1
|
Klippel C, Park J, Sandin S, Winstone TML, Chen X, Orton D, Singh A, Hill JD, Shahbal TK, Hamacher E, Officer B, Thompson J, Duong P, Grotzer T, Hahn SH. Advancing Newborn Screening in Washington State: A Novel Multiplexed LC-MS/MS Proteomic Assay for Wilson Disease and Inborn Errors of Immunity. Int J Neonatal Screen 2025; 11:6. [PMID: 39846592 PMCID: PMC11755445 DOI: 10.3390/ijns11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
For many genetic disorders, there are no specific metabolic biomarkers nor analytical methods suitable for newborn population screening, even where highly effective preemptive treatments are available. The direct measurement of signature peptides as a surrogate marker for the protein in dried blood spots (DBSs) has been shown to successfully identify patients with Wilson Disease (WD) and three life-threatening inborn errors of immunity, X-linked agammaglobulinemia (XLA), Wiskott-Aldrich syndrome (WAS), and adenosine deaminase deficiency (ADAD). A novel proteomic-based multiplex assay to detect these four conditions from DBS using high-throughput LC-MS/MS was developed and validated. The clinical validation results showed that the assay can accurately identify patients of targeted disorders from controls. Additionally, 30,024 newborn DBS samples from the Washington State Department of Health Newborn Screening Laboratory have been screened from 2022 to 2024. One true presumptive positive case of WD was found along with three false positive cases. Five false positives for WAS were detected, but all of them were premature and/or low-birth-weight babies and four of them had insufficient DNA for confirmation. The pilot study demonstrates the feasibility and effectiveness of utilizing this multiplexed proteomic assay for newborn screening.
Collapse
Affiliation(s)
- Claire Klippel
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
| | - Jiwoon Park
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
| | - Sean Sandin
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
| | - Tara M. L. Winstone
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada; (T.M.L.W.); (X.C.); (D.O.)
| | - Xue Chen
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada; (T.M.L.W.); (X.C.); (D.O.)
| | - Dennis Orton
- Alberta Precision Laboratories, Calgary, AB T2L 2K8, Canada; (T.M.L.W.); (X.C.); (D.O.)
| | - Aranjeet Singh
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Jonathan D. Hill
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Tareq K. Shahbal
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Emily Hamacher
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Brandon Officer
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - John Thompson
- Washington State Department of Health Newborn Screening Laboratories, Seattle, WA 98155, USA; (A.S.); (J.D.H.); (T.K.S.); (E.H.); (B.O.); (J.T.)
| | - Phi Duong
- Seattle Children’s Research Institute, Seattle, WA 98105, USA; (P.D.); (T.G.)
| | - Tim Grotzer
- Seattle Children’s Research Institute, Seattle, WA 98105, USA; (P.D.); (T.G.)
| | - Si Houn Hahn
- Key Proteo, Inc., Seattle, WA 98122, USA; (C.K.); (J.P.); (S.S.)
- Seattle Children’s Research Institute, Seattle, WA 98105, USA; (P.D.); (T.G.)
| |
Collapse
|
2
|
Santisteban I, Arredondo-Vega FX, Bali P, Dalgic B, Lee HH, Kim M, Hermanson J, Tarrant TK, Hershfield MS. Evolving spectrum of adenosine deaminase (ADA) deficiency: Assessing genotype pathogenicity according to expressed ADA activity of 46 variants. J Allergy Clin Immunol 2025; 155:166-175. [PMID: 39182630 DOI: 10.1016/j.jaci.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Deficiency of adenosine deaminase (ADA or ADA1) has broad clinical and genetic heterogeneity. Screening techniques can identify asymptomatic infants whose phenotype and prognosis are indeterminate, and who may carry ADA variants of unknown significance. OBJECTIVE We systematically assessed the pathogenic potential of rare ADA missense variants to better define the relationship of genotype to red blood cell (RBC) total deoxyadenosine nucleotide (dAXP) content and to phenotype. METHODS We expressed 46 ADA missense variants in the ADA-deficient SØ3834 strain of Escherichia coli and defined genotype categories (GCs) ranked I to IV by increasing expressed ADA activity. We assessed relationships among GC rank, RBC dAXP, and phenotype in 58 reference patients with 50 different genotypes. We used our GC ranking system to benchmark AlphaMissense for predicting variant pathogenicity, and we used a minigene assay to identify exonic splicing variants in ADA exon 9. RESULTS The 46 missense variants expressed ∼0.001% to ∼70% of wild-type ADA activity (40% had <0.05% of wild-type ADA activity and 50% expressed >1%). RBC dAXP ranged from undetectable to >75% of total adenine nucleotides and correlated well with phenotype. Both RBC dAXP and clinical severity were inversely related to total ADA activity expressed by both inherited variants. Our GC scoring system performed better than AlphaMissense in assessing variant pathogenicity, particularly for less deleterious variants. CONCLUSION For ADA deficiency, pathogenicity is a continuum and conditional, depending on the total ADA activity contributed by both inherited variants as indicated by GC rank. However, in patients with indeterminate phenotype identified by screening, RBC dAXP measured at diagnosis may have greater prognostic value than GC rank.
