1
|
Lei WT, Lo YF, Tsumura M, Ding JY, Lo CC, Lin YN, Wang CW, Liu LH, Shih HP, Peng JJ, Wu TY, Chan YP, Kang CX, Wang SY, Kuo CY, Tu KH, Yeh CF, Hsieh YJ, Asano T, Chung WH, Okada S, Ku CL. Immunophenotyping and Therapeutic Insights from Chronic Mucocutaneous Candidiasis Cases with STAT1 Gain-of-Function Mutations. J Clin Immunol 2024; 44:184. [PMID: 39177867 DOI: 10.1007/s10875-024-01776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Heterozygous STAT1 Gain-of-Function (GOF) mutations are the most common cause of chronic mucocutaneous candidiasis (CMC) among Inborn Errors of Immunity. Clinically, these mutations manifest as a broad spectrum of immune dysregulation, including autoimmune diseases, vascular disorders, and malignancies. The pathogenic mechanisms of immune dysregulation and its impact on immune cells are not yet fully understood. In treatment, JAK inhibitors have shown therapeutic effectiveness in some patients. METHODS We analyzed clinical presentations, cellular phenotypes, and functional impacts in five Taiwanese patients with STAT1 GOF. RESULTS We identified two novel GOF mutations in 5 patients from 2 Taiwanese families, presenting with symptoms of CMC, late-onset rosacea, and autoimmunity. The enhanced phosphorylation and delayed dephosphorylation were displayed by the patients' cells. There are alterations in both innate and adaptive immune cells, including expansion of CD38+HLADR +CD8+ T cells, a skewed activated Tfh cells toward Th1, reduction of memory, marginal zone and anergic B cells, all main functional dendritic cell lineages, and a reduction in classical monocyte. Baricitinib showed therapeutic effectiveness without side effects. CONCLUSION Our study provides the first comprehensive clinical and molecular characteristics in STAT1 GOF patient in Taiwan and highlights the dysregulated T and B cells subsets which may hinge the autoimmunity in STAT1 GOF patients. It also demonstrated the therapeutic safety and efficacy of baricitinib in pediatric patient. Further research is needed to delineate how the aberrant STAT1 signaling lead to the changes in cellular populations as well as to better link to the clinical manifestations of the disease.
Collapse
Affiliation(s)
- Wei-Te Lei
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of Immunology, Rheumatology, and Allergy, Department of Pediatrics, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
- Department of Pediatrics, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
| | - Yu-Fang Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - You-Ning Lin
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital (CGMH), Taipei and Keelung, Linkou, Taiwan
- Chang Gung Immunology Consortium, CGMH and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Lu-Hang Liu
- Department of Pediatrics, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
| | - Han-Po Shih
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jhan-Jie Peng
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Tsai-Yi Wu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Yu-Pei Chan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Chen-Xuan Kang
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Shang-Yu Wang
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Hua Tu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Fu Yeh
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Medical Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ya-Ju Hsieh
- Department of Dermatology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital (CGMH), Taipei and Keelung, Linkou, Taiwan
- Chang Gung Immunology Consortium, CGMH and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan.
