genetic origin can be made and appropriate therapy can be initiated. Depending on the underlying disorder, treatment approaches can include antimicrobial therapy, immunosuppression and even haematopoietic stem cell transplantation (HSCT). Patients with immunodeficiencies and autoinflammatory conditions are at the highest risk of developing pulmonary granulomatosis of genetic origin. Here we provide a review on these disorders and discuss pathogenesis, clinical presentation, diagnostic approach and treatment. Pulmonary granulomatosis of genetic origin mostly occurs in immunodeficiency disorders and autoinflammatory conditions. In addition to specific approaches in this regard, the diagnostic workup needs to cover environmental and occupational aspects.https://bit.ly/31SqdHW
Collapse
Affiliation(s)
- Sebastian F N Bode
- Dept of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Rohr
- Dept of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joachim Müller Quernheim
- Dept of Pneumology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilan Seidl
- Institute for Surgical Pathology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Pathology, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Carsten Speckmann
- Centre for Paediatrics and Adolescent Medicine, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Centre for Chronic Immunodeficiency (CCI), Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Heinzmann
- Dept of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Lamers OAC, Smits BM, Leavis HL, de Bree GJ, Cunningham-Rundles C, Dalm VASH, Ho HE, Hurst JR, IJspeert H, Prevaes SMPJ, Robinson A, van Stigt AC, Terheggen-Lagro S, van de Ven AAJM, Warnatz K, van de Wijgert JHHM, van Montfrans J. Treatment Strategies for GLILD in Common Variable Immunodeficiency: A Systematic Review. Front Immunol 2021; 12:606099. [PMID: 33936030 PMCID: PMC8086379 DOI: 10.3389/fimmu.2021.606099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Besides recurrent infections, a proportion of patients with Common Variable Immunodeficiency Disorders (CVID) may suffer from immune dysregulation such as granulomatous-lymphocytic interstitial lung disease (GLILD). The optimal treatment of this complication is currently unknown. Experienced-based expert opinions have been produced, but a systematic review of published treatment studies is lacking. Goals To summarize and synthesize the published literature on the efficacy of treatments for GLILD in CVID. Methods We performed a systematic review using the PRISMA guidelines. Papers describing treatment and outcomes in CVID patients with radiographic and/or histologic evidence of GLILD were included. Treatment regimens and outcomes of treatment were summarized. Results 6124 papers were identified and 42, reporting information about 233 patients in total, were included for review. These papers described case series or small, uncontrolled studies of monotherapy with glucocorticoids or other immunosuppressants, rituximab monotherapy or rituximab plus azathioprine, abatacept, or hematopoietic stem cell transplantation (HSCT). Treatment response rates varied widely. Cross-study comparisons were complicated because different treatment regimens, follow-up periods, and outcome measures were used. There was a trend towards more frequent GLILD relapses in patients treated with corticosteroid monotherapy when compared to rituximab-containing treatment regimens based on qualitative endpoints. HSCT is a promising alternative to pharmacological treatment of GLILD, because it has the potential to not only contain symptoms, but also to resolve the underlying pathology. However, mortality, especially among immunocompromised patients, is high. Conclusions We could not draw definitive conclusions regarding optimal pharmacological treatment for GLILD in CVID from the current literature since quantitative, well-controlled evidence was lacking. While HSCT might be considered a treatment option for GLILD in CVID, the risks related to the procedure are high. Our findings highlight the need for further research with uniform, objective and quantifiable endpoints. This should include international registries with standardized data collection including regular pulmonary function tests (with carbon monoxide-diffusion), uniform high-resolution chest CT radiographic scoring, and uniform treatment regimens, to facilitate comparison of treatment outcomes and ultimately randomized clinical trials.
Collapse
Affiliation(s)
- Olivia A. C. Lamers
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children’s Hospital, Utrecht, Netherlands
| | - Bas M. Smits
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children’s Hospital, Utrecht, Netherlands
- Department of Immunology and Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Helen Louisa Leavis
- Department of Immunology and Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Godelieve J. de Bree
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Division of Clinical Immunology and Department of Pediatrics, Mount Sinai Hospital, New York, NY, United States
| | - Virgil A. S. H. Dalm
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Hsi-en Ho
- Department of Medicine, Division of Clinical Immunology and Department of Pediatrics, Mount Sinai Hospital, New York, NY, United States
| | - John R. Hurst
- UCL Respiratory, University College London, London, United Kingdom
| | - Hanna IJspeert
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Alex Robinson
- UCL Respiratory, University College London, London, United Kingdom
| | - Astrid C. van Stigt
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suzanne Terheggen-Lagro
- Department of Pediatric Pulmonology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Annick A. J. M. van de Ven
- Departments of Rheumatology and Clinical Immunology, Internal Medicine and Allergology, University Medical Center Groningen, Groningen, Netherlands
| | - Klaus Warnatz
- Department of Immunology, Universitätsklinikum Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Division of Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Janneke H. H. M. van de Wijgert
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joris van Montfrans
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children’s Hospital, Utrecht, Netherlands
| |
Collapse
|
28
|
Strunz PP, Fröhlich M, Gernert M, Schwaneck EC, Nagler LK, Kroiss A, Tony HP, Schmalzing M. Rituximab for the Treatment of Common Variable Immunodeficiency (CVID) with Pulmonary and Central Nervous System Involvement. Open Rheumatol J 2021. [DOI: 10.2174/1874312902115010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background:
Granulomatous and lymphocytic interstitial lung disease (GLILD) represents a typical form of pulmonary manifestation of CVID. Except for glucocorticoid- and immunoglobulin-administration, no standardized treatment recommendations exist.
Objective:
To investigate our CVID-patients with GLILD for the applied immunosuppressive regimen, with a focus on rituximab.
Methods:
A retrospective analysis of all CVID-patients for the manifestation and treatment of GLILD at a single German center was performed in this study. For the evaluation of treatment-response, CT-imaging and pulmonary function testing were used.
Results:
50 patients were identified for the diagnosis of a CVID. 12% (n = 6) have radiological and/or histological confirmed diagnosis of a GLILD. Three patients received rituximab in a dose of 2 x 1000mg, separated by 2 weeks repeatedly. All patients showed radiological response and stabilization or improvement of the pulmonary function. Rituximab was used in one patient over 13 years with repeated treatment-response. Furthermore, the synchronic central nervous system-involvement of a GLILD-patient also responded to rituximab-treatment. With sufficient immunoglobulin-replacement-therapy, the occurring infections were manageable without the necessity of intensive care treatment.
Conclusion:
Rituximab might be considered as an effective and relatively safe treatment for CVID-patients with GLILD.