Collapse
Affiliation(s)
- Ines Santisteban
- Department of Medicine, Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC
| | - Francisco X Arredondo-Vega
- Department of Medicine, Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC
| | - Pawan Bali
- Department of Medicine, Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC
| | - Busra Dalgic
- Department of Medicine, Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC
| | - Hyun Ho Lee
- Department of Medicine, Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, Tenn
| | - Jake Hermanson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tenn
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC; Department of Medicine, Veterans Affairs Medical Center, Durham, NC
| | - Michael S Hershfield
- Department of Medicine, Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC; Department of Biochemistry, Duke University School of Medicine, Durham, NC.
| |
Collapse
|
3
|
Tomomasa D, Takagi M, Watanabe R, Wakatsuki R, Miyamoto S, Hoshino A, Kamiya T, Isoda T, Kobayashi A, Kosaki K, Sakura F, Asano T, Uchiyama T, Okada S, Morio T, Kanegane H. Prolonged diagnostic journey in delayed-onset adenosine deaminase deficiency. Clin Immunol 2025; 270:110405. [PMID: 39592026 DOI: 10.1016/j.clim.2024.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Adenosine deaminase (ADA) deficiency typically presents as a severe combined immunodeficiency in early infancy, although its onset may be delayed in some cases. We encountered two patients diagnosed with ADA deficiency in adulthood. In addition to previously reported cases, we aimed to identify and characterize the clinical and immunological features associated with delayed- and late-onset ADA deficiency. Both patients presented with pneumonia and hypothyroidism during early childhood. The patients were subsequently treated with periodic immunoglobulin replacement and levothyroxine therapy. They experienced recurrent infections, including pneumonia and shingles, and were diagnosed with ADA deficiency in adulthood. A literature review revealed that patients diagnosed after the age of 10 years had a median interval of 18 years from disease onset to diagnosis. Patients with combined immunodeficiency and recurrent lower respiratory tract infections or autoimmune diseases require early measurement of ADA activity or genetic analysis.
Collapse
Affiliation(s)
- Dan Tomomasa
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Institute of Science Tokyo, Tokyo, Japan
| | - Ryohei Watanabe
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Ryosuke Wakatsuki
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Satoshi Miyamoto
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takahiro Kamiya
- Clinical Research Center, Institute of Science Tokyo, Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Anju Kobayashi
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Fumiaki Sakura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Kazusa DNA Research Institute, Chiba, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Institute of Science Tokyo, Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Kurup D, FitzPatrick AM, Badura A, Serra I. Bridging the gap: neurodevelopmental disorder risks in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2024; 24:472-478. [PMID: 39374040 PMCID: PMC11537469 DOI: 10.1097/aci.0000000000001036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is to examine published reports of neurodevelopmental phenotypes in patients with inborn errors of immunity (IEI). We briefly discuss potential interactions between the immune and the central nervous system and the implications of this crosstalk for current clinical management guidelines. RECENT FINDINGS An increasing number of reports have described neurodevelopmental disorders (NDDs) comorbid with immune-mediated signs. However, the prevalence of this association in IEIs remains unknown. SUMMARY IEIs comprise a group of clinically heterogeneous disorders associated with a number of nonimmune comorbidities. Although certain neurological conditions such as microcephaly are recognized as associated features of some IEIs, NDDs are less well described. We reviewed published clinical descriptions of IEIs and found a number of comorbid NDDs in these patients, including autism spectrum disorder (ASD), behavioral deficits, and intellectual disability. Given the lack of uniform assessments for NDDs, we suspect they may be underdiagnosed in IEIs. As NDDs manifest early and can result in life-long cognitive and emotional deficits, which diminish quality of life and increase healthcare utilization, we hope to elucidate relevant pathomechanisms and raise clinician awareness of these comorbidities so appropriate and timely interventions are sought.
Collapse
Affiliation(s)
- Devika Kurup
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
5
|
Çelik FÇ, Soyöz Ö, Bölük SÖ, Taşkırdı İ, Hacı İA, Kaya MŞ, Demir A, Uzunoğlu B, Yıldırım AT, Onay H, Gözmen S, Gülez N, Genel F. Successful management of delayed-onset adenosine deaminase deficiency with novel mutation. Per Med 2024; 21:11-19. [PMID: 38088159 DOI: 10.2217/pme-2023-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A 4-year-old boy presented with acute-onset autoimmune cytopenia with severe, persistent lymphopenia, autoimmune thyroiditis, elevated IgE and glucose 6-phosphate dehydrogenase enzyme deficiency. In immunologic evaluation, lower T, B and natural killer cells and higher levels of adenosine deaminase (ADA) metabolites were observed. The compound heterozygous novel ADA gene mutations causing ADA deficiency were detected. Successful immunologic and metabolic cure was achieved with enzyme replacement therapy, followed by reduced intensity conditioning hematopoietic stem cell transplantation from a matched unrelated donor. An interesting aspect of this patient is the detection of novel compound heterozygous mutations without consanguinity and a secondary outcome is the recovery of glucose 6-phosphate dehydrogenase deficiency after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Figen Çelebi Çelik
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Özgen Soyöz
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Selime Özen Bölük
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - İlke Taşkırdı
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - İdil Akay Hacı
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Mehmet Şirin Kaya
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Ayça Demir
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Berna Uzunoğlu
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Ayşen Türedi Yıldırım
- Celal Bayar University Faculty of Medicine, Department of Pediatrics, Department of Pediatric Hematology, Manisa, Turkey
| | | | - Salih Gözmen
- Katip Celebi University Faculty of Medicine, Department of Pediatric Hematology, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital Hematopoietic Stem Cell Transplantation Unit, İzmir, Turkey
| | - Nesrin Gülez
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Ferah Genel
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| |
Collapse
|
6
|
Onodera M, Uchiyama T, Ariga T, Yamada M, Miyamura T, Arizono H, Morio T. Safety and efficacy of elapegademase in patients with adenosine deaminase deficiency: A multicenter, open-label, single-arm, phase 3, and postmarketing clinical study. Immun Inflamm Dis 2023; 11:e917. [PMID: 37506145 PMCID: PMC10367445 DOI: 10.1002/iid3.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Adenosine deaminase (ADA) deficiency is an ultrarare inherited purine metabolism disorder characterized by severe combined immunodeficiency. Elapegademase-lvlr is a new pegylated recombinant bovine ADA used in enzyme-replacement therapy (ERT) for ADA deficiency. Therefore, replacement with the new drug may eliminate the infectious risks associated with the currently used bovine intestinal-derived product, pegademase. METHODS We conducted a multicenter, single-arm, open-label, phase 3, and postmarketing clinical study of elapegademase for patients with ADA deficiency. The following biochemical markers were monitored to determine an appropriate dose of elapegademase: the trough deoxyadenosine nucleotide (dAXP) level ≤0.02 μmol/mL in erythrocytes or whole blood and the trough serum ADA activity ≥1100 U/L (equivalent to plasma levels ≥15 μmol/h/mL) indicated sufficient enzyme activity and detoxification as efficacy endpoints and monitored adverse events during the study as safety endpoints. RESULTS A total of four patients (aged 0-25 years) were enrolled. One infant patient died of pneumonia caused by cytomegalovirus infection whereas the other three completed the study and have been observed in the study period over 3 years. The infant patient had received elapegademase at 0.4 mg/kg/week until decease and the others received elapegademase at maximum doses of 0.3 mg/kg/week for 164-169 weeks. As a result, all four patients achieved undetectable levels of dAXPs together with sufficient enzyme activity, increased T and B cell numbers, and slightly elevated and maintained IgM and IgA immunoglobulin levels. Serious adverse events occurred in three patients, all of which were assessed as unrelated to elapegademase. CONCLUSIONS This study showed that elapegademase had comparable safety and efficacy to pegademase as ERT for ADA deficiency by demonstrating stable maintenance of sufficient ADA activity and lowering dAXP to undetectable levels, while no drug-related adverse events were reported (Trial registration: JapicCTI-163204).