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Fink FM, Höpfl R, Witsch-Baumgartner M, Kropshofer G, Martin S, Fink V, Heeg M, Peters C, Zschocke J, Haas OA. Retrospective identification of the first cord blood-transplanted severe aplastic anemia in a STAT1-associated chronic mucocutaneous candidiasis family: case report, review of literature and pathophysiologic background. Front Immunol 2024; 15:1430938. [PMID: 39114664 PMCID: PMC11303233 DOI: 10.3389/fimmu.2024.1430938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Severe aplastic anemia (SAA) is a life-threatening bone marrow failure syndrome whose development can be triggered by environmental, autoimmune, and/or genetic factors. The latter comprises germ line pathogenic variants in genes that bring about habitually predisposing syndromes as well as immune deficiencies that do so only occasionally. One of these disorders is the autosomal dominant form of chronic mucocutaneous candidiasis (CMC), which is defined by germ line STAT1 gain-of-function (GOF) pathogenic variants. The resultant overexpression and constitutive activation of STAT1 dysregulate the Janus kinase/signal transducer and activator of transcription 1 (STAT) signaling pathway, which normally organizes the development and proper interaction of different components of the immunologic and hematopoietic system. Although SAA is an extremely rare complication in this disorder, it gained a more widespread interest when it became clear that the underlying causative pathomechanism may, in a similar fashion, also be instrumental in at least some of the idiopathic SAA cases. Based on these premises, we present herein what is the historically most likely first cord blood-transplanted SAA case in a CMC family with a documented STAT1 GOF pathogenic variant. In addition, we recapitulate the characteristics of the six CMC SAA cases that have been reported so far and discuss the significance of STAT1 GOF pathogenic variants and other STAT1 signaling derangements in the context of these specific types of bone marrow failure syndromes. Because a constitutively activated STAT1 signaling, be it driven by STAT1 GOF germ line pathogenic variants or any other pathogenic variant-independent events, is apparently important for initiating and maintaining the SAA disease process, we propose to acknowledge that SAA is one of the definite disease manifestations in STAT1-mutated CMC cases. For the same reason, we deem it necessary to also incorporate molecular and functional analyses of STAT1 into the diagnostic work-up of SAA cases.
Collapse
Affiliation(s)
- Franz-Martin Fink
- Department of Pediatrics, Regional Hospital, St. Johann in Tirol, Austria
| | - Reinhard Höpfl
- Department of Dermatology and Venerology, Medical University Hospital, Innsbruck, Austria
| | | | | | - Sabine Martin
- Department of Pediatrics, Regional Hospital, St. Johann in Tirol, Austria
| | - Valentin Fink
- Department of Pediatrics, Regional Hospital, St. Johann in Tirol, Austria
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina Peters
- Stem Cell Transplantation Unit, St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Oskar A. Haas
- Central Laboratory, St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Ihr Labor, Medical Diagnostic Laboratories, Vienna, Austria
| |
Collapse
|
3
|
Koh JY, Kim DR, Son S, Park H, Kim KR, Min S, Lee HS, Jhun BW, Kang ES, Jung I, Kang JM, Kim YJ, Shin EC. Ruxolitinib Improves Immune-Dysregulation Features but not Epigenetic Abnormality in a Patient with STAT1 GOF. J Clin Immunol 2024; 44:84. [PMID: 38578320 PMCID: PMC10997693 DOI: 10.1007/s10875-024-01687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Patients with STAT1 gain-of-function (GOF) mutations often exhibit autoimmune features. The JAK1/2 inhibitor ruxolitinib can be administered to alleviate autoimmune symptoms; however, it is unclear how immune cells are molecularly changed by ruxolitinib treatment. Then, we aimed to investigate the trnscriptional and epigenetic status of immune cells before and after ruxolitinib treatment in a patient with STAT1 GOF. METHODS A patient with a heterozygous STAT1 GOF variant (p.Ala267Val), exhibiting autoimmune features, was treated with ruxolitinib, and peripheral blood mononuclear cells (PBMCs) were longitudinally collected. PBMCs were transcriptionally analyzed by single-cell cellular indexing of the transcriptomes and epitopes by sequencing (CITE-seq), and epigenetically analyzed by assay of transposase-accessible chromatin sequencing (ATAC-seq). RESULTS CITE-seq analysis revealed that before treatment, the patient's PBMCs exhibited aberrantly activated inflammatory features, especially IFN-related features. In particular, monocytes showed high expression levels of a subset of IFN-stimulated genes (ISGs). Ruxolitinib treatment substantially downregulated aberrantly overexpressed ISGs, and improved autoimmune features. However, epigenetic analysis demonstrated that genetic regions of ISGs-e.g., STAT1, IRF1, MX1, and OAS1-were highly accessible even after ruxolitinib treatment. When ruxolitinib was temporarily discontinued, the patient's autoimmune features were aggravated, which is in line with sustained epigenetic abnormality. CONCLUSIONS In a patient with STAT1 GOF, ruxolitinib treatment improved autoimmune features and downregulated aberrantly overexpressed ISGs, but did not correct epigenetic abnormality of ISGs.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Genome Insight, Inc., Daejeon, 34051, Republic of Korea