Collapse
|
29
|
Cinetto F, Scarpa R, Carrabba M, Firinu D, Lougaris V, Buso H, Garzi G, Gianese S, Soccodato V, Punziano A, Lagnese G, Tessarin G, Costanzo G, Landini N, Vio S, Bondioni MP, Consonni D, Marasco C, Del Giacco S, Rattazzi M, Vacca A, Plebani A, Fabio G, Spadaro G, Agostini C, Quinti I, Milito C. Granulomatous Lymphocytic Interstitial Lung Disease (GLILD) in Common Variable Immunodeficiency (CVID): A Multicenter Retrospective Study of Patients From Italian PID Referral Centers. Front Immunol 2021. [PMID: 33777011 DOI: 10.3389/fimmu.2021.627423.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Granulomatous and Lymphocytic Interstitial Lung Diseases (GLILD) is a severe non-infectious complication of Common Variable Immunodeficiency (CVID), often associated with extrapulmonary involvement. Due to a poorly understood pathogenesis, GLILD diagnosis and management criteria still lack consensus. Accordingly, it is a relevant cause of long-term loss of respiratory function and is closely associated with a markedly reduced survival. The aim of this study was to describe clinical, immunological, laboratory and functional features of GLILD, whose combination in a predictive model might allow a timely diagnosis. Methods: In a multicenter retrospective cross-sectional study we enrolled 73 CVID patients with radiologic features of interstitial lung disease (ILD) associated to CVID (CVID-ILD) and 125 CVID patients without ILD (controls). Of the 73 CVID-ILD patients, 47 received a definite GLILD diagnosis while 26 received a clinical-radiologic diagnosis of CVID related ILD defined as uILD. Results: In GLILD group we found a higher prevalence of splenomegaly (84.8 vs. 39.2%), autoimmune cytopenia (59.6 vs. 6.4%) and bronchiectasis (72.3 vs. 28%), and lower IgA and IgG serum levels at CVID diagnosis. GLILD patients presented lower percentage of switched-memory B cells and marginal zone B cells, and a marked increase in the percentage of circulating CD21lo B cells (14.2 vs. 2.9%). GLILD patients also showed lower total lung capacity (TLC 87.5 vs. 5.0%) and gas transfer (DLCO 61.5 vs. 5.0%) percent of predicted. By univariate logistic regression analysis, we found IgG and IgA levels at CVID diagnosis, presence of splenomegaly and autoimmune cytopenia, CD21lo B cells percentage, TLC and DCLO percent of predicted to be associated to GLILD. The joint analysis of four variables (CD21lo B cells percentage, autoimmune cytopenia, splenomegaly and DLCO percent of predicted), together in a multiple logistic regression model, yielded an area under the ROC curve (AUC) of 0.98 (95% CI: 0.95-1.0). The AUC was only slightly modified when pooling together GLILD and uILD patients (0.92, 95% CI: 0.87-0.97). Conclusions: we propose the combination of two clinical parameters (splenomegaly and autoimmune cytopenia), one lung function index (DLCO%) and one immunologic variable (CD21lo%) as a promising tool for early identification of CVID patients with interstitial lung disease, limiting the use of aggressive diagnostic procedures.
Collapse
Affiliation(s)
- Francesco Cinetto
- Department of Medicine-DIMED, University of Padova, Padua, Italy.,Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Riccardo Scarpa
- Department of Medicine-DIMED, University of Padova, Padua, Italy.,Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Maria Carrabba
- Internal Medicine Department, Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy.,ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Helena Buso
- Department of Medicine-DIMED, University of Padova, Padua, Italy.,Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Giulia Garzi
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera-Universitaria Policlinico Umberto I, Rome, Italy
| | - Sabrina Gianese
- Department of Medicine-DIMED, University of Padova, Padua, Italy.,Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Valentina Soccodato
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera-Universitaria Policlinico Umberto I, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences-Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences-Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Giulio Tessarin
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy.,ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Nicholas Landini
- Radiology Unit, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Stefania Vio
- Radiology Unit, Azienda Ospedaliera di Padova, Padova, Italy
| | | | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carolina Marasco
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Marcello Rattazzi
- Department of Medicine-DIMED, University of Padova, Padua, Italy.,Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy.,ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giovanna Fabio
- Internal Medicine Department, Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences-Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Carlo Agostini
- Department of Medicine-DIMED, University of Padova, Padua, Italy.,Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
30
|
Abstract
Bronchiolar abnormalities are common and can occur in conditions that affect either the large airways or the more distal parenchyma. In this review, we focus on the diagnosis and management of primary bronchiolar disorders, or conditions in which bronchiolitis is the predominant pathologic process, including constrictive bronchiolitis, follicular bronchiolitis, acute bronchiolitis, respiratory bronchiolitis, and diffuse panbronchiolitis. Due to the nature of abnormalities in the small airway, clinical and physiological changes in bronchiolitis can be subtle, making diagnosis challenging. Primary bronchiolar disorders frequently present with progressive dyspnea and cough that can be out of proportion to imaging and physiologic studies. Pulmonary function tests may be normal, impaired in an obstructive, restrictive, or mixed pattern, or have an isolated decrease in diffusion capacity. High-resolution computed tomography scan is an important diagnostic tool that may demonstrate one or more of the following three patterns: 1) solid centrilobular nodules, often with linear branching opacities (i.e., "tree-in-bud" pattern); 2) ill-defined ground glass centrilobular nodules; and 3) mosaic attenuation on inspiratory images that is accentuated on expiratory images, consistent with geographic air trapping. Bronchiolitis is often missed on standard transbronchial lung biopsies, as the areas of small airway involvement can be patchy. Fortunately, many patients can be diagnosed with a combination of clinical suspicion, inspiratory and expiratory high-resolution computed tomography scans, and pulmonary function testing. Joint consultation of clinicians with both radiologists and pathologists (in cases where histopathology is pursued) is critical to appropriately assess the clinical-radiographic-pathologic context in each individual patient.
Collapse
|
31
|
Lopes JP, Ho HE, Cunningham-Rundles C. Interstitial Lung Disease in Common Variable Immunodeficiency. Front Immunol 2021; 12:605945. [PMID: 33776995 PMCID: PMC7990881 DOI: 10.3389/fimmu.2021.605945] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Interstitial lung disease (ILD) is a common complication in patients with common variable immunodeficiency (CVID) and often associated with other features, such as bronchiectasis and autoimmunity. As the ILD term encompasses different acute and chronic pulmonary conditions, the diagnosis is commonly made based on imaging features; histopathology is less frequently available. From a cohort of 637 patients with CVID followed at our center over 4 decades, we reviewed the data for 46 subjects (30 females, 16 males) who had lung biopsies with proven ILD. They had a median age at CVID diagnosis of 26 years old, with a median IgG level at diagnosis of 285.0 mg/dL with average isotype switched memory B cells of 0.5%. Lung biopsy pathology revealed granulomas in 25 patients (54.4%), lymphoid interstitial pneumonia in 13 patients (28.3%), lymphoid hyperplasia not otherwise specified in 7 patients (15.2%), cryptogenic organizing pneumonia in 7 patients (15.2%), follicular bronchitis in 4 patients (8.7%), and predominance of pulmonary fibrosis in 4 patients (8.7%). Autoimmune manifestations were common and were present in 28 (60.9%) patients. Nine patients (19.6%) died, with a median age at death of 49-years-old. Lung transplant was done in 3 of these patients (6.5%) who are no longer alive. These analyses reveal the high burden of this complication, with almost one-fifth of the group deceased in this period. Further understanding of the causes of the development and progression of ILD in CVID patients is required to define the best management for this patient population.