Collapse
Affiliation(s)
- Masafumi Onodera
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Ariga
- Department of Pediatrics, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Food and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hironori Arizono
- Pharmaceutical Development & Production Division, Teijin Pharma Limited, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Ucku D, Armutlu A, Cipe F, Ersoy GZ, Karakaya AD, Arikan C. Hepatocellular Carcinoma in ADA-SCID Patient After Hematopoietic Stem Cell Transplantation. J Pediatr Hematol Oncol 2023; 45:285-289. [PMID: 37027238 DOI: 10.1097/mph.0000000000002661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/14/2023] [Indexed: 04/08/2023]
Abstract
Adenosine deaminase (ADA) deficiency is one of the most prevalent forms of severe combined immunodeficiency and results in the accumulation of toxic substrates which creates a systemic metabolic disease. It predisposes patients to the development of malignancies, most commonly lymphoma. We report an 8-month-old infant with ADA deficient severe combined immunodeficiency who developed progressive liver dysfunction and hepatocellular carcinoma after successful hematopoietic stem cell transplantation. This is the first case report of an ADA-deficient patient who presented with hepatocellular carcinoma and gives an insight into the complex etiology that can lie behind liver dysfunction in these patients.
Collapse
Affiliation(s)
| | | | - Funda Cipe
- Department of Pediatric Allergy and Immunology, Istinye University School of Medicine
| | - Gizem Zengin Ersoy
- Altinbas University School of Medicine, Bahcelievler Medical Park Hospital, Pediatric Hematology-Oncology and Bone Marrow Transplantation Unit, Istanbul, Turkey
| | | | - Cigdem Arikan
- Pediatric Gastroenterology, Hepatology and Nutrition, Koc University School of Medicine
| |
Collapse
|
8
|
Zhang Y, Liu W, Shu Z, Li Y, Sun F, Li ZG, Han TX, Mao HW, Wang TY. Delayed-onset adenosine deaminase deficiency with a novel synonymous mutation and a case series from China. World J Pediatr 2023; 19:687-700. [PMID: 37154862 DOI: 10.1007/s12519-023-00729-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Adenosine deaminase (ADA) is a key enzyme in the purine salvage pathway. Genetic defects of the ADA gene can cause a subtype of severe combined immunodeficiency. To date, few Chinese cases have been reported. METHODS We retrospectively reviewed the medical records of patients diagnosed with ADA deficiency in Beijing Children's Hospital and summarized the previously published ADA deficiency cases from China in the literature. RESULTS Nine patients were identified with two novel mutations (W272X and Q202 =). Early-onset infection, thymic abnormalities and failure to thrive were the most common manifestations of Chinese ADA-deficient patients. The ADA genotype has a major effect on the clinical phenotype. Notably, a novel synonymous mutation (c.606G>A, p.Q202=) was identified in a delayed-onset patient, which affected pre-mRNA splicing leading to a frameshift and premature truncation of the protein. Furthermore, the patient showed γδT cells expansion with an increased effect or phenotype, which may be associated with the delayed onset of disease. In addition, we reported cerebral aneurysm and intracranial artery stenosis for the first time in ADA deficiency. Five patients died with a median age of four months, while two patients received stem cell transplantation and are alive. CONCLUSIONS This study described the first case series of Chinese ADA-deficient patients. Early-onset infection, thymic abnormalities and failure to thrive were the most common manifestations in our patients. We identified a synonymous mutation that affected pre-mRNA splicing in the ADA gene, which had never been reported in ADA deficiency. Furthermore, we reported cerebral aneurysm in a delayed-onset patient for the first time. Further study is warranted to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Wei Liu
- Hematology Oncology Center, Henan Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhou Shu
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Yan Li
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Fei Sun
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Zhi-Gang Li
- Hematologic Disease Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Tong-Xin Han
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China
| | - Hua-Wei Mao
- Department of Immunology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China.
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| | - Tian-You Wang
- Hematology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Xicheng District, Beijing, 100045, China.
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Capital Medical University, Beijing, China.