| | - Doo Ri Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Sohee Son
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Hwanhee Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, 14584, Republic of Korea
| | - Kyung-Ran Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, 51472, Republic of Korea
| | - Sunwoo Min
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ha Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Man Kang
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| |
Collapse
|
4
|
Asano T, Noma K, Mizoguchi Y, Karakawa S, Okada S. Human STAT1 gain of function with chronic mucocutaneous candidiasis: A comprehensive review for strengthening the connection between bedside observations and laboratory research. Immunol Rev 2024; 322:81-97. [PMID: 38084635 DOI: 10.1111/imr.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Germline human heterozygous STAT1 gain-of-function (GOF) variants were first discovered a common cause of chronic mucocutaneous candidiasis (CMC) in 2011. Since then, numerous STAT1 GOF variants have been identified. A variety of clinical phenotypes, including fungal, viral, and bacterial infections, endocrine disorders, autoimmunity, malignancy, and aneurysms, have recently been revealed for STAT1 GOF variants, which has led to the expansion of the clinical spectrum associated with STAT1 GOF. Among this broad range of complications, it has been determined that invasive infections, aneurysms, and malignancies are poor prognostic factors for STAT1 GOF. The effectiveness of JAK inhibitors as a therapeutic option has been established, although further investigation of their long-term utility and side effects is needed. In contrast to the advancements in treatment options, the precise molecular mechanism underlying STAT1 GOF remains undetermined. Two primary hypotheses for this mechanism involve impaired STAT1 dephosphorylation and increased STAT1 protein levels, both of which are still controversial. A precise understanding of the molecular mechanism is essential for not only advancing diagnostics but also developing therapeutic interventions. Here, we provide a comprehensive review of STAT1 GOF with the aim of establishing a stronger connection between bedside observations and laboratory research.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosuke Noma
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| |
Collapse
|
5
|
Largent AD, Lambert K, Chiang K, Shumlak N, Liggitt D, Oukka M, Torgerson TR, Buckner JH, Allenspach EJ, Rawlings DJ, Jackson SW. Dysregulated IFN-γ signals promote autoimmunity in STAT1 gain-of-function syndrome. Sci Transl Med 2023; 15:eade7028. [PMID: 37406138 PMCID: PMC11645977 DOI: 10.1126/scitranslmed.ade7028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Heterozygous signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations promote a clinical syndrome of immune dysregulation characterized by recurrent infections and predisposition to humoral autoimmunity. To gain insights into immune characteristics of STAT1-driven inflammation, we performed deep immunophenotyping of pediatric patients with STAT1 GOF syndrome and age-matched controls. Affected individuals exhibited dysregulated CD4+ T cell and B cell activation, including expansion of TH1-skewed CXCR3+ populations that correlated with serum autoantibody titers. To dissect underlying immune mechanisms, we generated Stat1 GOF transgenic mice (Stat1GOF mice) and confirmed the development of spontaneous humoral autoimmunity that recapitulated the human phenotype. Despite clinical resemblance to human regulatory T cell (Treg) deficiency, Stat1GOF mice and humans with STAT1 GOF syndrome exhibited normal Treg development and function. In contrast, STAT1 GOF autoimmunity was characterized by adaptive immune activation driven by dysregulated STAT1-dependent signals downstream of the type 1 and type 2 interferon (IFN) receptors. However, in contrast to the prevailing type 1 IFN-centric model for STAT1 GOF autoimmunity, Stat1GOF mice lacking the type 1 IFN receptor were only partially protected from STAT1-driven systemic inflammation, whereas loss of type 2 IFN (IFN-γ) signals abrogated autoimmunity. Last, germline STAT1 GOF alleles are thought to enhance transcriptional activity by increasing total STAT1 protein, but the underlying biochemical mechanisms have not been defined. We showed that IFN-γ receptor deletion normalized total STAT1 expression across immune lineages, highlighting IFN-γ as the critical driver of feedforward STAT1 elevation in STAT1 GOF syndrome.
