1
|
Liao P, Zhou Y, Qiu Y, Hu R, Li H, Sun H, Li Y. Metal-modulated T cell antitumor immunity and emerging metalloimmunotherapy. Cancer Metastasis Rev 2025; 44:49. [PMID: 40301229 DOI: 10.1007/s10555-025-10266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/19/2025] [Indexed: 05/01/2025]
Abstract
In recent years, increasing evidence has shown that metals play important roles in both innate and adaptive immunity. An emerging concept of metalloimmunotherapy has been proposed, which may accelerate the development of immunotherapy for cancers. Here, we discuss how metals affect T cell function through different signaling pathways. Metals impact the fate of T cells, including their activation, proliferation, cytotoxicity, and differentiation. Most importantly, metals also participate in mitochondrial operation by regulating energy production and reactive oxygen species homeostasis in T cells. We also identified the metal-based mutual effects between tumor cells and T cells in the tumor microenvironment. Overall, the antitumor effect of T cells can be improved by targeting metal metabolism and metalloimmunotherapy, which will be a step forward in the treatment of cancers.
Collapse
Affiliation(s)
- Peiyun Liao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Zhou
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics On Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
- Guangdong Engineering Research Center of Precision Immune Cell Therapy Technology, Zhujiang Hospital, No. 253, Gongye Road, Guangzhou, China.
| |
Collapse
|
2
|
Latour S. Human Immune Responses to Epstein-Barr Virus Highlighted by Immunodeficiencies. Annu Rev Immunol 2025; 43:723-749. [PMID: 40279309 DOI: 10.1146/annurev-immunol-082323-035455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Inborn errors of immunity (IEIs) represent unique in natura models that uncover key components of immunity in humans, in particular those that predispose to infections. Epstein-Barr virus (EBV) is one of the most common opportunistic infectious agents in humans and is responsible for several diseases, including infectious mononucleosis, nonmalignant and malignant lymphoproliferative disorders, hemophagocytic lymphohistiocytosis, and smooth muscle and epithelial tumors. For most individuals, EBV infection persists for life without pathological consequences. IEIs that do not predispose to EBV infection suggest that innate and humoral responses are not necessary or redundant for the immune response to EBV. IEIs associated with high susceptibility to EBV infection provide unequivocal genetic proof of the central role of CD8+ T cell responses in immunity to EBV. They also highlight the distinct steps and pathways required for, on the one hand, the effector cytotoxic functions of CD8+ T cells and, on the other hand, the expansion and maturation of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Paris, France;
- Institut Imagine, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
del Pino Molina L, Monzón Manzano E, Gianelli C, Bravo Gallego LY, Bujalance Fernández J, Acuña P, Serrano YS, Yebra KR, García-Morato MB, Sánchez Zapardiel E, Arias-Salgado EG, Pena RR, Butta N, Granados EL. Effects of two different variants in the MAGT1 gene on B cell subsets, platelet function, and cell glycome composition. Front Immunol 2025; 16:1547808. [PMID: 40170846 PMCID: PMC11958192 DOI: 10.3389/fimmu.2025.1547808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 04/03/2025] Open
Abstract
Introduction X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection and neoplasia (XMEN) disease is caused by hemizygous loss of function (LOF) gene variants in MAGT1. MAGT1 is a plasma membrane transporter of magnesium (Mg2+) that plays a relevant role in immune responses and acts as a second messenger in intracellular signaling, but also it is involved in the glycosylation of proteins. Here we report two gene variants in the MAGT1 gene from two different families with XMEN disease. A de novo variant c.97_98 delinsC affecting one member of one family and three members of a second family presented the hemizygous variant c.80``3G>A, p.Trp268Ter, causing a premature stop codon. Methods We performed a functional validation of these two variants in the MAGT1 gene and their association with decreased NKG2D expression, uncontrolled EBV viremia, and the development of lymphoma-associated complications in three members of the same family. Results We analyzed the B-cell compartment, we found that the B-cell expansion is driven by immature/transitional (CD5- and CD5+) and naïve B cells. The patients presented normal absolute counts of memory B-cells (MBCs) but with differences between them in the diversity of immunoglobulin heavy chain (IgH) isotype distribution in MBC, and diverse reduction of plasma cells. We also explored the alterations of platelets due to hemorrhagic events and a history of thrombocytopenia in some of our patients. We found diminished TRAP-induced calcium flux, P-selectin and CD63 exposure in XMEN patients, while when platelets from patients were stimulated ADP the results were similar to healthy controls. Finally, we explored the glycosylation pattern in platelets and lymphocytes. Our results suggest that different variants in MAGT1 gene might result in different effects on NK cells and platelet glycome composition. Discussion Here, we report the two different outcomes regarding EBV-driven lymphoproliferative complications, the family with three members affected that developed the malignant lymphoproliferative complications before XMEN diagnosis, and the patient with early diagnose of MAGT1 deficiency due to EBV viremia. As a recommendation, XMEN disease should be ruled out in males with impaired clearance of EBV-infection and EBV-driven lymphoproliferative complications.
Collapse
Affiliation(s)
- Lucía del Pino Molina
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | | | - Carla Gianelli
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Luz Yadira Bravo Gallego
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
- Research on Comprehensive Care for Transplanted Children and Adolescent Group, La Paz Institute for Health Reserach (IdiPAZ), Madrid, Spain
| | - Javier Bujalance Fernández
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Paula Acuña
- Hematology Unit, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Yolanda Soto Serrano
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Keren Reche Yebra
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - María Bravo García-Morato
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Elena Sánchez Zapardiel
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | | | - Rebeca Rodríguez Pena
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| | - Nora Butta
- Hematology Unit, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Eduardo López Granados
- Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
- Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Clinical Immunology Department, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
4
|
Boisson-Dupuis S, Bastard P, Béziat V, Bustamante J, Cobat A, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Boisson B. The monogenic landscape of human infectious diseases. J Allergy Clin Immunol 2025; 155:768-783. [PMID: 39724971 PMCID: PMC11875930 DOI: 10.1016/j.jaci.2024.12.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The spectrum of known monogenic inborn errors of immunity is growing, with certain disorders underlying a specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby delineating the essential mechanisms of protective immunity to the corresponding pathogens. These findings also have medical implications, facilitating diagnosis and improving the management of individuals at risk of disease.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
5
|
Gile JJ, Maurer M, Ruan GJ, Abeykoon JP, Heimgartner JR, Baumann NA, McMahon M, Lin Y, Witzig TE. Low magnesium levels and prognosis in newly diagnosed diffuse large B-cell lymphoma. Oncologist 2024; 29:e1779-e1782. [PMID: 39418117 PMCID: PMC11630732 DOI: 10.1093/oncolo/oyae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/17/2024] [Indexed: 10/19/2024] Open
Abstract
Magnesium (Mg) is an essential element involved in cellular metabolism. We demonstrated that in patients with diffuse large B-cell lymphoma (DLBCL) undergoing autologous stem cell transplant (SCT), those with a serum Mg < 2.0 mg/dL at the time of transplant had worse outcomes. In this study, we aimed to learn the prognostic value of low serum Mg in patients with untreated DLBCL. We analyzed serum from 408 patients and tested 2 Mg cutpoints-low (<1.7 mg/dL) and low normal (<2.0 mg/dL), a range we found associated with lower survival in the SCT group. We found 3% of patients with low levels and 23% with low normal levels. Low normal serum Mg levels were associated with a higher stage at diagnosis, more extranodal involvement, higher international prognostic index score, lower overall survival (OS), and event-free survival. These data warrant testing Mg replacement to a target of >2.0 mg/dL to learn if survival can be improved.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Female
- Prognosis
- Male
- Middle Aged
- Magnesium/blood
- Aged
- Adult
- Aged, 80 and over
Collapse
Affiliation(s)
- Jennifer J Gile
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Matthew Maurer
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, United States
| | - Gordon J Ruan
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Jithma P Abeykoon
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Joy R Heimgartner
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Nikola A Baumann
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Molly McMahon
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Yi Lin
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Thomas E Witzig
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
6
|
Barman P, Basu S, Goyal T, Sharma S, Siniah S, Tyagi R, Sharma K, Jindal AK, Pilania RK, Vignesh P, Dhaliwal M, Suri D, Rawat A, Singh S. Epstein-Barr virus-driven lymphoproliferation in inborn errors of immunity: a diagnostic and therapeutic challenge. Expert Rev Clin Immunol 2024; 20:1331-1346. [PMID: 39066572 DOI: 10.1080/1744666x.2024.2386427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEI) are a group of genetically heterogeneous disorders with a wide-ranging clinical phenotype, varying from increased predisposition to infections to dysregulation of the immune system, including autoimmune phenomena, autoinflammatory disorders, lymphoproliferation, and malignancy. Lymphoproliferative disorder (LPD) in IEI refers to the nodal or extra-nodal and persistent or recurrent clonal or non-clonal proliferation of lymphoid cells in the clinical context of an inherited immunodeficiency or immune dysregulation. The Epstein-Barr virus (EBV) plays a significant role in the etiopathogenesis of LPD in IEIs. In patients with specific IEIs, lack of immune surveillance can lead to an uninhibited proliferation of EBV-infected cells that may result in chronic active EBV infection, hemophagocytic lymphohistiocytosis, and LPD, particularly lymphomas. AREAS COVERED We intend to discuss the pathogenesis, diagnosis, and treatment modalities directed toward EBV-associated LPD in patients with distinct IEIs. EXPERT OPINION EBV-driven lymphoproliferation in IEIs presents a diagnostic and therapeutic problem that necessitates a comprehensive understanding of host-pathogen interactions, immune dysregulation, and personalized treatment approaches. A multidisciplinary approach involving immunologists, hematologists, infectious disease specialists, and geneticists is paramount to addressing the diagnostic and therapeutic challenges posed by this intriguing yet formidable clinical entity.