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| |
Collapse
|
9
|
Grunebaum E, Booth C, Cuvelier GDE, Loves R, Aiuti A, Kohn DB. Updated Management Guidelines for Adenosine Deaminase Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1665-1675. [PMID: 36736952 DOI: 10.1016/j.jaip.2023.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 02/04/2023]
Abstract
Inherited defects in the adenosine deaminase (ADA) gene typically cause severe combined immunodeficiency. In addition to infections, ADA-deficient patients can present with neurodevelopmental, behavioral, hearing, skeletal, lung, heart, skin, kidney, urogenital, and liver abnormalities. Some patients also suffer from autoimmunity and malignancies. In recent years, there have been remarkable advances in the management of ADA deficiency. Most ADA-deficient patients can be identified by newborn screening for severe combined immunodeficiency, which facilitates early diagnosis and treatment of asymptomatic infants. Most patients benefit from enzyme replacement therapy (ERT). Allogeneic hematopoietic cell transplantation from an HLA-matched sibling donor or HLA-matched family member donor with no conditioning is currently the preferable treatment. When matched sibling donor or matched family member donor is not available, autologous ADA gene therapy with nonmyeloablative conditioning and ERT withdrawal, which is reported in recent studies to result in 100% overall survival and 90% to 95% engraftment, should be pursued. If gene therapy is not immediately available, ERT can be continued for a few years, although its excessive cost might be prohibitive. The recent improved outcome of hematopoietic cell transplantation using HLA-mismatched family-related donors or HLA-matched unrelated donors, after reduced-intensity conditioning, suggests that such procedures might also be considered rather than continuing ERT for prolonged periods. Long-term follow-up will further assist in determining the optimal treatment approach for ADA-deficient patients.
Collapse
Affiliation(s)
- Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Claire Booth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital, London, United Kingdom
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robyn Loves
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, and the Università Vita-Salute San Raffaele, Milan, Italy
| | - Donald B Kohn
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif
| |
Collapse
|
10
|
Vittal A, Abdul Majeed N, Garabedian E, Marko J, Kleiner DE, Sokolic R, Candotti F, Malech H, Heller T, Koh C. Severe combined immunodeficiency: improved survival leading to detection of underlying liver disease. BMC Gastroenterol 2023; 23:166. [PMID: 37208598 DOI: 10.1186/s12876-023-02782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Adenosine deaminase deficiency (ADA) is an autosomal recessive disorder leading to severe combined immunodeficiency (SCID). It is characterized patho-physiologically by intracellular accumulation of toxic products affecting lymphocytes. Other organ systems are known to be affected causing non-immune abnormalities. We aimed to conduct a cross sectional study to describe liver disease in autosomal recessive ADA-SCID. METHODS Single center retrospective analysis of genetically confirmed autosomal recessive ADA-SCID was performed. Liver disease was defined as ≥1.5x the gender specific upper limit of normal (ULN; 33 IU/L for males and 25 IU/L for females) alanine aminotransferase (ALT) or moderate and severe increase in liver echogenicity on ultrasound. RESULTS The cohort included 18 patients with 11 males. The median age was 11.5 (3.5-30.0 years) and median BMI percentile was 75.5 [36.75, 89.5]. All patients received enzyme replacement therapy at the time of evaluation. Seven (38%) and five (27%) patients had gene therapy (GT) and hematopoietic stem cell transplant (HSCT) in the past. Five patients had 1.5x ALT level more than 1.5x the U. Liver echogenicity was mild in 6 (33%), moderate in 2 (11%) and severe in 2 (11%) patients. All patients had normal Fibrosis-4 Index and Non-alcoholic fatty liver disease fibrosis biomarker scores indicating absence of advanced fibrosis in our cohort. Of 5 patients who had liver biopsies, steatohepatitis was noted in 3 patients (NAS score of 3,3,4). DISCUSSION Non-immunologic manifestations of ADA-SCID have become more apparent in recent years as survival improved. We concluded that steatosis is the most common finding noted in our ADA-SCID cohort.
Collapse
Affiliation(s)
- Anusha Vittal
- Clinical Research Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Nehna Abdul Majeed
- Clinical Research Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | | | - Jamie Marko
- Department of Radiology and Imaging Sciences, NIH, Bethesda, MD, USA
| | | | - Rob Sokolic
- Translational Hepatology Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
- IQVIA Biotech, Sharon, MA, MD, USA
| | - Fabio Candotti
- Translational Hepatology Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Harry Malech
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Theo Heller
- Translational Hepatology Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA.
| | - Christopher Koh
- Clinical Research Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA.
- Translational Hepatology Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA.
| |
Collapse
|
11
|
Hartog N, Hershfield M, Michniacki T, Moloney S, Holsworth A, Hurden I, Fredrickson M, Kleyn M, Walkovich K, Secord E. Newborn Tandem Mass Spectroscopy Screening for Adenosine Deaminase Deficiency-First Two Years' Experience. Ann Allergy Asthma Immunol 2022; 129:776-783.e2. [PMID: 35914665 DOI: 10.1016/j.anai.2022.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Newborn screening (NBS) via T-cell receptor excision circles (TREC) is now universal in the United States, Puerto Rico, and the Navajo Nation as a strategy to identify severe combined immunodeficiency (SCID) in newborns. Due to the characteristics of adenosine deaminase (ADA) deficiency, small but significant number of cases can be missed by this screening. OBJECTIVE To evaluate the results of the first year of statewide NBS for ADA via dried blood spot newborn screening. METHODS On October 7, 2019, the state of Michigan began screening newborn dried blood spots for ADA deficiency via the Neobase-2 tandem mass spectroscopy (TMS) kit. We report one known case of ADA deficiency in the 18 months prior to screening. We then reviewed the results of the first two years of TMS ADA screening in Michigan. RESULTS There was one ADA deficient patient known to our centers in the 18 months before initiation of TMS ADA screening, this patient died of complications of their disease. In the first two years of TMS ADA NBS, 206,321 infants were screened, and two patients had positive ADA screens. Both patients had ADA deficiency confirmed through biochemical and genetic testing. One patient identified also had a positive TREC screen and was confirmed to have ADA SCID. CONCLUSION In our first two years, TMS NBS for ADA deficiency identified two patients with ADA deficiency at negligible cost; including one patient who would not have been identified by TREC NBS. This report provides initial evidence of the value of specific NBS for ADA deficiency.