Collapse
Affiliation(s)
| | | | - Kristy Chiang
- Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Natali Shumlak
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Present address: Division of Medical Genetics, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Mohammed Oukka
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Immunology, University of Washington School of Medicine; Seattle, WA 98195, USA
| | | | | | - Eric J. Allenspach
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - David J. Rawlings
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Immunology, University of Washington School of Medicine; Seattle, WA 98195, USA
| | - Shaun W. Jackson
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine; Seattle, WA 98195, USA
| |
Collapse
|
6
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Asano T, Utsumi T, Kagawa R, Karakawa S, Okada S. Inborn errors of immunity with loss- and gain-of-function germline mutations in STAT1. Clin Exp Immunol 2023; 212:96-106. [PMID: 36420581 PMCID: PMC10128167 DOI: 10.1093/cei/uxac106] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
STAT1 dysfunction causes a wide range of immune dysregulation phenotypes, which have been classified into four disease types, namely, (i) autosomal recessive (AR) complete STAT1 deficiency, (ii) AR partial STAT1 deficiency, (iii) autosomal dominant (AD) STAT1 deficiency, and (iv) AD STAT1 gain of function (GOF), based on their mode of inheritance and function. Disease types (i, ii, and iii) are caused by STAT1 loss-of-function (LOF) mutations, whereas disease type (iv) is caused by STAT1 GOF mutations. Therefore, the functional analysis of mutations is necessary for the precise diagnosis.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takanori Utsumi
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
8
|
Lu X, Zhang K, Jiang W, Li H, Huang Y, Du M, Wan J, Cao Y, Du L, Liu X, Pan W. Single-cell RNA sequencing combined with whole exome sequencing reveals the landscape of the immune pathogenic response to chronic mucocutaneous candidiasis with STAT1 GOF mutation. Front Immunol 2022; 13:988766. [PMID: 36225936 PMCID: PMC9549386 DOI: 10.3389/fimmu.2022.988766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent or persistent infections with Candida of the skin, nails, and mucous membranes (e.g., mouth, esophagus, and vagina). Compared with that of other infectious diseases, the immune pathogenic mechanism of CMC is still poorly understood. We identified a signal transducer and activator of transcription 1 gain-of-function (c.Y289C) mutation in a CMC patient. Single-cell transcriptional profiling on peripheral blood mononuclear cells from this patient revealed decreases in immature B cells and monocytes. Further analysis revealed several differentially expressed genes related to immune regulation, including RGS1, TNFAIP3, S100A8/A9, and CTSS. In our review of the literature on signal transducer and activator of transcription 1 gain-of-function (c.Y289C) mutations, we identified seven cases in total. The median age of onset for CMC (n=4, data lacking for three cases) was 10.5 years (range: birth to 11 years), with an average onset age of 8 years. There were no reports linking tumors to the c.Y289C mutation, and the incidence of pre-existing clinical disease in patients with the c.Y289C mutation was similar to previous data.
Collapse
Affiliation(s)
- Xiaodi Lu
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Keming Zhang
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Weiwei Jiang
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- Department of Dermatology, 72nd Group Army Hospital of People’s Liberation Army (PLA), Huzhou, China
| | - Hang Li
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Yue Huang
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Mingwei Du
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
| | - Jian Wan
- Department of Dermatology, Pudong New Area People’s Hospital, Shanghai, China
| | - Yanyun Cao
- Department of Dermatology, Pudong New Area People’s Hospital, Shanghai, China
- Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Pudong New Area People’s Hospital, Shanghai, China
| | - Lin Du
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- *Correspondence: Lin Du, ; Xiaogang Liu, ; Weihua Pan,
| | - Xiaogang Liu
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- *Correspondence: Lin Du, ; Xiaogang Liu, ; Weihua Pan,
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medicine Mycology, Naval Medical University, Shanghai, China
- *Correspondence: Lin Du, ; Xiaogang Liu, ; Weihua Pan,
| |
Collapse
|
9
|