Collapse
Affiliation(s)
- Joao Pedro Lopes
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, UH University Hospitals Rainbow Babies and Children, Cleveland, OH, United States.,Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hsi-En Ho
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
32
|
Cinetto F, Scarpa R, Carrabba M, Firinu D, Lougaris V, Buso H, Garzi G, Gianese S, Soccodato V, Punziano A, Lagnese G, Tessarin G, Costanzo G, Landini N, Vio S, Bondioni MP, Consonni D, Marasco C, Del Giacco S, Rattazzi M, Vacca A, Plebani A, Fabio G, Spadaro G, Agostini C, Quinti I, Milito C. Granulomatous Lymphocytic Interstitial Lung Disease (GLILD) in Common Variable Immunodeficiency (CVID): A Multicenter Retrospective Study of Patients From Italian PID Referral Centers. Front Immunol 2021; 12:627423. [PMID: 33777011 PMCID: PMC7987811 DOI: 10.3389/fimmu.2021.627423] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Granulomatous and Lymphocytic Interstitial Lung Diseases (GLILD) is a severe non-infectious complication of Common Variable Immunodeficiency (CVID), often associated with extrapulmonary involvement. Due to a poorly understood pathogenesis, GLILD diagnosis and management criteria still lack consensus. Accordingly, it is a relevant cause of long-term loss of respiratory function and is closely associated with a markedly reduced survival. The aim of this study was to describe clinical, immunological, laboratory and functional features of GLILD, whose combination in a predictive model might allow a timely diagnosis. Methods: In a multicenter retrospective cross-sectional study we enrolled 73 CVID patients with radiologic features of interstitial lung disease (ILD) associated to CVID (CVID-ILD) and 125 CVID patients without ILD (controls). Of the 73 CVID-ILD patients, 47 received a definite GLILD diagnosis while 26 received a clinical-radiologic diagnosis of CVID related ILD defined as uILD. Results: In GLILD group we found a higher prevalence of splenomegaly (84.8 vs. 39.2%), autoimmune cytopenia (59.6 vs. 6.4%) and bronchiectasis (72.3 vs. 28%), and lower IgA and IgG serum levels at CVID diagnosis. GLILD patients presented lower percentage of switched-memory B cells and marginal zone B cells, and a marked increase in the percentage of circulating CD21lo B cells (14.2 vs. 2.9%). GLILD patients also showed lower total lung capacity (TLC 87.5 vs. 5.0%) and gas transfer (DLCO 61.5 vs. 5.0%) percent of predicted. By univariate logistic regression analysis, we found IgG and IgA levels at CVID diagnosis, presence of splenomegaly and autoimmune cytopenia, CD21lo B cells percentage, TLC and DCLO percent of predicted to be associated to GLILD. The joint analysis of four variables (CD21lo B cells percentage, autoimmune cytopenia, splenomegaly and DLCO percent of predicted), together in a multiple logistic regression model, yielded an area under the ROC curve (AUC) of 0.98 (95% CI: 0.95-1.0). The AUC was only slightly modified when pooling together GLILD and uILD patients (0.92, 95% CI: 0.87-0.97). Conclusions: we propose the combination of two clinical parameters (splenomegaly and autoimmune cytopenia), one lung function index (DLCO%) and one immunologic variable (CD21lo%) as a promising tool for early identification of CVID patients with interstitial lung disease, limiting the use of aggressive diagnostic procedures.
Collapse
Affiliation(s)
- Francesco Cinetto
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Riccardo Scarpa
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Maria Carrabba
- Internal Medicine Department, Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
- ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Helena Buso
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Giulia Garzi
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera-Universitaria Policlinico Umberto I, Rome, Italy
| | - Sabrina Gianese
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Valentina Soccodato
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera-Universitaria Policlinico Umberto I, Rome, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences—Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences—Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Giulio Tessarin
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
- ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Nicholas Landini
- Radiology Unit, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Stefania Vio
- Radiology Unit, Azienda Ospedaliera di Padova, Padova, Italy
| | | | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carolina Marasco
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
- ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giovanna Fabio
- Internal Medicine Department, Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences—Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Carlo Agostini
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Internal Medicine I, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
33
|
Matson EM, Abyazi ML, Bell KA, Hayes KM, Maglione PJ. B Cell Dysregulation in Common Variable Immunodeficiency Interstitial Lung Disease. Front Immunol 2021; 11:622114. [PMID: 33613556 PMCID: PMC7892472 DOI: 10.3389/fimmu.2020.622114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequently diagnosed primary antibody deficiency. About half of CVID patients develop chronic non-infectious complications thought to be due to intrinsic immune dysregulation, including autoimmunity, gastrointestinal disease, and interstitial lung disease (ILD). Multiple studies have found ILD to be a significant cause of morbidity and mortality in CVID. Yet, the precise mechanisms underlying this complication in CVID are poorly understood. CVID ILD is marked by profound pulmonary infiltration of both T and B cells as well as granulomatous inflammation in many cases. B cell depletive therapy, whether done as a monotherapy or in combination with another immunosuppressive agent, has become a standard of therapy for CVID ILD. However, CVID is a heterogeneous disorder, as is its lung pathology, and the precise patients that would benefit from B cell depletive therapy, when it should administered, and how long it should be repeated all remain gaps in our knowledge. Moreover, some have ILD recurrence after B cell depletive therapy and the relative importance of B cell biology remains incompletely defined. Developmental and functional abnormalities of B cell compartments observed in CVID ILD and related conditions suggest that imbalance of B cell signaling networks may promote lung disease. Included within these potential mechanisms of disease is B cell activating factor (BAFF), a cytokine that is upregulated by the interferon gamma (IFN-γ):STAT1 signaling axis to potently influence B cell activation and survival. B cell responses to BAFF are shaped by the divergent effects and expression patterns of its three receptors: BAFF receptor (BAFF-R), transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA). Moreover, soluble forms of BAFF-R, TACI, and BCMA exist and may further influence the pathogenesis of ILD. Continued efforts to understand how dysregulated B cell biology promotes ILD development and progression will help close the gap in our understanding of how to best diagnose, define, and manage ILD in CVID.
Collapse
Affiliation(s)
- Erik M Matson
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Miranda L Abyazi
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Kayla A Bell
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Kevin M Hayes
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| | - Paul J Maglione
- Pulmonary Center, Section of Pulmonary, Allergy, Sleep & Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, United States
| |
Collapse
|
34
|
von Spee-Mayer C, Echternach C, Agarwal P, Gutenberger S, Soetedjo V, Goldacker S, Warnatz K. Abatacept Use Is Associated with Steroid Dose Reduction and Improvement in Fatigue and CD4-Dysregulation in CVID Patients with Interstitial Lung Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:760-770.e10. [DOI: 10.1016/j.jaip.2020.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
|
35
|
Viallard JF, Lebail B, Begueret H, Fieschi C. [Common variable immunodeficiency disorders: Part 2. Updated clinical manifestations and therapeutic management]. Rev Med Interne 2021; 42:473-481. [PMID: 33516581 DOI: 10.1016/j.revmed.2020.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/04/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Common variable immunodeficiency disorders (CVID) are the most common symptomatic primary antibody deficiency in adults with an estimated prevalence of 1/25,000. The most frequent clinical manifestations are upper respiratory tract infections (including pneumonia, bronchitis, and sinusitis) predominantly with Streptococcus pneumoniae or H. influenzae. However, CVID are complicated in 20 to 30 % of cases of non-infectious manifestations which have been well characterized in recent years. Several complications can be observed including autoimmune, lymphoproliferative, granulomatous or cancerous manifestations involving one or more organs. These complications, mostly antibody-mediated cytopenias, are correlated with a decrease in the number of circulating switched memory B cells. Replacement therapy with polyvalent gammaglobulins has greatly improved the prognosis of these patients but it remains poor in the presence of digestive complications (especially in the case of chronic enteropathy and/or porto-sinusoidal vascular disease), pulmonary complications (bronchiectasis and/or granulomatous lymphocytic interstitial lung disease) and when progression to lymphoma. Much progress is still to be made, in particular on the therapeutic management of non-infectious complications which should benefit in the future from targeted treatments based on knowledge of genetics and immunology.