Collapse
Affiliation(s)
- Nicholas Hartog
- Helen DeVos Children's Hospital and Spectrum Health Division of Allergy and Immunology; Michigan State University College of Human Medicine.
| | - Michael Hershfield
- Department of Medicine, Duke University School of Medicine; Department of Biochemistry, Duke University School of Medicine
| | - Thomas Michniacki
- Pediatric Hematology, Oncology, and Bone Marrow Transplantation C.S. Mott Children's Hospital and University of Michigan
| | | | - Amanda Holsworth
- Helen DeVos Children's Hospital and Spectrum Health Division of Allergy and Immunology; Michigan State University College of Human Medicine
| | | | - Mary Fredrickson
- Division of Allergy and Immunology, Children's Hospital of Michigan
| | - Mary Kleyn
- Michigan Department of Health and Human Services
| | - Kelly Walkovich
- Pediatric Hematology, Oncology, and Bone Marrow Transplantation C.S. Mott Children's Hospital and University of Michigan
| | - Elizabeth Secord
- Wayne State University School of Medicine, Department of Pediatrics, Division of Allergy and Immunology
| |
Collapse
|
12
|
Olbrich P, Ortiz Aljaro P, Freeman AF. Eosinophilia Associated With Immune Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1140-1153. [PMID: 35227935 DOI: 10.1016/j.jaip.2022.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The differential diagnosis of eosinophilia is broad and includes infections, malignancies, and atopy as well as inborn errors of immunity (IEI). Certain types of IEIs are known to be associated with elevated numbers of eosinophils and frequently elevated serum IgE, whereas for others the degree and frequency of eosinophilia are less established. The molecular defects underlying IEI are heterogeneous and affect different pathways, which highlights the complex regulations of this cell population within the immune system. In this review, we list and discuss clinical manifestations and therapies of immune deficiency or immune dysregulation disorders associated with peripheral blood or tissue eosinophilia with or without raised IgE levels. We present illustrative case vignettes for the most common entities and propose a diagnostic algorithm aiming to help physicians systematically to evaluate patients with eosinophilia and suspicion of an underlying IEI.
Collapse
Affiliation(s)
- Peter Olbrich
- Sección Infectología, Reumatología e Inmunología Pediátrica, UGC de Pediatría, Hospital Universitario Virgen del Rocío, Seville, Spain; Laboratorio de Alteraciones Congénitas de la Inmunidad, Laboratorio 205, Instituto de Biomedicina de Sevilla, Seville, Spain; Departamento de Farmacología, Pediatría y Radiología, Facultad de Medicina, Universidad de Sevilla, Spain.
| | - Pilar Ortiz Aljaro
- Servicio de Inmunología, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Seville, Spain
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| |
Collapse
|
13
|
Perazzio SF, Palmeira P, Moraes-Vasconcelos D, Rangel-Santos A, de Oliveira JB, Andrade LEC, Carneiro-Sampaio M. A Critical Review on the Standardization and Quality Assessment of Nonfunctional Laboratory Tests Frequently Used to Identify Inborn Errors of Immunity. Front Immunol 2021; 12:721289. [PMID: 34858394 PMCID: PMC8630704 DOI: 10.3389/fimmu.2021.721289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
Inborn errors of immunity (IEI), which were previously termed primary immunodeficiency diseases, represent a large and growing heterogeneous group of diseases that are mostly monogenic. In addition to increased susceptibility to infections, other clinical phenotypes have recently been associated with IEI, such as autoimmune disorders, severe allergies, autoinflammatory disorders, benign lymphoproliferative diseases, and malignant manifestations. The IUIS 2019 classification comprises 430 distinct defects that, although rare individually, represent a group affecting a significant number of patients, with an overall prevalence of 1:1,200-2,000 in the general population. Early IEI diagnosis is critical for appropriate therapy and genetic counseling, however, this process is deeply dependent on accurate laboratory tests. Despite the striking importance of laboratory data for clinical immunologists, several IEI-relevant immunoassays still lack standardization, including standardized protocols, reference materials, and external quality assessment programs. Moreover, well-established reference values mostly remain to be determined, especially for early ages, when the most severe conditions manifest and diagnosis is critical for patient survival. In this article, we intend to approach the issue of standardization and quality control of the nonfunctional diagnostic tests used for IEI, focusing on those frequently utilized in clinical practice. Herein, we will focus on discussing the issues of nonfunctional immunoassays (flow cytometry, enzyme-linked immunosorbent assays, and turbidimetry/nephelometry, among others), as defined by the pure quantification of proteins or cell subsets without cell activation or cell culture-based methods.