Preuss JM, Burret U, Gröger M, Kress S, Scheuerle A, Möller P, Tuckermann JP, Wepler M, Vettorazzi S. Impaired Glucocorticoid Receptor Signaling Aggravates Lung Injury after Hemorrhagic Shock. Cells 2021; 11:cells11010112. [PMID: 35011674 PMCID: PMC8750862 DOI: 10.3390/cells11010112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
We previously showed that attenuated lung injury after hemorrhagic shock (HS) coincided with enhanced levels of the glucocorticoid (GC) receptor (GR) in lung tissue of swine. Here, we investigated the effects of impaired GR signaling on the lung during resuscitated HS using a dysfunctional GR mouse model (GRdim/dim). In a mouse intensive care unit, HS led to impaired lung mechanics and aggravated lung inflammation in GRdim/dim mice compared to wildtype mice (GR+/+). After HS, high levels of the pro-inflammatory and pro-apoptotic transcription factor STAT1/pSTAT1 were found in lung samples from GRdim/dim mice. Lungs of GRdim/dim mice revealed apoptosis, most likely as consequence of reduced expression of the lung-protective Angpt1 compared to GR+/+ after HS. RNA-sequencing revealed increased expression of pro-apoptotic and cytokine-signaling associated genes in lung tissue of GRdim/dim mice. Furthermore, high levels of pro-inflammatory cytokines and iNOS were found in lungs of GRdim/dim mice. Our results indicate impaired repression of STAT1/pSTAT1 due to dysfunctional GR signaling in GRdim/dim mice, which leads to increased inflammation and apoptosis in the lungs. These data highlight the crucial role of functional GR signaling to attenuate HS-induced lung damage.
Collapse
Affiliation(s)
- Jonathan M. Preuss
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany; (J.M.P.); (U.B.); (J.P.T.)
| | - Ute Burret
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany; (J.M.P.); (U.B.); (J.P.T.)
| | - Michael Gröger
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany; (M.G.); (S.K.); (M.W.)
| | - Sandra Kress
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany; (M.G.); (S.K.); (M.W.)
| | - Angelika Scheuerle
- Institute of Pathology, University Hospital, 89081 Ulm, Germany; (A.S.); (P.M.)
| | - Peter Möller
- Institute of Pathology, University Hospital, 89081 Ulm, Germany; (A.S.); (P.M.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany; (J.M.P.); (U.B.); (J.P.T.)
| | - Martin Wepler
- Institute for Anesthesiologic Pathophysiology and Process Engineering, Ulm University, 89081 Ulm, Germany; (M.G.); (S.K.); (M.W.)
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, 89081 Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany; (J.M.P.); (U.B.); (J.P.T.)
- Correspondence:
| |
Collapse
|
10
|
STAT1 gain-of-function heterozygous cell models reveal diverse interferon-signature gene transcriptional responses. NPJ Genom Med 2021; 6:34. [PMID: 33990617 PMCID: PMC8121859 DOI: 10.1038/s41525-021-00196-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) is an autosomal dominant immune disorder marked by wide infectious predisposition, autoimmunity, vascular disease, and malignancy. Its molecular hallmark, elevated phospho-STAT1 (pSTAT1) following interferon (IFN) stimulation, is seen consistently in all patients and may not fully account for the broad phenotypic spectrum associated with this disorder. While over 100 mutations have been implicated in STAT1 GOF, genotype-phenotype correlation remains limited, and current overexpression models may be of limited use in gene expression studies. We generated heterozygous mutants in diploid HAP1 cells using CRISPR/Cas9 base-editing, targeting the endogenous STAT1 gene. Our models recapitulated the molecular phenotype of elevated pSTAT1, and were used to characterize the expression of five IFN-stimulated genes under a number of conditions. At baseline, transcriptional polarization was evident among mutants compared with wild type, and this was maintained following prolonged serum starvation. This suggests a possible role for unphosphorylated STAT1 in the pathogenesis of STAT1 GOF. Following stimulation with IFNα or IFNγ, differential patterns of gene expression emerged among mutants, including both gain and loss of transcriptional function. This work highlights the importance of modeling heterozygous conditions, and in particular transcription factor-related disorders, in a manner which accurately reflects patient genotype and molecular signature. Furthermore, we propose a complex and multifactorial transcriptional profile associated with various STAT1 mutations, adding to global efforts in establishing STAT1 GOF genotype-phenotype correlation and enhancing our understanding of disease pathogenesis.