Collapse
Affiliation(s)
- Prabal Barman
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suprit Basu
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taru Goyal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saniya Sharma
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sangeetha Siniah
- Pediatric Infectious Disease and Immunology Unit, Department of Paediatrics, Hospital Tunku, Azizah Women and Children Hospital, Kuala Lumpur, Malaysia
| | - Rahul Tyagi
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Sharma
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur K Jindal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh K Pilania
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manpreet Dhaliwal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Aboluwarin O, Kyaw KY, Odega E, Huet H, Nambi R. Recalcitrant oropharyngeal and genital warts in XMEN disease. Clin Exp Dermatol 2024; 49:1281-1283. [PMID: 38660771 DOI: 10.1093/ced/llae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The identification of primary immunodeficiencies is often delayed because of the inherent clinical heterogeneity and gaps in clinicians’ understanding of the clinical landscape. We present an unusual case of a patient with X-linked immunodeficiency with magnesium defect, Epstein–Barr virus infection and neoplasia (XMEN) disease. To the best of our knowledge, this is the first case report of an individual with XMEN disease presenting with recalcitrant oropharyngeal and genital warts.
Collapse
Affiliation(s)
| | - Khin Y Kyaw
- University Hospitals Derby and Burton NHS Foundation Trust, Derby, UK
| | - Emmanuel Odega
- University Hospitals Derby and Burton NHS Foundation Trust, Derby, UK
| | - Hannah Huet
- University Hospitals Derby and Burton NHS Foundation Trust, Derby, UK
| | - Rabi Nambi
- University Hospitals Derby and Burton NHS Foundation Trust, Derby, UK
| |
Collapse
|
8
|
Villenheimo H, Glumoff V, Räsänen S, Jartti A, Rusanen H, Åström P, Kuismin O, Hautala T. XMEN disease caused by the novel MAGT1 p.(Trp136*) mutation may present with neuropsychiatric symptoms. J Neuroimmunol 2024; 393:578386. [PMID: 38878600 DOI: 10.1016/j.jneuroim.2024.578386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/30/2024] [Accepted: 06/03/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND X-linked MAGT1 deficiency with increased susceptibility to EBV-infection and N-linked glycosylation defect (XMEN) disease is caused by MAGT1 loss-of-function (LOF) mutations. The disease commonly presents with respiratory symptoms. Although the central nervous system can be affected, the spectrum of neuropsychiatric symptoms is not completely understood. CASES We describe a XMEN disease family presenting with atypical neuropsychiatric symptoms. The index, a previously healthy male, developed schizophrenia. Several years later, a novel hemizygous LOF MAGT1 c.407G > A, p.(Trp136X) LOF mutation and XMEN disease diagnosis was confirmed in his brother due to the burden of respiratory infections. Family screening also found the index to suffer from XMEN disease; the XMEN disease was concluded to contribute to the development of schizophrenia. CONCLUSIONS Our case description demonstrates that the spectrum of XMEN disease clinical presentations can be variable, and the condition may also present with severe neuropsychiatric consequences. While respiratory infections are common among schizophrenia patients, the possibility of inborn errors in immunity should be considered whenever an unexplained personal or family history infection susceptibility is encountered. We recommend evaluating complete family history to exclude unusual monogenic disorders associated or presenting with psychiatric manifestations.
Collapse
Affiliation(s)
- Henry Villenheimo
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu, Finland
| | - Virpi Glumoff
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu, Finland
| | - Sami Räsänen
- Research Unit of Clinical Medicine, Psychiatry, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland
| | - Airi Jartti
- Department of Diagnostic Radiology, Oulu University Hospital, Kajaanintie 50, 90220 Oulu, Finland
| | - Harri Rusanen
- Research Unit of Clinical Neuroscience, University of Oulu and Department of Neurology, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Pirjo Åström
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Outi Kuismin
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Department of Clinical Genetics, Oulu University Hospital and Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Timo Hautala
- Research Unit of Biomedicine and Internal Medicine, University of Oulu, Aapistie 5, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; ERN-RITA Core Center Member, RITAFIN Consortium, Division of Infectious Diseases, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
9
|
Golloshi K, Mitchell W, Kumar D, Malik S, Parikh S, Aljudi AA, Castellino SM, Chandrakasan S. HLH and Recurrent EBV Lymphoma as the presenting manifestation of MAGT1 Deficiency: A Systematic Review of the Expanding Disease Spectrum. J Clin Immunol 2024; 44:153. [PMID: 38896122 DOI: 10.1007/s10875-024-01749-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Magnesium transporter 1 (MAGT1) gene loss-of-function variants lead to X-linked MAGT1 deficiency with increased susceptibility to EBV infection and N-glycosylation defect (XMEN), a condition with a variety of clinical and immunological effects. In addition, MAGT1 deficiency has been classified as a congenital disorder of glycosylation (CDG) due to its unique role in glycosylation of multiple substrates including NKG2D, necessary for viral protection. Due to the predisposition for EBV, this etiology has been linked with hemophagocytic lymphohistiocytosis (HLH), however only limited literature exists. Here we present a complex case with HLH and EBV-driven classic Hodgkin lymphoma (cHL) as the presenting manifestation of underlying immune defect. However, the patient's underlying immunodeficiency was not identified until his second recurrence of Hodgkin disease, recurrent episodes of Herpes Zoster, and after he had undergone autologous hematopoietic stem cell transplant (HSCT) for refractory Hodgkin lymphoma. This rare presentation of HLH and recurrent lymphomas without some of the classical immune deficiency manifestations of MAGT1 deficiency led us to review the literature for similar presentations and to report the evolving spectrum of disease in published literature. Our systematic review showcased that MAGT1 predisposes to multiple viruses (including EBV) and adds risk of viral-driven neoplasia. The roles of MAGT1 in the immune system and glycosylation were highlighted through the multiple organ dysfunction showcased by the previously validated Immune Deficiency and Dysregulation Activity (IDDA2.1) score and CDG-specific Nijmegen Pediatric CDG Rating Scale (NPCRS) score for the patient cohort in the systematic review.
Collapse
Affiliation(s)
| | - William Mitchell
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Deepak Kumar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Sakshi Malik
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Suhag Parikh
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Ahmed A Aljudi
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Sharon M Castellino
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Gao Y, Liu S, Huang Y, Li F, Zhang Y. Regulation of anti-tumor immunity by metal ion in the tumor microenvironment. Front Immunol 2024; 15:1379365. [PMID: 38915413 PMCID: PMC11194341 DOI: 10.3389/fimmu.2024.1379365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Metal ions play an essential role in regulating the functions of immune cells by transmitting intracellular and extracellular signals in tumor microenvironment (TME). Among these immune cells, we focused on the impact of metal ions on T cells because they can recognize and kill cancer cells and play an important role in immune-based cancer treatment. Metal ions are often used in nanomedicines for tumor immunotherapy. In this review, we discuss seven metal ions related to anti-tumor immunity, elucidate their roles in immunotherapy, and provide novel insights into tumor immunotherapy and clinical applications.
Collapse
Affiliation(s)
- Yaoxin Gao
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Liu
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Huang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center & Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Wang J, Zhou M, Zhou J, Xiao M, Huang L. Monozygotic Twins with MAGT1 Deficiency and Epstein-Barr virus-positive Classic Hodgkin Lymphoma Receiving anti-CD30 CAR T-cell Immunotherapy: A case Report. J Clin Immunol 2024; 44:91. [PMID: 38578340 PMCID: PMC10997540 DOI: 10.1007/s10875-024-01690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Jiachen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Mi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China.
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China.
| |
Collapse
|
12
|
Pascoal C, Francisco R, Mexia P, Pereira BL, Granjo P, Coelho H, Barbosa M, dos Reis Ferreira V, Videira PA. Revisiting the immunopathology of congenital disorders of glycosylation: an updated review. Front Immunol 2024; 15:1350101. [PMID: 38550576 PMCID: PMC10972870 DOI: 10.3389/fimmu.2024.1350101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Glycosylation is a critical post-translational modification that plays a pivotal role in several biological processes, such as the immune response. Alterations in glycosylation can modulate the course of various pathologies, such as the case of congenital disorders of glycosylation (CDG), a group of more than 160 rare and complex genetic diseases. Although the link between glycosylation and immune dysfunction has already been recognized, the immune involvement in most CDG remains largely unexplored and poorly understood. In this study, we provide an update on the immune dysfunction and clinical manifestations of the 12 CDG with major immune involvement, organized into 6 categories of inborn errors of immunity according to the International Union of Immunological Societies (IUIS). The immune involvement in phosphomannomutase 2 (PMM2)-CDG - the most frequent CDG - was comprehensively reviewed, highlighting a higher prevalence of immune issues during infancy and childhood and in R141H-bearing genotypes. Finally, using PMM2-CDG as a model, we point to links between abnormal glycosylation patterns in host cells and possibly favored interactions with microorganisms that may explain the higher susceptibility to infection. Further characterizing immunopathology and unusual host-pathogen adhesion in CDG can not only improve immunological standards of care but also pave the way for innovative preventive measures and targeted glycan-based therapies that may improve quality of life for people living with CDG.