Collapse
Affiliation(s)
- J F Viallard
- Service de médecine interne et maladies infectieuses, hôpital Haut-Lévêque, CHU de Bordeaux, 5, avenue de Magellan, 33604 Pessac, France; Université de Bordeaux, Bordeaux, France.
| | - B Lebail
- Université de Bordeaux, Bordeaux, France; Service d'anatomopathologie, hôpital Pellegrin, place Amélie-Rabat-Léon, 33076 Bordeaux, France
| | - H Begueret
- Service d'anatomopathologie, CHU Bordeaux, hôpital Haut-Lévêque, 5, avenue de Magellan, 33604 Pessac, France
| | - C Fieschi
- Département d'immunologie, université de Paris, AP-HP, France; INSERM U1126, centre Hayem, hôpital Saint-Louis, Paris, France
| |
Collapse
|
36
|
Ferré EMN, Lionakis MS. An AIREless Breath: Pneumonitis Caused by Impaired Central Immune Tolerance. Front Immunol 2021; 11:609253. [PMID: 33584685 PMCID: PMC7873437 DOI: 10.3389/fimmu.2020.609253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Autoimmune-polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a monogenic disorder caused by biallelic mutations in the AIRE gene, has historically been defined by the development of chronic mucocutaneous candidiasis together with autoimmune endocrinopathies, primarily hypoparathyroidism and adrenal insufficiency. Recent work has drawn attention to the development of life-threatening non-endocrine manifestations such as autoimmune pneumonitis, which has previously been poorly recognized and under-reported. In this review, we present the clinical, radiographic, autoantibody, and pulmonary function abnormalities associated with APECED pneumonitis, we highlight the cellular and molecular basis of the autoimmune attack in the AIRE-deficient lung, and we provide a diagnostic and a therapeutic roadmap for patients with APECED pneumonitis. Beyond APECED, we discuss the relevance and potential broader applicability of these findings to other interstitial lung diseases seen in secondary AIRE deficiency states such as thymoma and RAG deficiency or in common polygenic autoimmune disorders such as idiopathic Sjögren's syndrome.
Collapse
Affiliation(s)
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Fraz MSA, Moe N, Revheim ME, Stavrinou ML, Durheim MT, Nordøy I, Macpherson ME, Aukrust P, Jørgensen SF, Aaløkken TM, Fevang B. Granulomatous-Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency-Features of CT and 18F-FDG Positron Emission Tomography/CT in Clinically Progressive Disease. Front Immunol 2021; 11:617985. [PMID: 33584710 PMCID: PMC7874137 DOI: 10.3389/fimmu.2020.617985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is characterized not only by recurrent bacterial infections, but also autoimmune and inflammatory complications including interstitial lung disease (ILD), referred to as granulomatous-lymphocytic interstitial lung disease (GLILD). Some patients with GLILD have waxing and waning radiologic findings, but preserved pulmonary function, while others progress to end-stage respiratory failure. We reviewed 32 patients with radiological features of GLILD from our Norwegian cohort of CVID patients, including four patients with possible monogenic defects. Nineteen had deteriorating lung function over time, and 13 had stable lung function, as determined by pulmonary function testing of forced vital capacity (FVC), and diffusion capacity of carbon monoxide (DLCO). The overall co-existence of other non-infectious complications was high in our cohort, but the prevalence of these was similar in the two groups. Laboratory findings such as immunoglobulin levels and T- and B-cell subpopulations were also similar in the progressive and stable GLILD patients. Thoracic computer tomography (CT) scans were systematically evaluated and scored for radiologic features of GLILD in all pulmonary segments. Pathologic features were seen in all pulmonary segments, with traction bronchiectasis as the most prominent finding. Patients with progressive disease had significantly higher overall score of pathologic features compared to patients with stable disease, most notably traction bronchiectasis and interlobular septal thickening. 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography/CT (PET/CT) was performed in 17 (11 with progressive and six with stable clinical disease) of the 32 patients and analyzed by quantitative evaluation. Patients with progressive disease had significantly higher mean standardized uptake value (SUVmean), metabolic lung volume (MLV) and total lung glycolysis (TLG) as compared to patients with stable disease. Nine patients had received treatment with rituximab for GLILD. There was significant improvement in pathologic features on CT-scans after treatment while there was a variable effect on FVC and DLCO. Conclusion Patients with progressive GLILD as defined by deteriorating pulmonary function had significantly greater pathology on pulmonary CT and FDG-PET CT scans as compared to patients with stable disease, with traction bronchiectasis and interlobular septal thickening as prominent features.
Collapse
Affiliation(s)
| | - Natasha Moe
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria L Stavrinou
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Michael T Durheim
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Respiratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Ingvild Nordøy
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Magnhild Eide Macpherson
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Silje Fjellgård Jørgensen
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Trond Mogens Aaløkken
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Børre Fevang
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,Centre for Rare Diseases, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
38
|
Ruiz-Alcaraz S, Gayá García-Manso I, Marco-De La Calle FM, García-Mullor MDM, López-Brull H, García-Sevila R. [Granulomatous lymphocytic interstitial lung disease: description of a series of 9 cases]. Med Clin (Barc) 2021; 156:344-348. [PMID: 33478812 DOI: 10.1016/j.medcli.2020.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Granulomatous-lymphocytic interstitial lung disease (GLILD) is one of the most serious non-infectious complications in patients with common variable immunodeficiency (CVID). Its diagnosis and treatment are challenging. OBJECTIVE To analyse the characteristics of Hospital General Universitario de Alicante patients with CVID and GLILD. MATERIAL AND METHODS Descriptive study of patients with CVID and GLILD diagnosed from 2000 to 2020. RESULTS Of the 42 patients with CVID, 9 had GLILD (21%). Mean age at diagnosis of 39 years. Sixty-six percent of the CVID was type MB0. Fifty-five percent had decreased BLs. There was a decrease in DLCO by 89%. Surgical lung biopsy (SLB) was performed in 78%. The most frequent extrapulmonary manifestation was adenopathy (78%). One patient had a heterozygous pathological mutation in the CTLA4 gene. Of the patients, 67% received combined corticosteroid treatment with Rituximab. CONCLUSIONS GLILD is a rare complication of CVID whose diagnosis and treatment are a challenge. Its diagnosis requires a high index of suspicion, therefore a multidisciplinary diagnostic approach and combined treatment could provide a good result in the adult population.