Collapse
|
11
|
Zhang Y, Li R, Wang X. Monogenetic causes of fungal disease: recent developments. Curr Opin Microbiol 2020; 58:75-86. [DOI: 10.1016/j.mib.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 01/12/2023]
|
12
|
Okada S, Asano T, Moriya K, Boisson-Dupuis S, Kobayashi M, Casanova JL, Puel A. Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy. J Clin Immunol 2020; 40:1065-1081. [PMID: 32852681 DOI: 10.1007/s10875-020-00847-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Heterozygous gain-of-function (GOF) mutations in STAT1 in patients with chronic mucocutaneous candidiasis (CMC) and hypothyroidism were discovered in 2011. CMC is the recurrent or persistent mucocutaneous infection by Candida fungi, and hypothyroidism results from autoimmune thyroiditis. Patients with these diseases develop other infectious diseases, including viral, bacterial, and fungal diseases, and other autoimmune manifestations, including enterocolitis, immune cytopenia, endocrinopathies, and systemic lupus erythematosus. STAT1-GOF mutations are highly penetrant with a median age at onset of 1 year and often underlie an autosomal dominant trait. As many as 105 mutations at 72 residues, including 65 recurrent mutations, have already been reported in more than 400 patients worldwide. The GOF mechanism involves impaired dephosphorylation of STAT1 in the nucleus. Patient cells show enhanced STAT1-dependent responses to type I and II interferons (IFNs) and IL-27. This impairs Th17 cell development, which accounts for CMC. The pathogenesis of autoimmunity likely involves enhanced type I IFN responses, as in other type I interferonopathies. The pathogenesis of other infections, especially those caused by intramacrophagic bacteria and fungi, which are otherwise seen in patients with diminished type II IFN immunity, has remained mysterious. The cumulative survival rates of patients with and without severe disease (invasive infection, cancer, and/or symptomatic aneurysm) at 60 years of age are 31% and 87%, respectively. Severe autoimmunity also worsens the prognosis. The treatment of patients with STAT1-GOF mutations who suffer from severe infectious and autoimmune manifestations relies on hematopoietic stem cell transplantation and/or oral JAK inhibitors.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Stephanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.
- Imagine Institute, University of Paris, Paris, France.
| |
Collapse
|
13
|
Marinelli L, Ristagno E, Fischer P, Abraham R, Joshi A. Cryptococcal pneumonia in an adolescent with a gain-of-function variant in signal transduction and activator of transcription 1 ( STAT1). BMJ Case Rep 2020; 13:13/4/e234120. [PMID: 32327459 DOI: 10.1136/bcr-2019-234120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An adolescent male with a history of autoimmune enteropathy, autoimmune hypothyroidism, aphthous stomatitis and recurrent oral Candida infections only in the setting of curative antibiotic courses presented with cryptococcal pneumonia and perihilar adenitis, which was successfully treated with antifungal therapy. The patient had a complex history with several immunological anomalies. Whole exome sequencing revealed a known STAT1 pathogenic variant, associated with gain of function (GOF). This case expands our understanding of the broad clinical phenotype manifested by STAT1 GOF and emphasises the importance of consideration of this diagnosis in patients presenting with opportunistic infections and autoimmunity.