Collapse
Affiliation(s)
- Carlota Pascoal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Rita Francisco
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Patrícia Mexia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Beatriz Luís Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Pedro Granjo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Helena Coelho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Mariana Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Vanessa dos Reis Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Paula Alexandra Videira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| |
Collapse
|
13
|
Mohsin N, Hunt D, Yan J, Jabbour AJ, Nghiem P, Choi J, Zhang Y, Freeman AF, Bergerson JRE, Dell’Orso S, Lachance K, Kulikauskas R, Collado L, Cao W, Lack J, Similuk M, Seifert BA, Ghosh R, Walkiewicz MA, Brownell I. Genetic Risk Factors for Early-Onset Merkel Cell Carcinoma. JAMA Dermatol 2024; 160:172-178. [PMID: 38170500 PMCID: PMC10765310 DOI: 10.1001/jamadermatol.2023.5362] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024]
Abstract
Importance Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer. Of the patients who develop MCC annually, only 4% are younger than 50 years. Objective To identify genetic risk factors for early-onset MCC via genomic sequencing. Design, Setting, and Participants The study represents a multicenter collaboration between the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Institute of Allergy and Infectious Diseases (NIAID), and the University of Washington. Participants with early-onset and later-onset MCC were prospectively enrolled in an institutional review board-approved study at the University of Washington between January 2003 and May 2019. Unrelated controls were enrolled in the NIAID Centralized Sequencing Program (CSP) between September 2017 and September 2021. Analysis was performed from September 2021 and March 2023. Early-onset MCC was defined as disease occurrence in individuals younger than 50 years. Later-onset MCC was defined as disease occurrence at age 50 years or older. Unrelated controls were evaluated by the NIAID CSP for reasons other than familial cancer syndromes, including immunological, neurological, and psychiatric disorders. Results This case-control analysis included 1012 participants: 37 with early-onset MCC, 45 with later-onset MCC, and 930 unrelated controls. Among 37 patients with early-onset MCC, 7 (19%) had well-described variants in genes associated with cancer predisposition. Six patients had variants associated with hereditary cancer syndromes (ATM = 2, BRCA1 = 2, BRCA2 = 1, and TP53 = 1) and 1 patient had a variant associated with immunodeficiency and lymphoma (MAGT1). Compared with 930 unrelated controls, the early-onset MCC cohort was significantly enriched for cancer-predisposing pathogenic or likely pathogenic variants in these 5 genes (odds ratio, 30.35; 95% CI, 8.89-106.30; P < .001). No germline disease variants in these genes were identified in 45 patients with later-onset MCC. Additional variants in DNA repair genes were also identified among patients with MCC. Conclusions and Relevance Because variants in certain DNA repair and cancer predisposition genes are associated with early-onset MCC, genetic counseling and testing should be considered for patients presenting at younger than 50 years.
Collapse
Affiliation(s)
- Noreen Mohsin
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland
| | - Devin Hunt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Jia Yan
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | | | - Paul Nghiem
- Division of Dermatology, University of Washington, Seattle
| | - Jaehyuk Choi
- Northwestern University Department of Dermatology and Department of Biochemistry and Molecular Genetics, Chicago, Illinois
| | - Yue Zhang
- Northwestern University Department of Dermatology and Department of Biochemistry and Molecular Genetics, Chicago, Illinois
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, Maryland
| | | | | | | | | | - Loren Collado
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland
| | - Wenjia Cao
- Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, Maryland
| | - Justin Lack
- Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, Maryland
| | - Morgan Similuk
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Bryce A. Seifert
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Rajarshi Ghosh
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Magdalena A. Walkiewicz
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland
| | - Isaac Brownell
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
14
|
Benavides D, Ebrahim A, Ravell JC, Lenardo M, Gahl WA, Toro C. Adult-onset neurodegeneration in XMEN disease. J Neuroimmunol 2024; 386:578251. [PMID: 38041964 PMCID: PMC10842803 DOI: 10.1016/j.jneuroim.2023.578251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND XMEN (X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV), and N-linked glycosylation defect) disease results from loss-of-function mutations in MAGT1, a protein that serves as a magnesium transporter and a subunit of the oligosaccharyltransferase (OST) complex. MAGT1 deficiency disrupts N-linked glycosylation, a critical regulator of immune function. XMEN results in recurrent EBV infections and a propensity for EBV-driven malignancies. Although XMEN is recognized as a systemic congenital disorder of glycosylation (CDG), its neurological involvement is rare and poorly characterized. CASES Two young men, ages 32 and 33, are described here with truncating mutations in MAGT1, progressive behavioral changes, and neurodegenerative symptoms. These features manifested well into adulthood. Both patients still presented with many of the molecular and clinical hallmarks of the typical XMEN patient, including chronic EBV viremia and decreased expression of NKG2D. CONCLUSION While previously unrecognized, XMEN may include prominent and disabling CNS manifestations. How MAGT1 deficiency directly or indirectly contributes to neurodegeneration remains unclear. Elucidating this mechanism may contribute to the understanding of neurodegeneration more broadly.
Collapse
Affiliation(s)
- Daniel Benavides
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD, USA.
| | - Anusha Ebrahim
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD, USA.
| | - Juan C Ravell
- Center for Allergy, Asthma, & Immune Disorders, Hackensack University Medical Center, Hackensack, NJ, USA; Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA.
| | - Michael Lenardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA.
| | - William A Gahl
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD, USA; Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Camilo Toro
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
de Groot PF, Kwakernaak AJ, van Leeuwen EMM, van Spaendonk RML, Kooi EJ, de Jong D, Kuijpers TW, Zijlstra JM, de Bree GJ. Case report: XMEN disease: a patient with recurrent Hodgkin lymphoma and immune thrombocytopenia. Front Med (Lausanne) 2023; 10:1264329. [PMID: 38143450 PMCID: PMC10740371 DOI: 10.3389/fmed.2023.1264329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
Here we present the case of a 28-year-old man with X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection and neoplasia (XMEN) disease. He presented with immune thrombocytopenia within 1 year after successful autologous hematopoietic stem cell transplantation for recurrent EBV-associated classical Hodgkin lymphoma (CHL). The combination of EBV- associated malignancy, autoimmunity, recurrent airway infections at young age and bronchiectasis, prompted immunological investigation for an inborn error of immunity (IEI). Genetic testing revealed XMEN disease. XMEN disease is characterized by a glycosylation defect due to mutations in the MAGT1 gene. Germline mutations in the MAGT1 gene disrupt glycosylation of the NKG2D receptor in immune cells, including natural killer and CD8-positive T cells, vital for immune surveillance, especially against EBV. Consequently, individuals with XMEN disease, are prone to EBV-associated lymphoproliferative disorders in addition to auto-immunity. Early recognition of adult onset IEI-related B-lymphoproliferative disorders, including CHL is of vital importance for treatment decisions, including (allogeneic) haematopoietic stem cell transplantation and family screening.
Collapse
Affiliation(s)
- Pieter F. de Groot
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Arjan J. Kwakernaak
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Ester M. M. van Leeuwen
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - Evert-Jan Kooi
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Daphne de Jong
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Paediatric Immunology, Infectious Diseases and Rheumatology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Josée M. Zijlstra
- Division of Haematology, Department of Internal Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Godelieve J. de Bree
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
16
|
Naor S, Adam E, Schiby G, Gratzinger D. A personalized approach to lymphoproliferations in patients with inborn errors of immunity. Semin Diagn Pathol 2023; 40:408-419. [PMID: 37479638 DOI: 10.1053/j.semdp.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Biopsies from patients with inborn error of immunity (IEI) may pose a diagnostic challenge due to the abnormal anatomy of their lymphoid organs and the tendency for the development of lymphoproliferations in various organs, some of which may lead to the wrong impression of malignant lymphoma which may prompt aggressive unnecessary treatment. In this article we will review typical histologic findings in various IEI's described in the literature and discuss the appropriate approach to the diagnosis of lymphoproliferations in these patients by presenting illustrative cases.
Collapse
Affiliation(s)
- Shachar Naor
- Institute of Pathology, Sheba Medical Center, Ramat Gan, Israel.
| | - Etai Adam
- Division of Pediatric Hematology and Oncology, Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Ramat Gan, Israel
| | - Ginette Schiby
- Institute of Pathology, Sheba Medical Center, Ramat Gan, Israel
| | - Dita Gratzinger
- Department of Pathology, Stanford University, Stanford, CA, United States
| |
Collapse
|
17
|
Manolios N, Papaemmanouil J, Adams DJ. The role of ion channels in T cell function and disease. Front Immunol 2023; 14:1238171. [PMID: 37705981 PMCID: PMC10497217 DOI: 10.3389/fimmu.2023.1238171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023] Open
Abstract
T lymphocytes (T cells) are an important sub-group of cells in our immune system responsible for cell-mediated adaptive responses and maintaining immune homeostasis. Abnormalities in T cell function, lead the way to the persistence of infection, impaired immunosurveillance, lack of suppression of cancer growth, and autoimmune diseases. Ion channels play a critical role in the regulation of T cell signaling and cellular function and are often overlooked and understudied. Little is known about the ion "channelome" and the interaction of ion channels in immune cells. This review aims to summarize the published data on the impact of ion channels on T cell function and disease. The importance of ion channels in health and disease plus the fact they are easily accessible by virtue of being expressed on the surface of plasma membranes makes them excellent drug targets.