Collapse
Affiliation(s)
- Sandro Félix Perazzio
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Patricia Palmeira
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Dewton Moraes-Vasconcelos
- Laboratório de Investigação Médica (LIM-56), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Andréia Rangel-Santos
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | | | - Luis Eduardo Coelho Andrade
- Division of Rheumatology, Universidade Federal de São Paulo, Sao Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, Sao Paulo, Brazil
| | - Magda Carneiro-Sampaio
- Laboratório de Investigação Médica (LIM-36), Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
14
|
Kreins AY, Velasco HF, Cheong KN, Rao K, Veys P, Worth A, Gaspar HB, Booth C. Long-Term Immune Recovery After Hematopoietic Stem Cell Transplantation for ADA Deficiency: a Single-Center Experience. J Clin Immunol 2021; 42:94-107. [PMID: 34654999 PMCID: PMC8821083 DOI: 10.1007/s10875-021-01145-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Unconditioned hematopoietic stem cell transplantation (HSCT) is the recommended treatment for patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency with an HLA-matched sibling donor (MSD) or family donor (MFD). Improved overall survival (OS) has been reported compared to the use of unrelated donors, and previous studies have demonstrated that adequate cellular and humoral immune recovery can be achieved even in the absence of conditioning. Detailed insight of the long-term outcome is still limited. We aim to address this by studying a large single-center cohort of 28 adenosine deaminase-deficient patients who underwent a total of 31 HSCT procedures, of which more than half were unconditioned. We report an OS of 85.7% and event-free survival of 71% for the entire cohort, with no statistically significant differences after procedures using related or unrelated HLA-matched donors. We find that donor engraftment in the myeloid compartment is significantly diminished in unconditioned procedures, which typically use a MSD or MFD. This is associated with poor metabolic correction and more frequent failure to discontinue immunoglobulin replacement therapy. Approximately one in four patients receiving an unconditioned procedure required a second procedure, whereas the use of reduced intensity conditioning (RIC) prior to allogeneic transplantation improves the long-term outcome by achieving better myeloid engraftment, humoral immune recovery, and metabolic correction. Further longitudinal studies are needed to optimize future management and guidelines, but our findings support a potential role for the routine use of RIC in most ADA-deficient patients receiving an HLA-identical hematopoietic stem cell transplant, even when a MSD or MFD is available.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helena F Velasco
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Department of Pediatric Allergy and Immunology, Federal University of São Paolo, São Paolo, Brazil
| | - Kai-Ning Cheong
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Department of Paediatric Rheumatology and Immunology, Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Kanchan Rao
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Paul Veys
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Austen Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - H Bobby Gaspar
- UCL Great Ormond Street Institute of Child Health, London, UK.,Orchard Therapeutics, London, UK
| | - Claire Booth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. .,UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
15
|
Baloh CH, Borkar SA, Chang KF, Yao J, Hershfield MS, Parikh SH, Kohn DB, Goodenow MM, Sleasman JW, Yin L. Normal IgH Repertoire Diversity in an Infant with ADA Deficiency After Gene Therapy. J Clin Immunol 2021; 41:1597-1606. [PMID: 34184208 PMCID: PMC9906566 DOI: 10.1007/s10875-021-01034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Adenosine deaminase (ADA) deficiency causes severe combined immunodeficiency (SCID) through an accumulation of toxic metabolites within lymphocytes. Recently, ADA deficiency has been successfully treated using lentiviral-transduced autologous CD34+ cells carrying the ADA gene. T and B cell function appears to be fully restored, but in many patients' B cell numbers remain low, and assessments of the immunoglobulin heavy (IgHV) repertoire following gene therapy are lacking. METHODS We performed deep sequencing of IgHV repertoire in peripheral blood lymphocytes from a child following lentivirus-based gene therapy for ADA deficiency and compared to the IgHV repertoire in healthy infants and adults. RESULTS After gene therapy, Ig diversity increased over time as evidenced by V, D, and J gene usage, N-additions, CDR3 length, extent of somatic hypermutation, and Ig class switching. There was the emergence of predominant IgHM, IgHG, and IgHA CDR3 lengths after gene therapy indicating successful oligoclonal expansion in response to antigens. This provides proof of concept for the feasibility and utility of molecular monitoring in following B cell reconstitution following gene therapy for ADA deficiency. CONCLUSION Based on deep sequencing, gene therapy resulted in an IgHV repertoire with molecular diversity similar to healthy infants.
Collapse
Affiliation(s)
- Carolyn H Baloh
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Samiksha A Borkar
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Kai-Fen Chang
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Jiqiang Yao
- Department of Biostatistics and bioinformatics, Moffitt Cancer Center, Tampa, FL
| | - Michael S Hershfield
- Division of Rheumatology and Immunology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Suhag H Parikh
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Donald B Kohn
- Division of Hematology & Oncology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA
| | - Maureen M Goodenow
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - John W Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Li Yin
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
16
|
Kahwash BM, Yonkof JR, Abraham RS, Mustillo PJ, Abu-Arja R, Rangarajan HG, Scherzer R. Delayed-Onset ADA1 (ADA) Deficiency Not Detected by TREC Screen. Pediatrics 2021; 147:peds.2020-005579. [PMID: 33975924 DOI: 10.1542/peds.2020-005579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
A 9-month-old boy presented to a community pediatrician with a recent history of failure to thrive. Workup revealed neutropenia and lymphopenia. Subsequent admission for fever and pneumonia revealed an absolute neutrophil count of 860 and absolute lymphocyte count of 214. Lymphopenia affected all lymphocyte subsets and his naïve and memory CD4+ T-cell ratio was inverted for age. Immunoglobulin levels were normal for age, and tetanus and diphtheria antibody titers were protective. The profound lymphopenia raised suspicion for severe combined immunodeficiency (SCID), despite a normal newborn screening by T-cell receptor excision circle analysis. He did not have a previous history of recurrent fevers or infections, had attended day care, and had received all age-appropriate vaccines. He subsequently was diagnosed with Pneumocystis jirovecii pneumonia, adenovirus upper respiratory infection, and rotaviral diarrhea. An enzyme assay revealed absent adenosine deaminase (ADA) activity and elevated erythrocyte deoxyadenosine nucleotides. With genetic sequencing, 2 pathogenic variants in the ADA gene were confirmed. Acute management of ADA-SCID is aimed at restoration of enzyme activity, followed by curative therapy. The patient is currently on immunoglobulin therapy and recombinant ADA (Revcovi), with an excellent immune response, while awaiting sibling hematopoietic cell transplant from a matched sibling. Hypomorphic ADA variants can present with delayed-onset SCID, and some of these patients are missed by SCID newborn screening. A careful review of a complete blood cell count might offer clues and promote confirmatory diagnostic investigation.