Collapse
Affiliation(s)
- Sandra Ruiz-Alcaraz
- Servicio de Neumología, Hospital General Universitari d'Alacant, Alicante, España.
| | | | | | | | - Helena López-Brull
- Servicio de Neumología, Hospital General Universitari d'Alacant, Alicante, España
| | - Raquel García-Sevila
- Servicio de Neumología, Hospital General Universitari d'Alacant, Alicante, España
| |
Collapse
|
39
|
van Stigt AC, Dik WA, Kamphuis LSJ, Smits BM, van Montfrans JM, van Hagen PM, Dalm VASH, IJspeert H. What Works When Treating Granulomatous Disease in Genetically Undefined CVID? A Systematic Review. Front Immunol 2021; 11:606389. [PMID: 33391274 PMCID: PMC7773704 DOI: 10.3389/fimmu.2020.606389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background Granulomatous disease is reported in at least 8–20% of patients with common variable immunodeficiency (CVID). Granulomatous disease mainly affects the lungs, and is associated with significantly higher morbidity and mortality. In half of patients with granulomatous disease, extrapulmonary manifestations are found, affecting e.g. skin, liver, and lymph nodes. In literature various therapies have been reported, with varying effects on remission of granulomas and related clinical symptoms. However, consensus recommendations for optimal management of extrapulmonary granulomatous disease are lacking. Objective To present a literature overview of the efficacy of currently described therapies for extrapulmonary granulomatous disease in CVID (CVID+EGD), compared to known treatment regimens for pulmonary granulomatous disease in CVID (CVID+PGD). Methods The following databases were searched: Embase, Medline (Ovid), Web-of-Science Core Collection, Cochrane Central, and Google Scholar. Inclusion criteria were 1) CVID patients with granulomatous disease, 2) treatment for granulomatous disease reported, and 3) outcome of treatment reported. Patient characteristics, localization of granuloma, treatment, and association with remission of granulomatous disease were extracted from articles. Results We identified 64 articles presenting 95 CVID patients with granulomatous disease, wherein 117 different treatment courses were described. Steroid monotherapy was most frequently described in CVID+EGD (21 out of 53 treatment courses) and resulted in remission in 85.7% of cases. In CVID+PGD steroid monotherapy was described in 15 out of 64 treatment courses, and was associated with remission in 66.7% of cases. Infliximab was reported in CVID+EGD in six out of 53 treatment courses and was mostly used in granulomatous disease affecting the skin (four out of six cases). All patients (n = 9) treated with anti-TNF-α therapies (infliximab and etanercept) showed remission of extrapulmonary granulomatous disease. Rituximab with or without azathioprine was rarely used for CVID+EGD, but frequently used in CVID+PGD where it was associated with remission of granulomatous disease in 94.4% (17 of 18 treatment courses). Conclusion Although the number of CVID+EGD patients was limited, data indicate that steroid monotherapy often results in remission, and that anti-TNF-α treatment is effective for granulomatous disease affecting the skin. Also, rituximab with or without azathioprine was mainly described in CVID+PGD, and only in few cases of CVID+EGD.
Collapse
Affiliation(s)
- Astrid C van Stigt
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lieke S J Kamphuis
- Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Pulmonary Medicine, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Bas M Smits
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Centre (UMC), Utrecht, Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Rheumatology, Wilhelmina Children's Hospital, University Medical Centre (UMC), Utrecht, Netherlands
| | - P Martin van Hagen
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands
| | - Virgil A S H Dalm
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Division of Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hanna IJspeert
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
40
|
Vandebotermet M, Staels F, Giovannozzi S, Delforge M, Tousseyn T, Steelandt T, Corveleyn A, Meyts I, Maertens J, Yserbyt J, Schrijvers R. A double-edged sword. Breathe (Sheff) 2020; 16:200017. [PMID: 33447267 PMCID: PMC7792833 DOI: 10.1183/20734735.0017-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A 33-year old man presented because of progressive fatigue, loss of appetite and malaise for 2 months. While carrying out his job as a baggage handler at the airport, he noticed exertional dyspnoea (New York Heart Association class II) with a slight nonproductive cough. There was no weight loss or fever, although he mentioned paroxysmal hot flushes. There were no recent infections and his past medical and familial history were negative. The patient denied the use of drugs, nicotine or alcohol, reported no recent travel and had a stable relationship. In medicine, not everything is what it seems and sometimes you need all the pieces of the puzzle in order to complete the diagnosis. This is a case of a disease with two different faces and a review of its respiratory impact.https://bit.ly/2SDKwE5
Collapse
Affiliation(s)
| | - Frederik Staels
- Dept of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Simone Giovannozzi
- Dept of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Michel Delforge
- Dept of Haematology, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Tousseyn
- Dept of Pathology, University Hospitals Leuven, Leuven, Belgium
| | | | - Anniek Corveleyn
- Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Depts of Pediatrics, and Microbiology and Immunology, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Johan Maertens
- Dept of Haematology, University Hospitals Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- Respiratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Dept of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
van de Ven AAJM, Alfaro TM, Robinson A, Baumann U, Bergeron A, Burns SO, Condliffe AM, Fevang B, Gennery AR, Haerynck F, Jacob J, Jolles S, Malphettes M, Meignin V, Milota T, van Montfrans J, Prasse A, Quinti I, Renzoni E, Stolz D, Warnatz K, Hurst JR. Managing Granulomatous-Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency Disorders: e-GLILDnet International Clinicians Survey. Front Immunol 2020; 11:606333. [PMID: 33324422 PMCID: PMC7726128 DOI: 10.3389/fimmu.2020.606333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Granulomatous-lymphocytic interstitial lung disease (GLILD) is a rare, potentially severe pulmonary complication of common variable immunodeficiency disorders (CVID). Informative clinical trials and consensus on management are lacking. Aims The European GLILD network (e-GLILDnet) aims to describe how GLILD is currently managed in clinical practice and to determine the main uncertainties and unmet needs regarding diagnosis, treatment and follow-up. Methods The e-GLILDnet collaborators developed and conducted an online survey facilitated by the European Society for Immunodeficiencies (ESID) and the European Respiratory Society (ERS) between February-April 2020. Results were analyzed using SPSS. Results One hundred and sixty-one responses from adult and pediatric pulmonologists and immunologists from 47 countries were analyzed. Respondents treated a median of 27 (interquartile range, IQR 82-maximum 500) CVID patients, of which a median of 5 (IQR 8-max 200) had GLILD. Most respondents experienced difficulties in establishing the diagnosis of GLILD and only 31 (19%) had access to a standardized protocol. There was little uniformity in diagnostic or therapeutic interventions. Fewer than 40% of respondents saw a definite need for biopsy in all cases or performed bronchoalveolar lavage for diagnostics. Sixty-six percent used glucocorticosteroids for remission-induction and 47% for maintenance therapy; azathioprine, rituximab and mycophenolate mofetil were the most frequently prescribed steroid-sparing agents. Pulmonary function tests were the preferred modality for monitoring patients during follow-up. Conclusions These data demonstrate an urgent need for clinical studies to provide more evidence for an international consensus regarding management of GLILD. These studies will need to address optimal procedures for definite diagnosis and a better understanding of the pathogenesis of GLILD in order to provide individualized treatment options. Non-availability of well-established standardized protocols risks endangering patients.