Collapse
Affiliation(s)
- Nicholas Manolios
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Rheumatology, Westmead Hospital, Sydney, NSW, Australia
| | - John Papaemmanouil
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
18
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
19
|
Essletzbichler P, Sedlyarov V, Frommelt F, Soulat D, Heinz LX, Stefanovic A, Neumayer B, Superti-Furga G. A genome-wide CRISPR functional survey of the human phagocytosis molecular machinery. Life Sci Alliance 2023; 6:e202201715. [PMID: 36725334 PMCID: PMC9892931 DOI: 10.26508/lsa.202201715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Phagocytosis, the process by which cells engulf large particles, plays a vital role in driving tissue clearance and host defense. Its dysregulation is connected to autoimmunity, toxic accumulation of proteins, and increased risks for infections. Despite its importance, we lack full understanding of all molecular components involved in the process. To create a functional map in human cells, we performed a genome-wide CRISPRko FACS screen that identified 716 genes. Mapping those hits to a comprehensive protein-protein interaction network annotated for functional cellular processes allowed retrieval of protein complexes identified multiple times and detection of missing phagocytosis regulators. In addition to known components, such as the Arp2/3 complex, the vacuolar-ATPase-Rag machinery, and the Wave-2 complex, we identified and validated new phagocytosis-relevant functions, including the oligosaccharyltransferase complex (MAGT1/SLC58A1, DDOST, STT3B, and RPN2) and the hypusine pathway (eIF5A, DHPS, and DOHH). Overall, our phagocytosis network comprises elements of cargo uptake, shuffling, and biotransformation through the cell, providing a resource for the identification of potential novel drivers for diseases of the endo-lysosomal system. Our approach of integrating protein-protein interaction offers a broadly applicable way to functionally interpret genome-wide screens.
Collapse
Affiliation(s)
- Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vitaly Sedlyarov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Didier Soulat
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leonhard X Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Adrijana Stefanovic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt Neumayer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Nielsen C, Nilsson C, Assing K, Herlin MK, Skakkebæk A, Larsen M, Rathe M, Beck HC, Vinholt PJ. Compromised PAR1 Activation-A Cause for Bleeding in XMEN? Thromb Haemost 2023; 123:641-644. [PMID: 36720253 DOI: 10.1055/a-2023-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Christine Nilsson
- Department of Clinical Immunology, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Kristian Assing
- Department of Clinical Immunology, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Morten Krogh Herlin
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Skakkebæk
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Syddanmark, Denmark.,Department of Clinical Research, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Mathias Rathe
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hans Christian Beck
- Department of Clinical Biochemistry/Centre for Clinical Proteomics, Odense University Hospital, Odense, Syddanmark, Denmark
| | - Pernille Just Vinholt
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark.,University of Southern Denmark, Odense, Syddanmark, Denmark
| |
Collapse
|
21
|
Yang W, Lian X, Chen H. The association of serum magnesium with infection in new-onset systemic lupus erythematosus patients. Lupus 2023; 32:380-387. [PMID: 36595713 DOI: 10.1177/09612033221149884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To assess the association of serum magnesium with infection in new-onset systemic lupus erythematosus (SLE) patients. METHODS We conducted a single-center retrospective cohort study of new-onset SLE patients from 2012 to 2021. The hospitalized SLE patients were divided into infection and noninfection groups. Logistic regression analysis was conducted to examine the association of hypomagnesemia with infection. RESULTS A total of 476 new-onset SLE patients were included, with 299 cases in the infection group and 177 cases in the noninfection group. The patients were mostly females (81.7%). The average age at diagnosis was 43.7 years. The median duration was 1.0 month. The prevalence of hypomagnesemia (<0.70), normomagnesemia (0.70-1.10), and hypermagnesemia (>1.10) in new-onset SLE patients was 14.3%, 83.4%, and 2.3%, respectively. The prevalence of hypomagnesemia was 18.4% in the infection group and 7.3% in the noninfection group (p = .001). The baseline value of serum magnesium was 0.819 mmol/L, with values of 0.799 mmol/L in the infection group and 0.854 mmol/L in the noninfection group (p = .000). The following clinical variables were significantly different between the two groups (p < .05): age, duration, hospitalization stay, fever, serositis, and SLE Disease Activity Index 2000 (SLEDAI 2K). The laboratory parameters, including hemoglobin, white blood cell count, albumin level, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), procalcitonin, and complement C3 were also significantly different between the two groups (p < .05). The mortality was 4.4% (21/476), with 20 cases occurring in the infection group. Logistic regression analysis showed that hypomagnesemia was associated with an increased risk of infection (p = .001) and poor prognosis (p = .015). CONCLUSION Hypermagnesemia was rare in new-onset SLE patients. Hypomagnesemia was common and was associated with an increased risk of infection in new-onset SLE patients.
Collapse
Affiliation(s)
- Wenfang Yang
- Department of Nephrology, 117893Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Xuejian Lian
- Department of Nephrology, 117893Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Hongpu Chen
- Department of Rheumatology, 117893Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| |
Collapse
|
22
|
Li Z, Mu W, Xiao M. Genetic lesions and targeted therapy in Hodgkin lymphoma. Ther Adv Hematol 2023; 14:20406207221149245. [PMID: 36654739 PMCID: PMC9841868 DOI: 10.1177/20406207221149245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Hodgkin lymphoma is a special type of lymphoma in which tumor cells frequently undergo multiple genetic lesions that are associated with accompanying pathway abnormalities. These pathway abnormalities are dominated by active signaling pathways, such as the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway and the NFκB (nuclear factor kappa-B) pathway, which usually result in hyperactive survival signaling. Targeted therapies often play an important role in hematologic malignancies, such as CAR-T therapy (chimeric antigen receptor T-cell immunotherapy) targeting CD19 and CD22 in diffuse large B-cell lymphoma, while in Hodgkin lymphoma, the main targets of targeted therapies are CD30 molecules and PD1 molecules. Drugs targeting other molecules are also under investigation. This review summarizes the actionable genetic lesions, current treatment options, clinical trials for Hodgkin lymphoma and the potential value of those genetic lesions in clinical applications.
Collapse
Affiliation(s)
- Zhe Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hankou, Wuhan 430030, China
| |
Collapse
|
23
|
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections. J Med Virol 2023; 95:e27840. [PMID: 35524342 PMCID: PMC9790391 DOI: 10.1002/jmv.27840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are two persistent oncogenic γ-herpesviruses with an exclusive tropism for humans. They cause cancers of lymphocyte, epithelial and endothelial cell origin, such as Burkitt's and Hodgkin's lymphoma, primary effusion lymphoma, nasopharyngeal carcinoma, and Kaposi sarcoma. Mutations in immune-related genes but also adverse events during immune checkpoint inhibition in cancer patients have revealed molecular requirements for immune control of EBV and KSHV. These include costimulatory and coinhibitory receptors on T cells that are currently explored or already therapeutically targeted in tumor patients. This review discusses these co-receptors and their influence on EBV- and KSHV-associated diseases. The respective studies reveal surprising specificities of some of these receptors for immunity to these tumor viruses, benefits of their blockade for some but not other virus-associated diseases, and that EBV- and KSHV-specific immune control should be monitored during immune checkpoint inhibition to prevent adverse events that might be associated with their reactivation during treatment.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology Department, Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
24
|
Rowane MJ, Stewart-Bates BC, Doll RJ, Meyerson HJ, Venglarcik JS, Callahan M, Fill L, Saab R, Ochs HD, Hostoffer RW. CD5 B-Cell Predominant Primary Immunodeficiency: Part of the Spectrum of MAGT1 Deficiency. THERAPEUTIC ADVANCES IN ALLERGY AND RHINOLOGY 2023; 14:27534030231199675. [PMID: 37706151 PMCID: PMC10496486 DOI: 10.1177/27534030231199675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Background Selective anti-polysaccharide antibody deficiency (SPAD) with CD5 B-cell predominance and autoimmune phenomena was identified in a male cohort first reported by Antall et al in 1999. The phenotypically likewise and genotypically identical X-linked immunodeficiency with magnesium defect, Epstein-Barr Virus infection, and neoplasia (XMEN) disease was defined as a novel primary immunodeficiency (PID) in 2011. Recent studies of the magnesium transporter 1 (MAGT1) gene mutation reveal glycosylation defects contributing to more phenotypic variance than the "XMEN" title pathologies. The updated title, "X-linked MAGT1 deficiency with increased susceptibility to EBV-infection and N-linked glycosylation defect," was proposed in 2020. Objectives To reflect the patient population more accurately, a prospective classification update may consider MAGT1 glycobiological errors contributing to phenotypic variance but also pre-genetic testing era reports with CD5 B-cell predominance. Methods Patient 1 from Antall et al presented at 28 years of age for further immunological evaluation of his CD5/CD19 B-cell predominance diagnosed at 5 years old. Design Immune re-evaluation done through flow cytometry and next-generation sequencing. Results Flow cytometry B-cell phenotyping revealed persistent CD5+CD19+ (93%). Flow cytometric histogram quantified reduced activator CD16+CD56+ natural killer and CD8+ T-cell receptor, Group 2, Member D (NKG2D) glycoprotein expression. A c.923-1_934 deletion loss of function mutation was identified in the MAGT1 gene. Conclusion We suggest the novel PID XMEN, based on its CD5 B-cell predominance, had been discovered and reported over a decade earlier as CD5+ PID based on the MAGT1 mutation found in the same. We encourage consideration of combining these labels and recent findings to offer the most accurate classification of this disease.