Collapse
Affiliation(s)
- Lisa Marinelli
- Department of Pathology, San Antonio Military Medical Center, Fort Sam Houston, Texas, USA
| | - Elizabeth Ristagno
- Department of Pediatric and Adolescent Medicine, Mayo Clinic Minnesota, Rochester, Minnesota, USA
| | - Philip Fischer
- Department of Pediatric and Adolescent Medicine, Mayo Clinic Minnesota, Rochester, Minnesota, USA
| | - Roshini Abraham
- Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Avni Joshi
- Department of Pediatric and Adolescent Medicine, Mayo Clinic Minnesota, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Tamaura M, Satoh-Takayama N, Tsumura M, Sasaki T, Goda S, Kageyama T, Hayakawa S, Kimura S, Asano T, Nakayama M, Koseki H, Ohara O, Okada S, Ohno H, Kobayashi M. Human gain-of-function STAT1 mutation disturbs IL-17 immunity in mice. Int Immunol 2019; 32:259-272. [DOI: 10.1093/intimm/dxz079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 01/17/2023] Open
Abstract
Abstract
Gain-of-function (GOF) mutations in the gene for signal transducer and activator of transcription 1 (STAT1) account for approximately one-half of patients with chronic mucocutaneous candidiasis (CMC) disease. Patients with GOF-STAT1 mutations display a broad variety of infectious and autoimmune manifestations in addition to CMC, and those with severe infections and/or autoimmunity have a poor prognosis. The establishment of safe and effective treatments based on a precise understanding of the molecular mechanisms of this disorder is required to improve patient care. To tackle this problem, we introduced the human R274Q GOF mutation into mice [GOF-Stat1 knock-in (GOF-Stat1R274Q)]. To investigate the immune responses, we focused on the small intestine (SI), which contains abundant Th17 cells. Stat1R274Q/R274Q mice showed excess phosphorylation of STAT1 in CD4+ T cells upon IFN-γ stimulation, consistent with the human phenotype in patients with the R274Q mutation. We identified two subpopulations of CD4+ T cells, those with ‘normal’ or ‘high’ level of basal STAT1 protein in Stat1R274Q/R274Q mice. Upon IFN-γ stimulation, the ‘normal’ level CD4+ T cells were more efficiently phosphorylated than those from WT mice, whereas the ‘high’ level CD4+ T cells were not, suggesting that the level of STAT1 protein does not directly correlate with the level of pSTAT1 in the SI. Inoculation of Stat1R274Q/R274Q mice with Candida albicans elicited decreased IL-17-producing CD4+RORγt+ cells. Stat1R274Q/R274Q mice also excreted larger amounts of C. albicans DNA in their feces than control mice. Under these conditions, there was up-regulation of T-bet in CD4+ T cells. GOF-Stat1R274Q mice thus should be a valuable model for functional analysis of this disorder.
Collapse
Affiliation(s)
- Moe Tamaura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Goda
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Kageyama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Kimura
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Manabu Nakayama
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Chen X, Xu Q, Li X, Wang L, Yang L, Chen Z, Zeng T, Xue X, Xu T, Wang Y, Jia Y, Zhao Q, Wu J, Liang F, Tang X, Yang J, An Y, Zhao X. Molecular and Phenotypic Characterization of Nine Patients with STAT1 GOF Mutations in China. J Clin Immunol 2019; 40:82-95. [DOI: 10.1007/s10875-019-00688-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/02/2019] [Indexed: 11/25/2022]
|
16
|
Al Shehri T, Gilmour K, Gothe F, Loughlin S, Bibi S, Rowan AD, Grainger A, Mohanadas T, Cant AJ, Slatter MA, Hambleton S, Lilic D, Leahy TR. Novel Gain-of-Function Mutation in Stat1 Sumoylation Site Leads to CMC/CID Phenotype Responsive to Ruxolitinib. J Clin Immunol 2019; 39:776-785. [PMID: 31512162 DOI: 10.1007/s10875-019-00687-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
Mutations in the coiled-coil and DNA-binding domains of STAT1 lead to delayed STAT1 dephosphorylation and subsequently gain-of-function. The associated clinical phenotype is broad and can include chronic mucocutaneous candidiasis (CMC) and/or combined immunodeficiency (CID). We report a case of CMC/CID in a 10-year-old boy due to a novel mutation in the small ubiquitin molecule (SUMO) consensus site at the C-terminal region of STAT1 leading to gain-of-function by impaired sumoylation. Immunodysregulatory features of disease improved after Janus kinase inhibitor (jakinib) treatment. Functional testing after treatment confirmed reversal of the STAT1 hyper-phosphorylation and downstream transcriptional activity. IL-17 and IL-22 production was, however, not restored with jakinib therapy (ruxolitinib), and the patient remained susceptible to opportunistic infection. In conclusion, a mutation in the SUMO consensus site of STAT1 can lead to gain-of-function that is reversible with jakinib treatment. However, full immunocompetence was not restored, suggesting that this treatment strategy might serve well as a bridge to definitive therapy such as hematopoietic stem cell transplant rather than a long-term treatment option.