Collapse
Affiliation(s)
- Basil M Kahwash
- Division of Allergy and Immunology, Department of Otolaryngology, College of Medicine, The Ohio State University, Columbus, Ohio; and .,Nationwide Children's Hospital, Columbus, Ohio
| | - Jennifer R Yonkof
- Division of Allergy and Immunology, Department of Otolaryngology, College of Medicine, The Ohio State University, Columbus, Ohio; and.,Nationwide Children's Hospital, Columbus, Ohio
| | | | | | | | | | | |
Collapse
|
17
|
Teke Kisa P, Arslan N. Inborn errors of immunity and metabolic disorders: current understanding, diagnosis, and treatment approaches. J Pediatr Endocrinol Metab 2021; 34:277-294. [PMID: 33675210 DOI: 10.1515/jpem-2020-0277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
Inborn errors of metabolism consist of a heterogeneous group of disorders with various organ systems manifestations, and some metabolic diseases also cause immunological disorders or dysregulation. In this review, metabolic diseases that affect the immunological system and particularly lead to primary immune deficiency will be reviewed. In a patient with frequent infections and immunodeficiency, the presence of symptoms such as growth retardation, abnormal facial appearance, heart, skeletal, lung deformities, skin findings, arthritis, motor developmental retardation, seizure, deafness, hepatomegaly, splenomegaly, impairment of liver function tests, the presence of anemia, thrombocytopenia and eosinophilia in hematological examinations should suggest metabolic diseases for the underlying cause. In some patients, these phenotypic findings may appear before the immunodeficiency picture. Metabolic diseases leading to immunological disorders are likely to be rare but probably underdiagnosed. Therefore, the presence of recurrent infections or autoimmune findings in a patient with a suspected metabolic disease should suggest that immune deficiency may also accompany the picture, and diagnostic examinations in this regard should be deepened.
Collapse
Affiliation(s)
- Pelin Teke Kisa
- Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Nur Arslan
- Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
18
|
Gans MD, Bernstein L, Shliozberg J, Gavrilova T, Rubinstein A. Outcomes of 3 patients with adenosine deaminase deficiency on long-term enzyme replacement therapy. Ann Allergy Asthma Immunol 2021; 126:593-595. [PMID: 33359138 DOI: 10.1016/j.anai.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Melissa D Gans
- Division of Pediatric Pulmonology, Allergy, Immunology, and Sleep Medicine, Westchester Medical Center/Boston Children's Health Physicians, New York Medical College, Hawthorne, New York.
| | - Larry Bernstein
- Division of Allergy and Immunology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jenny Shliozberg
- Division of Allergy and Immunology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Tatyana Gavrilova
- Division of Allergy and Immunology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Arye Rubinstein
- Division of Allergy and Immunology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
19
|
Abstract
Primary antibody deficiencies (PADs) are the most common types of inherited primary immunodeficiency diseases (PIDs) presenting at any age, with a broad spectrum of clinical manifestations including susceptibility to infections, autoimmunity and cancer. Antibodies are produced by B cells, and consequently, genetic defects affecting B cell development, activation, differentiation or antibody secretion can all lead to PADs. Whole exome and whole genome sequencing approaches have helped identify genetic defects that are involved in the pathogenesis of PADs. Here, we summarize the clinical manifestations, causal genes, disease mechanisms and clinical treatments of different types of PADs.
Collapse
|
20
|
Two cases of ADA2 deficiency presenting as childhood polyarteritis nodosa: novel ADA2 variant, atypical CNS manifestations, and literature review. Clin Rheumatol 2020; 39:3853-3860. [PMID: 32535845 DOI: 10.1007/s10067-020-05210-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022]
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive disease resulting from loss-of-function pathogenic variants in ADA2 gene, which might resemble polyarteritis nodosa (PAN). The authors present two pediatric cases of ADA2 deficiency with phenotypic manifestations of PAN, including an unusual presentation with spinal cord ischemia. Also described is an assessment of ADA2 activity and gene expression profiling with description of a previously unreported homozygous variant, c.1226C > A (p.(Pro409His)), detected in a patient with consanguineous parents, confirmed by near-absent ADA2 plasma enzymatic activity. The authors suggest to first obtain enzymatic activity, whenever DADA2 is suspected, before proceeding to genetic testing, due to its excellent cost-effective results. Moreover, physicians must be aware of this monogenic disorder, especially in the case of early-onset PAN-like manifestations, having a family member with similar manifestations or having consanguineous parents suggesting an autosomal recessive inheritance pattern. Given the multi-organ involvement, recognizing the diverse manifestations is a crucial step towards timely diagnosis and management of this potentially fatal but often treatable syndrome.
Collapse
|
21
|
Costabile M, Nguyen H, Kenyon A. Manipulating leukocyte populations to mimic immune disease states: a novel active approach to teaching flow cytometry to undergraduate immunology students. ADVANCES IN PHYSIOLOGY EDUCATION 2020; 44:247-253. [PMID: 32412385 DOI: 10.1152/advan.00032.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flow cytometry detects and measures the physical and chemical characteristics of cells or particles. In medical laboratories, flow cytometers are used to quantify changes in cell populations associated with disease states, such as AIDS. While a powerful technique, it is challenging to teach the principles of flow cytometry to undergraduate students. One approach is to have students process and analyze a patient sample. However, this is not possible when the patient has an infectious disease. Here we report a two-stage approach to address this challenge. Magnetic beads were used to manipulate leukocytes cell populations in healthy blood to mimic the phenotype of eight immune disease conditions. The cells were then stained against cell surface markers for cell populations and analyzed by flow cytometry. The second stage focused on teaching flow cytometry over 2 wk. Week 1 involved a lecture, followed by a laboratory session where students learned how to stain a blood sample. In week 2, students worked in a computer pool to analyze the previously generated data and determine the immunological status of a control and patient sample. Using this approach, all students achieved 100% correct diagnosis of both control and patient samples. Student feedback via a questionnaire was overwhelmingly positive, and student perceived knowledge of flow cytometry increased after the session significantly. We effectively mimicked several disease states, eliminating the need to source patient samples, yet still teaching undergraduate students the principles of flow cytometry.