Collapse
Affiliation(s)
- Marija J. Rowane
- Children's Hospital of St. Francis at Oklahoma State University, Tulsa, Oklahoma
| | | | - Rayna J. Doll
- Spokane Allergy & Asthma Clinic, Spokane, Washington
| | - Howard J. Meyerson
- Division of Clinical Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - John S. Venglarcik
- Department of Pediatrics, Northeast Ohio Medical University, Rootstown, Ohio
| | - Meghan Callahan
- Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania
| | - Lauren Fill
- Allergy/Immunology Associates, Inc., Mayfield Heights, Ohio
| | - Remie Saab
- University Hospitals Community Consortium Geauga, Geauga, Ohio
| | - Hans D. Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | | |
Collapse
|
25
|
Abstract
Congenital disorders of glycosylation (CDG) are ultrarare, genetically and clinically heterogeneous metabolic disorders. Although the number of identified CDG is growing rapidly, there are few therapeutic options. Most treatments involve dietary supplementation with monosaccharides or other precursors. These approaches are relatively safe, but in many cases, the molecular and biochemical underpinnings are incomplete. Recent studies demonstrate that yeast, worm, fly, and zebrafish models of CDG are powerful tools in screening repurposed drugs, ushering a new avenue to search for novel therapeutic options. Here we present a perspective on compounds that are currently in use for CDG treatment or have a potential to be applied as therapeutics in the near future.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| |
Collapse
|
26
|
Meng Q, Sun H, Liu J. Precise somatic genome editing for treatment of inborn errors of immunity. Front Immunol 2022; 13:960348. [PMID: 36091069 PMCID: PMC9459235 DOI: 10.3389/fimmu.2022.960348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid advances in high throughput sequencing have substantially expedited the identification and diagnosis of inborn errors of immunity (IEI). Correction of faulty genes in the hematopoietic stem cells can potentially provide cures for the majority of these monogenic immune disorders. Given the clinical efficacies of vector-based gene therapies already established for certain groups of IEI, the recently emerged genome editing technologies promise to bring safer and more versatile treatment options. Here, we review the latest development in genome editing technologies, focusing on the state-of-the-art tools with improved precision and safety profiles. We subsequently summarize the recent preclinical applications of genome editing tools in IEI models, and discuss the major challenges and future perspectives of such treatment modalities. Continued explorations of precise genome editing for IEI treatment shall move us closer toward curing these unfortunate rare diseases.
Collapse
Affiliation(s)
- Qingzhou Meng
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center at Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Watson CM, Nadat F, Ahmed S, Crinnion LA, O'Riordan S, Carter C, Savic S. Identification of a novel MAGT1 mutation supports a diagnosis of XMEN disease. Genes Immun 2022; 23:66-72. [PMID: 35264785 PMCID: PMC9042700 DOI: 10.1038/s41435-022-00166-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
XMEN (X-linked immunodeficiency with magnesium defect) is caused by loss-of-function mutations in MAGT1 which is encoded on the X chromosome. The disorder is characterised by CD4 lymphopenia, severe chronic viral infections and defective T-lymphocyte activation. XMEN patients are susceptible to Epstein-Barr virus infections and persistently low levels of intracellular Mg2+. Here we describe a patient that presented with multiple recurrent infections and a subsequent diffuse B-cell lymphoma. Molecular genetic analysis by exome sequencing identified a novel hemizygous MAGT1 nonsense mutation c.1005T>A (NM_032121.5) p.(Cys335*), confirming a diagnosis of XMEN deficiency. Follow-up immunophenotyping was performed by antibody staining and flow cytometry; proliferation was determined by 3H-thymidine uptake after activation by PHA and anti-CD3. Cytotoxic natural killer cell activity was assessed with K562 target cells using the NKTESTTM assay. While lymphocyte populations were superficially intact, B cells were largely naive with a reduced memory cell compartment. Translated NKG2D was absent on both NK and T cells in the proband, and normally expressed in the carrier mother. In vitro NK cell activity was intact in both the proband and his mother. This report adds to the growing number of identified XMEN cases, raising awareness of a, still rare, X-linked immunodeficiency.
Collapse
Affiliation(s)
- Christopher M Watson
- North East and Yorkshire Genomic Laboratory Hub, The Leeds Teaching Hospitals NHS Trust, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.,Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Fatima Nadat
- Department of Clinical Immunology and Allergy, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Sammiya Ahmed
- Department of Clinical Immunology and Allergy, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Laura A Crinnion
- North East and Yorkshire Genomic Laboratory Hub, The Leeds Teaching Hospitals NHS Trust, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.,Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Sean O'Riordan
- Department of Paediatric Immunology, Leeds General Infirmary, Leeds, LS1 3EX, UK
| | - Clive Carter
- Department of Clinical Immunology and Allergy, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK. .,National Institute for Health Research, Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK.
| |
Collapse
|
28
|
Iyengar VV, Chougule A, Gowri V, Taur P, Prabhu S, Bodhanwala M, Bargir UA, Madkaikar M, Desai MM. XMEN saved by magnesium. Scand J Immunol 2022; 95:e13154. [PMID: 35266176 DOI: 10.1111/sji.13154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Vaishnavi V Iyengar
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Akshaya Chougule
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Vijaya Gowri
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Shakuntala Prabhu
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Minnie Bodhanwala
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Umair A Bargir
- National Institute of Immunohaematology, ICMR, KEM Hospital, Mumbai, India
| | - Manisha Madkaikar
- National Institute of Immunohaematology, ICMR, KEM Hospital, Mumbai, India
| | - Mukesh M Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| |
Collapse
|
29
|
Trapani V, Rosanoff A, Baniasadi S, Barbagallo M, Castiglioni S, Guerrero-Romero F, Iotti S, Mazur A, Micke O, Pourdowlat G, Scarpati G, Wolf FI, Maier JA. The relevance of magnesium homeostasis in COVID-19. Eur J Nutr 2022; 61:625-636. [PMID: 34687321 PMCID: PMC8540865 DOI: 10.1007/s00394-021-02704-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE In less than one and a half year, the COVID-19 pandemic has nearly brought to a collapse our health care and economic systems. The scientific research community has concentrated all possible efforts to understand the pathogenesis of this complex disease, and several groups have recently emphasized recommendations for nutritional support in COVID-19 patients. In this scoping review, we aim at encouraging a deeper appreciation of magnesium in clinical nutrition, in view of the vital role of magnesium and the numerous links between the pathophysiology of SARS-CoV-2 infection and magnesium-dependent functions. METHODS By searching PubMed and Google Scholar from 1990 to date, we review existing evidence from experimental and clinical studies on the role of magnesium in chronic non-communicable diseases and infectious diseases, and we focus on recent reports of alterations of magnesium homeostasis in COVID-19 patients and their association with disease outcomes. Importantly, we conduct a census on ongoing clinical trials specifically dedicated to disclosing the role of magnesium in COVID-19. RESULTS Despite many methodological limitations, existing data seem to corroborate an association between deranged magnesium homeostasis and COVID-19, and call for further and better studies to explore the prophylactic or therapeutic potential of magnesium supplementation. CONCLUSION We propose to reconsider the relevance of magnesium, frequently overlooked in clinical practice. Therefore, magnesemia should be monitored and, in case of imbalanced magnesium homeostasis, an appropriate nutritional regimen or supplementation might contribute to protect against SARS-CoV-2 infection, reduce severity of COVID-19 symptoms and facilitate the recovery after the acute phase.
Collapse
Affiliation(s)
- Valentina Trapani
- Sezione di Patologia Generale, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Alleanza Contro Il Cancro, Rome, Italy
| | - Andrea Rosanoff
- CMER Center for Magnesium Education and Research, Pahoa, Hawaii, USA
| | - Shadi Baniasadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, Palermo, Italy
| | - Sara Castiglioni
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Via G.B. Grassi 74, 20157, Milan, Italy
| | | | - Stefano Iotti
- Department of Pharmacy and Biotechnology (FaBit) National Institute of Biostructures and Biosystems, Università di Bologna, Bologna, Italy
| | - André Mazur
- Unité de Nutrition Humaine, INRAE, UNH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Oliver Micke
- Department of Radiotherapy and Radiation Oncology, Franziskus Hospital, Bielefeld, Germany
| | - Guitti Pourdowlat
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Giuliana Scarpati
- Anestesiologia e Rianimazione, Dipartimento di Medicina e Chirurgia, Università Degli Studi di Salerno, Fisciano, Italy
| | - Federica I Wolf
- Sezione di Patologia Generale, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy.
| | - Jeanette A Maier
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Via G.B. Grassi 74, 20157, Milan, Italy.