Collapse
Affiliation(s)
- Annick A. J. M. van de Ven
- Departments of Internal Medicine and Allergology, Rheumatology and Clinical Immunology, University Medical Center Groningen, Netherlands
| | - Tiago M. Alfaro
- Pneumology Unit, Centro Hospital e Universitário de Coimbra, Coimbra, Portugal and Centre of Pneumology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anne Bergeron
- Université de Paris, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint Louis, Paris, France
| | - Siobhan O. Burns
- Institute of Immunity and Transplantation, University College London, Dept of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Alison M. Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Børre Fevang
- Centre for Rare Disorders and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Andrew R. Gennery
- Translational and Clinical Research Institute, Newcastle University and Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Filomeen Haerynck
- Department of Pediatric Pulmonology and Immunology, Centre for Primary Immune deficiency Ghent, PID research lab, Ghent University Hospital, Belgium
| | - Joseph Jacob
- UCL Respiratory, University College London, London, United Kingdom
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Marion Malphettes
- Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Diderot, Paris, France
| | - Véronique Meignin
- Department of Pathology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School and DZL BREATH, and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Renzoni
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, United Kingdom
| | - Daiana Stolz
- Clinic for Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John R. Hurst
- UCL Respiratory, University College London, London, United Kingdom
| |
Collapse
|
42
|
Dhalla F, Lochlainn DJM, Chapel H, Patel SY. Histology of Interstitial Lung Disease in Common Variable Immune Deficiency. Front Immunol 2020; 11:605187. [PMID: 33329602 PMCID: PMC7718002 DOI: 10.3389/fimmu.2020.605187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Interstitial lung disease (ILD) is an important non-infectious complication in several primary immune deficiencies. In common variable immune deficiency (CVID) it is associated with complex clinical phenotypes and adverse outcomes. The histology of ILD in CVID is heterogeneous and mixed patterns are frequently observed within a single biopsy, including non-necrotising granulomatous inflammation, lymphoid interstitial pneumonitis, lymphoid hyperplasia, follicular bronchiolitis, organizing pneumonia, and interstitial fibrosis; ILD has to be differentiated from lymphoma. The term granulomatous-lymphocytic interstitial lung disease (GLILD), coined to describe the histopathological findings within the lungs of patients with CVID with or without multisystem granulomata, is somewhat controversial as pulmonary granulomata are not always present on histology and the nature of infiltrating lymphocytes is variable. In this mini review we summarize the literature on the histology of CVID-related ILD and discuss some of the factors that may contribute to the inter- and intra- patient variability in the histological patterns reported. Finally, we highlight areas for future development. In particular, there is a need for standardization of histological assessments and reporting, together with a better understanding of the immunopathogenesis of CVID-related ILD to resolve the apparent heterogeneity of ILD in this setting and guide the selection of rational targeted therapies in different patients.
Collapse
Affiliation(s)
- Fatima Dhalla
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Dylan J Mac Lochlainn
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Helen Chapel
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Primary Immunodeficiency Unit, Nuffield Department of Medicine and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Smita Y Patel
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Primary Immunodeficiency Unit, Nuffield Department of Medicine and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Berbers RM, Drylewicz J, Ellerbroek PM, van Montfrans JM, Dalm VASH, van Hagen PM, Keller B, Warnatz K, van de Ven A, van Laar JM, Nierkens S, Leavis HL. Targeted Proteomics Reveals Inflammatory Pathways that Classify Immune Dysregulation in Common Variable Immunodeficiency. J Clin Immunol 2020; 41:362-373. [PMID: 33190167 PMCID: PMC7858548 DOI: 10.1007/s10875-020-00908-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Patients with common variable immunodeficiency (CVID) can develop immune dysregulation complications such as autoimmunity, lymphoproliferation, enteritis, and malignancy, which cause significant morbidity and mortality. We aimed to (i) assess the potential of serum proteomics in stratifying patients with immune dysregulation using two independent cohorts and (ii) identify cytokine and chemokine signaling pathways that underlie immune dysregulation in CVID. A panel of 180 markers was measured in two multicenter CVID cohorts using Olink Protein Extension Assay technology. A classification algorithm was trained to distinguish CVID with immune dysregulation (CVIDid, n = 14) from CVID with infections only (CVIDio, n = 16) in the training cohort, and validated on a second testing cohort (CVIDid n = 23, CVIDio n = 24). Differential expression in both cohorts was used to determine relevant signaling pathways. An elastic net classifier using MILR1, LILRB4, IL10, IL12RB1, and CD83 could discriminate between CVIDid and CVIDio patients with a sensitivity of 0.83, specificity of 0.75, and area under the curve of 0.73 in an independent testing cohort. Activated pathways (fold change > 1.5, FDR-adjusted p < 0.05) in CVIDid included Th1 and Th17-associated signaling, as well as IL10 and other immune regulatory markers (LAG3, TNFRSF9, CD83). Targeted serum proteomics provided an accurate and reproducible tool to discriminate between patients with CVIDid and CVIDio. Cytokine profiles provided insight into activation of Th1 and Th17 pathways and indicate a possible role for chronic inflammation and exhaustion in immune dysregulation. These findings serve as a first step towards the development of biomarkers for immune dysregulation in CVID.
Collapse
Affiliation(s)
- Roos-Marijn Berbers
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Julia Drylewicz
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Pauline M Ellerbroek
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Clinical Immunology; Department of Immunology; Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Clinical Immunology; Department of Immunology; Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annick van de Ven
- Departments of Internal Medicine and Allergology, Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
| | - Jaap M van Laar
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Helen L Leavis
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
44
|
López A, Paolini M, Fernández Romero D. Lung disease in patients with common variable immunodeficiency. Allergol Immunopathol (Madr) 2020; 48:720-728. [PMID: 32446785 DOI: 10.1016/j.aller.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Common Variable Immunodeficiency (CVID) is characterized by an impaired antibody production and a higher susceptibility to encapsulated bacterial infections. Lung disease is considered to be the most important cause of morbidity and mortality. METHODS We analyzed clinical, radiological and functional characteristics in 80 patients with CVID assisted in the Unidad Inmunologia e Histocompatibilidad at Durand Hospital from 1982 to 2018. RESULTS Of the 80 patients, 55 showed pathologic lung Computed Tomography (CT). Twenty of them (36.4%) showed bronchiectasis; 26 (47.3%) interstitial involvement associated with nodules and adenopathies called GLILD (granulomatous-lymphocytic interstitial lung disease); and nine patients (16.3%) showed other lesions. Nine percent of patients with lung disease showed CT progression; none of them had spirometry worsening. GLILD patients had normal and restrictive patterns in lung function tests, in equal proportions. Two patients - one with GLILD and the other one with bronchiectasis - had an increase in spirometric pattern severity without CT progression. Lung biopsy was performed in 19% of GLILD patients, all of whom had histopathologic diagnosis of Lymphoid Interstitial Pneumonia (LIP). CONCLUSIONS GLILD is the major cause of lung disease in CVID. Computed tomography is useful for diagnosis but not necessary in follow-up, in which functional tests should have better correlation with clinical evolution, reducing radiation exposure. Biopsy should be indicated when the clinical diagnosis is unclear. Treatment should be considered whenever there is clear evidence of disease progression.