Collapse
Affiliation(s)
- Tariq Al Shehri
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Pathology & Laboratory Medicine, Immunology Lab, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Kimberly Gilmour
- Department of Immunology, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children, London, UK
| | - Florian Gothe
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Sam Loughlin
- Regional Molecular Genetics Laboratory, Great Ormond Street Hospital for Children, London, UK
| | - Shahnaz Bibi
- Regional Molecular Genetics Laboratory, Great Ormond Street Hospital for Children, London, UK
| | - Andrew D Rowan
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Angela Grainger
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Thivytra Mohanadas
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew J Cant
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Paediatric Immunology and BMT, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Mary A Slatter
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Paediatric Immunology and BMT, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Sophie Hambleton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Paediatric Immunology and BMT, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Desa Lilic
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy R Leahy
- Department of Paediatric Immunology and Infectious Diseases, Children's Health Ireland, Crumlin, Dublin, D12 N512, Ireland.
| |
Collapse
|
17
|
Zimmerman O, Olbrich P, Freeman AF, Rosen LB, Uzel G, Zerbe CS, Rosenzweig SD, Kuehn HS, Holmes KL, Stephany D, Ding L, Sampaio EP, Hsu AP, Holland SM. STAT1 Gain-of-Function Mutations Cause High Total STAT1 Levels With Normal Dephosphorylation. Front Immunol 2019; 10:1433. [PMID: 31354696 PMCID: PMC6635460 DOI: 10.3389/fimmu.2019.01433] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/07/2019] [Indexed: 12/02/2022] Open
Abstract
Signal transducer and activator of transcription (STAT1)1 gain of function (GOF) pathogenic variants have been associated with increased levels of phosphorylated STAT1 and STAT1-dependent cellular responses. Delayed dephosphorylation was proposed as the underlying mechanism leading to the characteristically raised pSTAT1 levels. We examined the levels of STAT1 protein and message as well as rates of STAT1 phosphorylation, dephosphorylation, and degradation associated with STAT1 GOF pathogenic variants. Fresh peripheral blood mononuclear cells (PBMC) from 14 STAT1 GOF patients carrying 10 different pathogenic variants in the coiled-coil, DNA binding, and SH2 domains and healthy donors were used to study STAT1 levels and phosphorylation (pSTAT1) following IFNγ and IFNα stimulation. STAT1 protein levels were measured by flow cytometry and immunoblot. STAT1 mRNA levels were measured using quantitative reverse transcription PCR. STAT1 protein degradation was studied using cycloheximide. Patient IFNγ and IFNα induced peak pSTAT1 was higher than in healthy controls. The velocity of pSTAT1 dephosphorylation after treatment of IFNγ stimulated CD14+ monocytes with the Janus Kinase (JAK)-inhibitor ruxolitinib was significantly faster in patient cells. STAT1 protein levels in patient CD14+ monocytes and CD3+ T cells were higher than in healthy donors. There was a strong and positive correlation between CD14+ STAT1 protein levels and peak pSTAT1 levels. Patient fresh PBMC STAT1 mRNA levels were increased at rest and after 16 h of incubation. STAT1 protein degradation was similar in patient and healthy volunteer cells. Patient IFNγ receptors 1 and 2 and JAK2 levels were normal. One patient in our cohort was treated with the oral JAK inhibitor ruxolitinib. Treatment was associated with normalization of both STAT1 protein and peak pSTAT1 levels. After JAK inhibitor treatment was stopped the patient's CD14+ monocyte STAT1 protein and peak phosphorylation levels increased proportionally. These findings suggest that patients with STAT1 GOF mutations have higher levels of total STAT1 protein, leading to high levels of pSTAT1 after stimulation, despite rapid STAT1 dephosphorylation and normal degradation.
Collapse
Affiliation(s)
- Ofer Zimmerman
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Peter Olbrich
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States.,Sección de Infectología, Reumatología e Inmunología Pediátrica (SIRIP), Hospital Infantil Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, National Institutes Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Kevin L Holmes
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David Stephany
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Li Ding
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth P Sampaio
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Immunopathogenesis Section, National Institute of Allergy and Immunology, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|