Collapse
Affiliation(s)
- Maurizio Costabile
- University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia, and SA Pathology, Adelaide, South Australia, Australia
| | - Hong Nguyen
- University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, Australia
| | - Amanda Kenyon
- University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, Australia
| |
Collapse
|
22
|
Morbidity in an adenosine deaminase-deficient patient during 27 years of enzyme replacement therapy. Clin Immunol 2020; 211:108321. [DOI: 10.1016/j.clim.2019.108321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
|
23
|
Özen S, Batu ED, Taşkıran EZ, Özkara HA, Ünal Ş, Güleray N, Erden A, Karadağ Ö, Gümrük F, Çetin M, Sönmez HE, Bilginer Y, Ayvaz DÇ, Tezcan I. A Monogenic Disease with a Variety of Phenotypes: Deficiency of Adenosine Deaminase 2. J Rheumatol 2019; 47:117-125. [PMID: 31043544 DOI: 10.3899/jrheum.181384] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive autoinflammatory disorder associated with ADA2 mutations. We aimed to investigate the characteristics and ADA2 enzyme activities of patients with DADA2 compared to non-DADA2 patients. METHODS This is a descriptive study of 24 patients with DADA2 who were admitted to the Adult and Pediatric Rheumatology, Pediatric Haematology, and Pediatric Immunology Departments of Hacettepe University. All ADA2 exons were screened by Sanger sequencing. Serum ADA2 enzyme activity was measured by modified spectrophotometric method. RESULTS Twenty-four patients with DADA2 were included: 14 with polyarteritis nodosa (PAN)-like phenotype (Group 1); 9 with Diamond-Blackfan anemia (DBA)-like features, and 1 with immunodeficiency (Group 2). Fourteen PAN-like DADA2 patients did not have the typical thrombocytosis seen in classic PAN. Inflammatory attacks were evident only in Group 1 patients. Serum ADA2 activity was low in all patients with DADA2 except one, who was tested after hematopoietic stem cell transplantation. There was no significant difference in ADA2 activities between PAN-like and DBA-like patients. In DADA2 patients with one ADA2 mutation, serum ADA2 activities were as low as those of patients with homozygote DADA2. ADA2 activities were normal in non-DADA2 patients. ADA2 mutations were affecting the dimerization domain in Group 1 patients and the catalytic domain in Group 2 patients. CONCLUSION We suggest assessing ADA2 activity along with genetic analysis because there are patients with one ADA2 mutation and absent enzyme activity. Our data suggest a possible genotype-phenotype correlation in which dimerization domain mutations are associated with PAN-like phenotype, and catalytic domain mutations are associated with hematological manifestations.
Collapse
Affiliation(s)
- Seza Özen
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey. .,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study.
| | - Ezgi Deniz Batu
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Ekim Z Taşkıran
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Hatice Asuman Özkara
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Şule Ünal
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Naz Güleray
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Abdulsamet Erden
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Ömer Karadağ
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Fatma Gümrük
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Mualla Çetin
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Hafize Emine Sönmez
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Yelda Bilginer
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Deniz Çağdaş Ayvaz
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| | - Ilhan Tezcan
- From the Division of Rheumatology, Department of Pediatrics, Division of Immunology, Department of Internal Medicine, Department of Medical Genetics, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Turkey.,S. Özen, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; Y. Bilginer, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.D. Batu, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; E.Z. Taşkıran, PhD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; H.A. Özkara, MD, PhD, Department of Medical Biochemistry, Hacettepe University Faculty of Medicine; Ş. Ünal, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; N. Güleray, MD, Department of Medical Genetics, Hacettepe University Faculty of Medicine; A. Erden, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; Ö. Karadağ, MD, Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine; F. Gümrük, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes; M. Çetin, MD, Hacettepe University Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes (retired); H.E. Sönmez, MD, Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine; D.Ç. Ayvaz, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine; I. Tezcan, MD, Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine. E.D. Batu and E.Z. Taşkıran contributed equally to this study
| |
Collapse
|
24
|
Kohn DB, Hershfield MS, Puck JM, Aiuti A, Blincoe A, Gaspar HB, Notarangelo LD, Grunebaum E. Consensus approach for the management of severe combined immune deficiency caused by adenosine deaminase deficiency. J Allergy Clin Immunol 2019; 143:852-863. [PMID: 30194989 PMCID: PMC6688493 DOI: 10.1016/j.jaci.2018.08.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 12/29/2022]
Abstract
Inherited defects in adenosine deaminase (ADA) cause a subtype of severe combined immunodeficiency (SCID) known as severe combined immune deficiency caused by adenosine deaminase defects (ADA-SCID). Most affected infants can receive a diagnosis while still asymptomatic by using an SCID newborn screening test, allowing early initiation of therapy. We review the evidence currently available and propose a consensus management strategy. In addition to treatment of the immune deficiency seen in patients with ADA-SCID, patients should be followed for specific noninfectious respiratory, neurological, and biochemical complications associated with ADA deficiency. All patients should initially receive enzyme replacement therapy (ERT), followed by definitive treatment with either of 2 equal first-line options. If an HLA-matched sibling donor or HLA-matched family donor is available, allogeneic hematopoietic stem cell transplantation (HSCT) should be pursued. The excellent safety and efficacy observed in more than 100 patients with ADA-SCID who received gammaretrovirus- or lentivirus-mediated autologous hematopoietic stem cell gene therapy (HSC-GT) since 2000 now positions HSC-GT as an equal alternative. If HLA-matched sibling donor/HLA-matched family donor HSCT or HSC-GT are not available or have failed, ERT can be continued or reinstituted, and HSCT with alternative donors should be considered. The outcomes of novel HSCT, ERT, and HSC-GT strategies should be evaluated prospectively in "real-life" conditions to further inform these management guidelines.
Collapse
Affiliation(s)
- Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, and the Division of Hematology & Oncology, Department of Pediatrics, David Geffen School of Medicine University of California, Los Angeles, Calif
| | - Michael S Hershfield
- Department of Medicine and Biochemistry, Duke University Medical Center, Durham, NC
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, and Università Vita Salute San Raffaele, Milan, Italy
| | - Annaliesse Blincoe
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - H Bobby Gaspar
- Infection, Immunity, Inflammation, Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Eyal Grunebaum
- Division of Immunology and Allergy, and the Department of Pediatrics, Developmental and Stem Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|