Collapse
|
45
|
Meerburg JJ, Hartmann IJC, Goldacker S, Baumann U, Uhlmann A, Andrinopoulou ER, Kemner V/D Corput MPC, Warnatz K, Tiddens HAWM. Analysis of Granulomatous Lymphocytic Interstitial Lung Disease Using Two Scoring Systems for Computed Tomography Scans-A Retrospective Cohort Study. Front Immunol 2020; 11:589148. [PMID: 33193417 PMCID: PMC7662109 DOI: 10.3389/fimmu.2020.589148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/05/2020] [Indexed: 01/16/2023] Open
Abstract
Background Granulomatous lymphocytic interstitial lung disease (GLILD) is present in about 20% of patients with common variable immunodeficiency disorders (CVID). GLILD is characterized by nodules, reticulation, and ground-glass opacities on CT scans. To date, large cohort studies that include sensitive CT outcome measures are lacking, and severity of structural lung disease remains unknown. The aim of this study was to introduce and compare two scoring methods to phenotype CT scans of GLILD patients. Methods Patients were enrolled in the “Study of Interstitial Lung Disease in Primary Antibody Deficiency” (STILPAD) international cohort. Inclusion criteria were diagnosis of both CVID and GLILD, as defined by the treating immunologist and radiologist. Retrospectively collected CT scans were scored systematically with the Baumann and Hartmann methods. Results In total, 356 CT scans from 138 patients were included. Cross-sectionally, 95% of patients met a radiological definition of GLILD using both methods. Bronchiectasis was present in 82% of patients. Inter-observer reproducibility (intraclass correlation coefficients) of GLILD and airway disease were 0.84 and 0.69 for the Hartmann method and 0.74 and 0.42 for the Baumann method. Conclusions In both the Hartmann and Baumann scoring method, the composite score GLILD was reproducible and therefore might be a valuable outcome measure in future studies. Overall, the reproducibility of the Hartmann method appears to be slightly better than that of the Baumann method. With a systematic analysis, we showed that GLILD patients suffer from extensive lung disease, including airway disease. Further validation of these scoring methods should be performed in a prospective cohort study involving routine collection of standardized CT scans. Clinical Trial Registration https://www.drks.de, identifier DRKS00000799.
Collapse
Affiliation(s)
- Jennifer J Meerburg
- Department of Paediatric Pulmonology and Allergology, Sophia Children's Hospital-Erasmus Medical Center, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
| | - Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Annette Uhlmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Mariette P C Kemner V/D Corput
- Department of Paediatric Pulmonology and Allergology, Sophia Children's Hospital-Erasmus Medical Center, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
| | - Harm A W M Tiddens
- Department of Paediatric Pulmonology and Allergology, Sophia Children's Hospital-Erasmus Medical Center, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
46
|
Hanitsch L, Baumann U, Boztug K, Burkhard-Meier U, Fasshauer M, Habermehl P, Hauck F, Klock G, Liese J, Meyer O, Müller R, Pachlopnik-Schmid J, Pfeiffer-Kascha D, Warnatz K, Wehr C, Wittke K, Niehues T, von Bernuth H. Treatment and management of primary antibody deficiency: German interdisciplinary evidence-based consensus guideline. Eur J Immunol 2020; 50:1432-1446. [PMID: 32845010 DOI: 10.1002/eji.202048713] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/25/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
This evidence-based clinical guideline provides consensus-recommendations for the treatment and care of patients with primary antibody deficiencies (PADs). The guideline group comprised 20 clinical and scientific expert associations of the German, Swiss, and Austrian healthcare system and representatives of patients. Recommendations were based on results of a systematic literature search, data extraction, and evaluation of methodology and study quality in combination with the clinical expertise of the respective representatives. Consensus-based recommendations were determined via nominal group technique. PADs are the largest clinically relevant group of primary immunodeficiencies. Most patients with PADs present with increased susceptibility to infections, however immune dysregulation, autoimmunity, and cancer affect a significant number of patients and may precede infections. This guideline therefore covers interdisciplinary clinical and therapeutic aspects of infectious (e.g., antibiotic prophylaxis, management of bronchiectasis) and non-infectious manifestations (e.g., management of granulomatous disease, immune cytopenia). PADs are grouped into disease entities with definitive, probable, possible, or unlikely benefit of IgG-replacement therapy. Summary and consensus-recommendations are provided for treatment indication, dosing, routes of administration, and adverse events of IgG-replacement therapy. Special aspects of concomitant impaired T-cell function are highlighted as well as clinical data on selected monogenetic inborn errors of immunity formerly classified into PADs (APDS, CTLA-4-, and LRBA-deficiency).
Collapse
Affiliation(s)
- Leif Hanitsch
- Institute for Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Department of Pediatrics and Adolescent Medicine and St. Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Maria Fasshauer
- ImmunoDeficiencyCenter Leipzig (IDCL), Hospital St. Georg gGmbH Leipzig, Academic Teaching Hospital of the University of Leipzig, Leipzig, Germany
| | | | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gerd Klock
- Technische Universität Darmstadt, Clemens-Schöpf-Institut für Organische Chemie & Biochemie, Darmstadt, Germany
| | - Johannes Liese
- Pediatric Immunology, Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Oliver Meyer
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rainer Müller
- Klinik und Poliklinik für HNO-Heilkunde, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Jana Pachlopnik-Schmid
- Division of Immunology, University Children's Hospital Zurich and University of Zurich, Switzerland
| | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Wehr
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kirsten Wittke
- Institute for Medical Immunology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Tim Niehues
- Department of Pediatrics, Helios Klinikum Krefeld, Krefeld, Germany
| | - Horst von Bernuth
- Department of Immunology, Labor Berlin Charité - Vivantes GmbH, Berlin, Germany.,Berlin Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Doan J, Rao N, Kurman JS, Routes JM, Benn BS. Granulomatous and lymphocytic interstitial lung disease diagnosed by transbronchial lung cryobiopsy. Cryobiology 2020; 97:231-234. [PMID: 32810518 DOI: 10.1016/j.cryobiol.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/18/2023]
Abstract
Granulomatous and lymphocytic interstitial lung disease is a pulmonary complication of common variable immune deficiency with significant morbidity and increased mortality. Diagnosis has historically been obtained by surgical lung biopsy as transbronchial biopsy typically yields insufficient tissue for definitive diagnosis from a disease process with a patchy distribution. However, the potential for significant morbidity and mortality with surgical lung biopsy exists, necessitating the development of alternative diagnostic approaches. We present a case of granulomatous and lymphocytic interstitial lung disease confirmed through minimally invasive transbronchial lung cryobiopsy and discuss the role of this modality in diagnosing interstitial lung disease.