| |
Collapse
|
30
|
Smith KL, Dai D, Modi BP, Sara R, Garabedian E, Marsh RA, Puck J, Secord E, Sullivan KE, Turvey SE, Biggs CM, the USIDNET Consortium. Inborn Errors of Immunity Associated With Type 2 Inflammation in the USIDNET Registry. Front Immunol 2022; 13:831279. [PMID: 35273610 PMCID: PMC8902297 DOI: 10.3389/fimmu.2022.831279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
Background Monogenic conditions that disrupt proper development and/or function of the immune system are termed inborn errors of immunity (IEIs), also known as primary immunodeficiencies. Patients with IEIs often suffer from other manifestations in addition to infection, and allergic inflammation is an increasingly recognized feature of these conditions. Methods We performed a retrospective analysis of IEIs presenting with allergic inflammation as reported in the USIDNET registry. Our inclusion criteria comprised of patients with a reported monogenic cause for IEI where reported lab eosinophil and/or IgE values were available for the patient prior to them receiving potentially curative therapy. Patients were excluded if we were unable to determine the defective gene underlying their IEI. Patients were classified as having eosinophilia or elevated IgE when their record included at least 1 eosinophil count or IgE value that was greater than the age stratified upper limit of normal. We compared the proportion of patients with eosinophilia or elevated IgE with the proportion of samples in a reference population that fall above the upper limit of normal (2.5%). Results The query submitted to the USIDNET registry identified 1409 patients meeting inclusion criteria with a monogenic cause for their IEI diagnosis, of which 975 had eosinophil counts and 645 had IgE levels obtained prior to transplantation or gene therapy that were available for analysis. Overall, 18.8% (183/975) of the patients evaluated from the USIDNET registry had eosinophilia and 20.9% (135/645) had an elevated IgE. IEIs caused by defects in 32 genes were found to be significantly associated with eosinophilia and/or an elevated IgE level, spanning 7 of the 10 IEI categories according to the International Union of Immunological Societies classification. Conclusion Type 2 inflammation manifesting as eosinophilia or elevated IgE is found in a broad range of IEIs in the USIDNET registry. Our findings suggest that allergic immune dysregulation may be more widespread in IEIs than previously reported.
Collapse
Affiliation(s)
- Kelsey L. Smith
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
| | - Darlene Dai
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
| | - Bhavi P. Modi
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
| | - Rahnuma Sara
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
| | - Elizabeth Garabedian
- National Human Genome Research Institute, Bethesda, MD, United States
- National Institutes of Health, Bethesda, MD, United States
| | - Rebecca A. Marsh
- Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, OH, United States
| | - Jennifer Puck
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | | | - Kathleen E. Sullivan
- Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
| | - Catherine M. Biggs
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- British Columbia (BC) Children’s Hospital, Vancouver, BC, Canada
- St Paul’s Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
31
|
Lack of NKG2D in MAGT1-deficient patients is caused by hypoglycosylation. Hum Genet 2022; 141:1279-1286. [PMID: 35182234 DOI: 10.1007/s00439-021-02400-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
Mutations in the X-linked gene MAGT1 cause a Congenital Disorder of Glycosylation (CDG), with two distinct clinical phenotypes: a primary immunodeficiency (XMEN disorder) versus intellectual and developmental disability. It was previously established that MAGT1 deficiency abolishes steady-state expression of the immune response protein NKG2D (encoded by KLRK1) in lymphocytes. Here, we show that the reduced steady-state levels of NKG2D are caused by hypoglycosylation of the protein and we pinpoint the exact site that is underglycosylated in MAGT1-deficient patients. Furthermore, we challenge the possibility that supplementation with magnesium restores NKG2D levels and show that the addition of this ion does not significantly improve NKG2D steady-state expression nor does it rescue the hypoglycosylation defect in CRISPR-engineered human cell lines. Moreover, magnesium supplementation of an XMEN patient did not result in restoration of NKG2D expression on the cell surface of lymphocytes. In summary, we demonstrate that in MAGT1-deficient patients, the lack of NKG2D is caused by hypoglycosylation, further elucidating the pathophysiology of XMEN/MAGT1-CDG.
Collapse
|
32
|
Novel MAGT1 Mutation Found in the First Chinese XMEN in Hong Kong. Case Reports Immunol 2022; 2022:2390167. [PMID: 35198253 PMCID: PMC8860550 DOI: 10.1155/2022/2390167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
The availability of next-generation sequencing (NGS) helps to resolve many of the diagnostic odysseys. Common variable immunodeficiency disease (CVID) is an entity encompassing a heterogenous group of conditions with hypogammaglobulinemia, and it is a diagnosis of exclusion. In recent years, with the advances of molecular diagnostics, more and more patients have been reclassified with more defined entities after their genetic causes were found. Here, we reported a young man, who was managed as CVID since childhood, presenting with recurrent infection, hypogammaglobulinemia, and immune thrombocytopenia (ITP). Finally, more than a decade after initial presentation, gene panel testing revealed a novel mutation in the MAGT1 gene. Collectively, the genetic findings and clinical presentations confirm the diagnosis of X-linked immunodeficiency with magnesium defect and Epstein–Barr virus infection and neoplasia (XMEN). MAGT1 is an evolutionarily conserved, magnesium-specific transporter expressed in all mammalian cells that plays an essential role in magnesium homeostasis. MAGT1 also acts as an accessory protein for STT3B, as catalytic subunits of the oligosaccharyltransferase protein complex, which carries out glycan chain transfer to proteins in the endoplasmic reticulum during N-glycosylation. Glycans play an essential role in the stability, maturation, and localization in glycoproteins that are important in our immune cells’ function. Mutation of the gene resulted in a rare X-linked recessive condition XMEN. The disease has complete penetrance but variable expressivity. It is mainly associated with immunodeficiency, immunodysregulation, and predisposition to EBV-associated lymphoproliferation. Extraimmune manifestations have also been reported in some patient cohorts, including hepatic and neurological abnormalities. Overall, the presentation varies among patients and overlaps with other clinical entities, in which diagnosis is challenging. Before the era of NGS, traditional workup hinges heavily on phenotype studies, followed by single-gene sequencing. The diagnostic yield is low, and a significant delay in diagnosis is common. This case illustrated the importance of early consideration of molecular studies in complex immunological cases without obvious secondary causes as an integral part of patient management.
Collapse
|
33
|
Peng X, Lu Y, Wang H, Wu B, Gan M, Xu S, Zhuang D, Wang J, Sun J, Wang X, Zhou W. Further Delineation of the Spectrum of XMEN Disease in Six Chinese Pediatric Patients. Front Genet 2022; 13:768000. [PMID: 35145548 PMCID: PMC8821886 DOI: 10.3389/fgene.2022.768000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
X-linked MAGT1 deficiency with increased susceptibility to EBV-infection and N-linked glycosylation defect (XMEN) disease is a primary immunodeficiency caused by loss-of-function variants in the MAGT1 gene. Only two patients from one family have been diagnosed with XMEN in China. In this study, we retrospectively analyzed the genetic, clinical, and immunological characteristics of six pediatric patients in a Chinese cohort. Medical records were retrieved, immunological phenotypes were assessed, and infectious microbes in patients were detected. Six male patients (mean age, 6.3 years) from five unrelated families were genetically diagnosed as XMEN. Five patients presented with a major complaint of elevated liver enzymes, while one patient was referred for recurrent fever, cough and skin rash. Five patients developed EBV viremia, and one patient developed non-Hodgkin’s lymphoma. Histopathological findings from liver biopsy tissues showed variable hepatic steatosis, fibrosis, inflammatory infiltration, and glycogenosis. Immune phenotypes included CD4 T-cell lymphopenia, elevated B cells, inverted CD4/CD8 ratios, and elevated αβDNTs. No pathogenic microbes other than EBV were identified in these patients. This study reports the clinical and molecular features of Chinese patients with XMEN. For patients with transaminase elevation, chronic EBV infection and EBV-associated lymphoproliferative disease, the possibility of XMEN should be considered in addition to isolated liver diseases.
Collapse
Affiliation(s)
- Xiaomin Peng
- Center for Molecular Medicine of Children’s Hospital of Fudan University and National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yi Lu
- Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Key Laboratory of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Key Laboratory of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Mingyu Gan
- Center for Molecular Medicine, Key Laboratory of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Suzhen Xu
- Center for Molecular Medicine, Key Laboratory of Birth Defects, Pediatrics Research Institute, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Deyi Zhuang
- Department of Pediatrics, Xiamen Children’s Hospital, Xiamen, China
| | - Jianshe Wang
- Center for Pediatric Liver Diseases, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University and National Children’s Medical Center, Shanghai, China
- *Correspondence: Xiaochuan Wang, ; Wenhao Zhou,
| | - Wenhao Zhou
- Center for Molecular Medicine of Children’s Hospital of Fudan University and National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- *Correspondence: Xiaochuan Wang, ; Wenhao Zhou,
| |
Collapse
|
34
|
Chauvin SD, Price S, Zou J, Hunsberger S, Brofferio A, Matthews H, Similuk M, Rosenzweig SD, Su HC, Cohen JI, Lenardo MJ, Ravell JC. A Double-Blind, Placebo-Controlled, Crossover Study of Magnesium Supplementation in Patients with XMEN Disease. J Clin Immunol 2022; 42:108-118. [PMID: 34655400 PMCID: PMC10655616 DOI: 10.1007/s10875-021-01137-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022]
Abstract
X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus (EBV) infection and N-linked glycosylation defect (XMEN) disease is an inborn error of immunity caused by loss-of-function mutations in the magnesium transporter 1 (MAGT1) gene. The original studies of XMEN patients focused on impaired magnesium regulation, leading to decreased EBV-cytotoxicity and the loss of surface expression of the activating receptor "natural killer group 2D" (NKG2D) on CD8+ T cells and NK cells. In vitro studies showed that supraphysiological supplementation of magnesium rescued these defects. Observational studies in 2 patients suggested oral magnesium supplementation could decrease EBV viremia. Hence, we performed a randomized, double-blind, placebo-controlled, crossover study in 2 parts. In part 1, patients received either oral magnesium L-threonate (MLT) or placebo for 12 weeks followed by 12 weeks of the other treatment. Part 2 began with 3 days of high-dose intravenous (IV) magnesium sulfate (MgSO4) followed by open-label MLT for 24 weeks. One EBV-infected and 3 EBV-naïve patients completed part 1. One EBV-naïve patient was removed from part 2 of the study due to asymptomatic elevation of liver enzymes during IV MgSO4. No change in EBV or NKG2D status was observed. In vitro magnesium supplementation experiments in cells from 14 XMEN patients failed to significantly rescue NKG2D expression and the clinical trial was stopped. Although small, this study indicates magnesium supplementation is unlikely to be an effective therapeutic option in XMEN disease.