Collapse
Affiliation(s)
- John Doan
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nagarjun Rao
- Department of Pathology, Aurora Clinical Laboratories/Great Lakes Pathologists, Aurora West Allis Medical Center, West Allis, WI, USA
| | - Jonathan S Kurman
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John M Routes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bryan S Benn
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
48
|
Verbsky JW, Hintermeyer MK, Simpson PM, Feng M, Barbeau J, Rao N, Cool CD, Sosa-Lozano LA, Baruah D, Hammelev E, Busalacchi A, Rymaszewski A, Woodliff J, Chen S, Bausch-Jurken M, Routes JM. Rituximab and antimetabolite treatment of granulomatous and lymphocytic interstitial lung disease in common variable immunodeficiency. J Allergy Clin Immunol 2020; 147:704-712.e17. [PMID: 32745555 DOI: 10.1016/j.jaci.2020.07.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Granulomatous and lymphocytic interstitial lung disease (GLILD) is a life-threatening complication in patients with common variable immunodeficiency (CVID), but the optimal treatment is unknown. OBJECTIVE Our aim was to determine whether rituximab with azathioprine or mycophenolate mofetil improves the high-resolution computed tomography (HRCT) chest scans and/or pulmonary function test results in patients with CVID and GLILD. METHODS A retrospective chart review of clinical and laboratory data on 39 patients with CVID and GLILD who completed immunosuppressive therapy was performed. Chest HRCT scans, performed before therapy and after the conclusion of therapy, were blinded, randomized, and scored independently by 2 radiologists. Differences between pretreatment and posttreatment HRCT scan scores, pulmonary function test results, and lymphocyte subsets were analyzed. Whole exome sequencing was performed on all patients. RESULTS Immunosuppressive therapy improved patients' HRCT scan scores (P < .0001), forced vital capacity (P = .0017), FEV1 (P = .037), and total lung capacity (P = .013) but not their lung carbon monoxide diffusion capacity (P = .12). Nine patients relapsed and 6 completed retreatment, with 5 of 6 of these patients (83%) having improved HRCT scan scores (P = .063). Relapse was associated with an increased number of B cells (P = .016) and activated CD4 T cells (P = .016). Four patients (10%) had pneumonia while undergoing active treatment, and 2 patients (5%) died after completion of therapy. Eight patients (21%) had a damaging mutation in a gene known to predispose (TNFRSF13B [n = 3]) or cause a CVID-like primary immunodeficiency (CTLA4 [n = 2], KMT2D [n = 2], or BIRC4 [n = 1]). Immunosuppression improved the HRCT scan scores in patients with (P = .0078) and without (P < .0001) a damaging mutation. CONCLUSIONS Immunosuppressive therapy improved the radiographic abnormalities and pulmonary function of patients with GLILD. A majority of patients had sustained remissions.
Collapse
Affiliation(s)
- James W Verbsky
- Division of Pediatric Rheumatology, Medical College Wisconsin, Milwaukee, Wis; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis
| | - Mary K Hintermeyer
- Asthma, Allergy and Clinical Immunology, Children's Wisconsin, Milwaukee, Wis
| | - Pippa M Simpson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Department of Quantitative Health Sciences, Medical College Wisconsin, Milwaukee, Wis
| | - Mingen Feng
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Department of Quantitative Health Sciences, Medical College Wisconsin, Milwaukee, Wis
| | - Jody Barbeau
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Department of Quantitative Health Sciences, Medical College Wisconsin, Milwaukee, Wis
| | - Nagarjun Rao
- Department of Pathology, Aurora Clinical Laboratories/Great Lakes Pathologists, Aurora West Allis Medical Center, West Allis, Wis
| | - Carlyne D Cool
- Department of Pathology and Division of Pulmonary and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo; National Jewish Health, Denver, Colo
| | - Luis A Sosa-Lozano
- Division of Diagnostic Radiology, Medical College of Wisconsin, Milwaukee, Wis
| | - Dhiraj Baruah
- Division of Thoracic Radiology, Medical University of South Carolina, Charleston, SC
| | - Erin Hammelev
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Alyssa Busalacchi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Amy Rymaszewski
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Jeff Woodliff
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Shaoying Chen
- Division of Pediatric Rheumatology, Medical College Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Mary Bausch-Jurken
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - John M Routes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis.
| |
Collapse
|
49
|
Beaton TJ, Gillis D, Morwood K, Bint M. Granulomatous lymphocytic interstitial lung disease: limiting immunosuppressive therapy-a single-centre experience. Respirol Case Rep 2020; 8:e00565. [PMID: 32377343 PMCID: PMC7199072 DOI: 10.1002/rcr2.565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023] Open
Abstract
Granulomatous lymphocytic interstitial lung disease (GLILD) is characterized by lymphocytic and granulomatous pulmonary infiltration occurring in common variable immunodeficiency (CVID). It is associated with increased mortality compared with CVID patients without GLILD. There are no treatment guidelines due to the low prevalence and the heterogeneity of the condition. A case review of three patients diagnosed with GLILD was performed from a single Australian centre. Patients met the European Society of Immunodeficiency criteria for CVID and a diagnosis of GLILD was confirmed by a multidisciplinary team. Patients were managed with immunoglobulin (Ig) replacement and immunosuppressive agents if required: the decision for immunosuppression was made on the basis of symptoms and declining pulmonary function. All patients clinically improved. One patient had immunosuppressive treatment ceased. GLILD responds to varying immunosuppressive regimes when IgG monotherapy fails. Immunosuppressive therapy can be discontinued following improvement, but patients require close observation. This series helps inform future GLILD treatment guidelines.
Collapse
Affiliation(s)
- Thomas J. Beaton
- Department of Clinical Immunology and AllergySunshine Coast University HospitalBirtinyaQLDAustralia
| | - David Gillis
- Department of Clinical Immunology and AllergySunshine Coast University HospitalBirtinyaQLDAustralia
| | - Karen Morwood
- Department of Clinical Immunology and AllergySunshine Coast University HospitalBirtinyaQLDAustralia
| | - Michael Bint
- Department of Respiratory MedicineSunshine Coast University HospitalBirtinyaQLDAustralia
| |
Collapse
|
50
|
Maglione PJ. Chronic Lung Disease in Primary Antibody Deficiency: Diagnosis and Management. Immunol Allergy Clin North Am 2020; 40:437-459. [PMID: 32654691 DOI: 10.1016/j.iac.2020.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic lung disease is a complication of primary antibody deficiency (PAD) associated with significant morbidity and mortality. Manifestations of lung disease in PAD are numerous. Thoughtful application of diagnostic approaches is imperative to accurately identify the form of disease. Much of the treatment used is adapted from immunocompetent populations. Recent genomic and translational medicine advances have led to specific treatments. As chronic lung disease has continued to affect patients with PAD, we hope that continued advancements in our understanding of pulmonary pathology will ultimately lead to effective methods that alleviate impact on quality of life and survival.
Collapse
Affiliation(s)
- Paul J Maglione
- Pulmonary Center, Boston University School of Medicine, 72 East Concord Street, R304, Boston, MA 02118, USA.
| |
Collapse
|