Collapse
Affiliation(s)
- Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Price
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Juan Zou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alessandra Brofferio
- Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, Bethesda, MD, USA
| | - Helen Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA
| | - Morgan Similuk
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA.
| | - Juan C Ravell
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, Division of Intramural Research, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Building 10, Room 11N311, 10 Center Drive, MSC 1892, Bethesda, MD, 20892-1892, USA.
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
- Division of Allergy and Immunology, Department of Internal Medicine, Hackensack University Medical Center, 360 Essex Street, Suite 302, Hackensack, NJ, 07601, USA.
- Department of Internal Medicine, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| |
Collapse
|
35
|
|
36
|
Brault J, Liu T, Bello E, Liu S, Sweeney CL, Meis RJ, Koontz S, Corsino C, Choi U, Vayssiere G, Bosticardo M, Dowdell K, Lazzarotto CR, Clark AB, Notarangelo LD, Ravell JC, Lenardo MJ, Kleinstiver BP, Tsai SQ, Wu X, Dahl GA, Malech HL, De Ravin SS. CRISPR-targeted MAGT1 insertion restores XMEN patient hematopoietic stem cells and lymphocytes. Blood 2021; 138:2768-2780. [PMID: 34086870 PMCID: PMC8718624 DOI: 10.1182/blood.2021011192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/25/2021] [Indexed: 01/01/2023] Open
Abstract
XMEN disease, defined as "X-linked MAGT1 deficiency with increased susceptibility to Epstein-Barr virus infection and N-linked glycosylation defect," is a recently described primary immunodeficiency marked by defective T cells and natural killer (NK) cells. Unfortunately, a potentially curative hematopoietic stem cell transplantation is associated with high mortality rates. We sought to develop an ex vivo targeted gene therapy approach for patients with XMEN using a CRISPR/Cas9 adeno-associated vector (AAV) to insert a therapeutic MAGT1 gene at the constitutive locus under the regulation of the endogenous promoter. Clinical translation of CRISPR/Cas9 AAV-targeted gene editing (GE) is hampered by low engraftable gene-edited hematopoietic stem and progenitor cells (HSPCs). Here, we optimized GE conditions by transient enhancement of homology-directed repair while suppressing AAV-associated DNA damage response to achieve highly efficient (>60%) genetic correction in engrafting XMEN HSPCs in transplanted mice. Restored MAGT1 glycosylation function in human NK and CD8+ T cells restored NK group 2 member D (NKG2D) expression and function in XMEN lymphocytes for potential treatment of infections, and it corrected HSPCs for long-term gene therapy, thus offering 2 efficient therapeutic options for XMEN poised for clinical translation.
Collapse
Affiliation(s)
- Julie Brault
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Taylor Liu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Ezekiel Bello
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Siyuan Liu
- Cancer Research Technology Program, Leidos Biomedical Research, Frederick, MD
| | - Colin L Sweeney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | - Sherry Koontz
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Guillaume Vayssiere
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | | | | | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Juan C Ravell
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Michael J Lenardo
- Laboratory of Immune System Biology, and Clinical Genomics Program, NIAID, NIH, Bethesda, MD
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA; and
- Department of Pathology, Harvard Medical School, Boston, MA
| | - Shengdar Q Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Frederick, MD
| | | | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
37
|
Ginefra P, Carrasco Hope H, Spagna M, Zecchillo A, Vannini N. Ionic Regulation of T-Cell Function and Anti-Tumour Immunity. Int J Mol Sci 2021; 22:ijms222413668. [PMID: 34948472 PMCID: PMC8705279 DOI: 10.3390/ijms222413668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
The capacity of T cells to identify and kill cancer cells has become a central pillar of immune-based cancer therapies. However, T cells are characterized by a dysfunctional state in most tumours. A major obstacle for proper T-cell function is the metabolic constraints posed by the tumour microenvironment (TME). In the TME, T cells compete with cancer cells for macronutrients (sugar, proteins, and lipid) and micronutrients (vitamins and minerals/ions). While the role of macronutrients in T-cell activation and function is well characterized, the contribution of micronutrients and especially ions in anti-tumour T-cell activities is still under investigation. Notably, ions are important for most of the signalling pathways regulating T-cell anti-tumour function. In this review, we discuss the role of six biologically relevant ions in T-cell function and in anti-tumour immunity, elucidating potential strategies to adopt to improve immunotherapy via modulation of ion metabolism.
Collapse
|
38
|
Staels F, Collignon T, Betrains A, Gerbaux M, Willemsen M, Humblet-Baron S, Liston A, Vanderschueren S, Schrijvers R. Monogenic Adult-Onset Inborn Errors of Immunity. Front Immunol 2021; 12:753978. [PMID: 34867986 PMCID: PMC8635491 DOI: 10.3389/fimmu.2021.753978] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogenous group of disorders driven by genetic defects that functionally impact the development and/or function of the innate and/or adaptive immune system. The majority of these disorders are thought to have polygenic background. However, the use of next-generation sequencing in patients with IEI has led to an increasing identification of monogenic causes, unravelling the exact pathophysiology of the disease and allowing the development of more targeted treatments. Monogenic IEI are not only seen in a pediatric population but also in adulthood, either due to the lack of awareness preventing childhood diagnosis or due to a delayed onset where (epi)genetic or environmental factors can play a role. In this review, we discuss the mechanisms accounting for adult-onset presentations and provide an overview of monogenic causes associated with adult-onset IEI.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | | | - Albrecht Betrains
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Steven Vanderschueren
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Bohmwald K, Gálvez NMS, Andrade CA, Mora VP, Muñoz JT, González PA, Riedel CA, Kalergis AM. Modulation of Adaptive Immunity and Viral Infections by Ion Channels. Front Physiol 2021; 12:736681. [PMID: 34690811 PMCID: PMC8531258 DOI: 10.3389/fphys.2021.736681] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/10/2021] [Indexed: 12/15/2022] Open
Abstract
Most cellular functions require of ion homeostasis and ion movement. Among others, ion channels play a crucial role in controlling the homeostasis of anions and cations concentration between the extracellular and intracellular compartments. Calcium (Ca2+) is one of the most relevant ions involved in regulating critical functions of immune cells, allowing the appropriate development of immune cell responses against pathogens and tumor cells. Due to the importance of Ca2+ in inducing the immune response, some viruses have evolved mechanisms to modulate intracellular Ca2+ concentrations and the mobilization of this cation through Ca2+ channels to increase their infectivity and to evade the immune system using different mechanisms. For instance, some viral infections require the influx of Ca2+ through ionic channels as a first step to enter the cell, as well as their replication and budding. Moreover, through the expression of viral proteins on the surface of infected cells, Ca2+ channels function can be altered, enhancing the pathogen evasion of the adaptive immune response. In this article, we review those ion channels and ion transporters that are essential for the function of immune cells. Specifically, cation channels and Ca2+ channels in the context of viral infections and their contribution to the modulation of adaptive immune responses.
Collapse
Affiliation(s)
- Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Andrade
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P. Mora
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T. Muñoz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
40
|
Lino CNR, Ghosh S. Epstein-Barr Virus in Inborn Immunodeficiency-More Than Infection. Cancers (Basel) 2021; 13:cancers13194752. [PMID: 34638238 PMCID: PMC8507541 DOI: 10.3390/cancers13194752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Epstein–Barr Virus (EBV) is a common virus that is readily controlled by a healthy immune system and rarely causes serious problems in infected people. However, patients with certain genetic defects of their immune system might have difficulties controlling EBV and often develop severe and life-threatening conditions, such as severe inflammation and malignancies. In this review, we provide a summary of inherited immune diseases that lead to a high susceptibility to EBV infection and discuss how this infection is associated with cancer development. Abstract Epstein–Barr Virus (EBV) is a ubiquitous virus affecting more than 90% of the world’s population. Upon infection, it establishes latency in B cells. It is a rather benign virus for immune-competent individuals, in whom infections usually go unnoticed. Nevertheless, EBV has been extensively associated with tumorigenesis. Patients suffering from certain inborn errors of immunity are at high risk of developing malignancies, while infection in the majority of immune-competent individuals does not seem to lead to immune dysregulation. Herein, we discuss how inborn mutations in TNFRSF9, CD27, CD70, CORO1A, CTPS1, ITK, MAGT1, RASGRP1, STK4, CARMIL2, SH2D1A, and XIAP affect the development, differentiation, and function of key factors involved in the immunity against EBV, leading to increased susceptibility to lymphoproliferative disease and lymphoma.
Collapse
Affiliation(s)
| | - Sujal Ghosh
- Correspondence: ; Tel.: +49-211-811-6224; Fax: +49-211-811-6191
| |
Collapse
|
41
|
Costagliola G, Nuzzi G, Spada E, Comberiati P, Verduci E, Peroni DG. Nutraceuticals in Viral Infections: An Overview of the Immunomodulating Properties. Nutrients 2021; 13:2410. [PMID: 34371920 PMCID: PMC8308811 DOI: 10.3390/nu13072410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Nutraceuticals, including vitamin D, vitamin A, zinc, lactoferrin, polyphenols coenzyme Q, magnesium, and selenium, are implicated in the modulation of the complex molecular pathways involved in the immune response against viral pathogens. A common element of the activity of nutraceuticals is their ability to enhance the innate immune response against pathogens by acting on the major cellular subsets and inducing the release of pro-inflammatory cytokines and antimicrobial peptides. In some cases, this action is accompanied by a direct antimicrobial effect, as evidenced in the specific case of lactoferrin. Furthermore, nutraceuticals act through complex molecular mechanisms to minimize the damage caused by the activation of the immune system against pathogens, reducing the oxidative damage, influencing the antigen presentation, enhancing the differentiation and proliferation of regulatory T cells, driving the differentiation of lymphocyte subsets, and modulating the production of pro-inflammatory cytokines. In this paper, we review the main molecular mechanisms responsible for the immunomodulatory function of nutraceuticals, focusing on the most relevant aspects for the prevention and treatment of viral infections.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Giulia Nuzzi
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Erika Spada
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, 20142 Milan, Italy;
- Department of Health Science, University of Milan, 20142 Milan, Italy
| | - Diego G. Peroni
- Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa, Via Roma 57, 56126 Pisa, Italy; (G.C.); (G.N.); (E.S.); (P.C.)
| |
Collapse
|
42
|
Costagliola G, Consolini R. Lymphadenopathy at the crossroad between immunodeficiency and autoinflammation: An intriguing challenge. Clin Exp Immunol 2021; 205:288-305. [PMID: 34008169 PMCID: PMC8374228 DOI: 10.1111/cei.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphadenopathies can be part of the clinical spectrum of several primary immunodeficiencies, including diseases with immune dysregulation and autoinflammatory disorders, as the clinical expression of benign polyclonal lymphoproliferation, granulomatous disease or lymphoid malignancy. Lymphadenopathy poses a significant diagnostic dilemma when it represents the first sign of a disorder of the immune system, leading to a consequently delayed diagnosis. Additionally, the finding of lymphadenopathy in a patient with diagnosed immunodeficiency raises the question of the differential diagnosis between benign lymphoproliferation and malignancies. Lymphadenopathies are evidenced in 15–20% of the patients with common variable immunodeficiency, while in other antibody deficiencies the prevalence is lower. They are also evidenced in different combined immunodeficiency disorders, including Omenn syndrome, which presents in the first months of life. Interestingly, in the activated phosphoinositide 3‐kinase delta syndrome, autoimmune lymphoproliferative syndrome, Epstein–Barr virus (EBV)‐related lymphoproliferative disorders and regulatory T cell disorders, lymphadenopathy is one of the leading signs of the entire clinical picture. Among autoinflammatory diseases, the highest prevalence of lymphadenopathies is observed in patients with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) and hyper‐immunoglobulin (Ig)D syndrome. The mechanisms underlying lymphoproliferation in the different disorders of the immune system are multiple and not completely elucidated. The advances in genetic techniques provide the opportunity of identifying new monogenic disorders, allowing genotype–phenotype correlations to be made and to provide adequate follow‐up and treatment in the single diseases. In this work, we provide an overview of the most relevant immune disorders associated with lymphadenopathy, focusing on their diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Dieudonne Y, Martin M, Korganow AS, Boutboul D, Guffroy A. [EBV and immunodeficiency]. Rev Med Interne 2021; 42:832-843. [PMID: 33867195 DOI: 10.1016/j.revmed.2021.03.324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 11/30/2022]
Abstract
Epstein-Barr virus (EBV), discovered in 1964, is a double-stranded DNA virus belonging to the Herpesviridae family. EBV has a lymphoid tropism with transforming capacities using different oncogenic viral proteins. This virus has two replication cycles: a lytic cycle mainly occuring during primary infection and a latent cycle allowing viral persistence into host memory B cells. More than 90% of adults are seropositive for EBV worldwide, with a past history of asymptomatic or mild primary infection. EBV infection can sometimes cause life-threatening complications such as hemophagocytic lymphohistiocytosis, and lead to the development of lymphoproliferative disorders or cancers. Risk factors associated with these phenotypes have been recently described through the study of monogenic primary immune deficiencies with EBV susceptibility. We here review the virological and immunological aspects of EBV infection and EBV-related complications with an overview of current available treatments.
Collapse
Affiliation(s)
- Y Dieudonne
- Université de Strasbourg, Inserm UMR - S1109, 67000 Strasbourg, France; Hôpitaux universitaires de Strasbourg, service d'immunologie clinique et de médecine interne, centre national de référence des maladies auto-immunes et systémiques rares, Est/Sud-Ouest (RESO), centre de compétence pour les déficits immunitaires primitifs de l'adulte, 67000 Strasbourg, France; Université de Strasbourg, faculté de médecine, 67000 Strasbourg, France
| | - M Martin
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 86021 Poitiers, France; Université de Poitiers, 86021 Poitiers, France
| | - A-S Korganow
- Université de Strasbourg, Inserm UMR - S1109, 67000 Strasbourg, France; Hôpitaux universitaires de Strasbourg, service d'immunologie clinique et de médecine interne, centre national de référence des maladies auto-immunes et systémiques rares, Est/Sud-Ouest (RESO), centre de compétence pour les déficits immunitaires primitifs de l'adulte, 67000 Strasbourg, France; Université de Strasbourg, faculté de médecine, 67000 Strasbourg, France
| | - D Boutboul
- Service d'immunopathologie clinique, U976 HIPI, hôpital Saint-Louis, université de Paris, Paris, France.
| | - A Guffroy
- Université de Strasbourg, Inserm UMR - S1109, 67000 Strasbourg, France; Hôpitaux universitaires de Strasbourg, service d'immunologie clinique et de médecine interne, centre national de référence des maladies auto-immunes et systémiques rares, Est/Sud-Ouest (RESO), centre de compétence pour les déficits immunitaires primitifs de l'adulte, 67000 Strasbourg, France; Université de Strasbourg, faculté de médecine, 67000 Strasbourg, France.
| |
Collapse
|
44
|
Freeman CM, Wright BL, Bauer CS, Rukasin CR, Chiang SC, Marsh RA, Taylor S, Jacobsen J, Miller HK, Badia P. Cutaneous T-cell lymphoma as a unique presenting malignancy in X-linked magnesium defect with EBV infection and neoplasia (XMEN) disease. Clin Immunol 2021; 226:108722. [PMID: 33831577 DOI: 10.1016/j.clim.2021.108722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Catherine M Freeman
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, United States of America; Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, United States of America.
| | - Benjamin L Wright
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, United States of America; Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Cindy S Bauer
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, United States of America; Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Christine R Rukasin
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, United States of America; Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Samuel C Chiang
- Cincinnati Children's Hospital Medical Center, Division of Bone Marrow Transplant and Immune Deficiencies and Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States of America
| | - Rebecca A Marsh
- Cincinnati Children's Hospital Medical Center, Division of Bone Marrow Transplant and Immune Deficiencies and Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States of America
| | - Steve Taylor
- Department of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ, United States of America
| | - Jeffrey Jacobsen
- Department of Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ, United States of America
| | - Holly K Miller
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, United States of America; Mayo Clinic College of Medicine and Science, Scottsdale, AZ, United States of America
| | - Priscila Badia
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, United States of America; Mayo Clinic College of Medicine and Science, Scottsdale, AZ, United States of America
| |
Collapse
|
45
|
Fiorentini D, Cappadone C, Farruggia G, Prata C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients 2021; 13:1136. [PMID: 33808247 PMCID: PMC8065437 DOI: 10.3390/nu13041136] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium plays an important role in many physiological functions. Habitually low intakes of magnesium and in general the deficiency of this micronutrient induce changes in biochemical pathways that can increase the risk of illness and, in particular, chronic degenerative diseases. The assessment of magnesium status is consequently of great importance, however, its evaluation is difficult. The measurement of serum magnesium concentration is the most commonly used and readily available method for assessing magnesium status, even if serum levels have no reliable correlation with total body magnesium levels or concentrations in specific tissues. Therefore, this review offers an overview of recent insights into magnesium from multiple perspectives. Starting from a biochemical point of view, it aims at highlighting the risk due to insufficient uptake (frequently due to the low content of magnesium in the modern western diet), at suggesting strategies to reach the recommended dietary reference values, and at focusing on the importance of detecting physiological or pathological levels of magnesium in various body districts, in order to counteract the social impact of diseases linked to magnesium deficiency.
Collapse
Affiliation(s)
| | | | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (D.F.); (C.C.); (C.P.)
| | | |
Collapse
|
46
|
Münz C. The Role of Lytic Infection for Lymphomagenesis of Human γ-Herpesviruses. Front Cell Infect Microbiol 2021; 11:605258. [PMID: 33842383 PMCID: PMC8034291 DOI: 10.3389/fcimb.2021.605258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/09/2021] [Indexed: 01/02/2023] Open
Abstract
Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are two oncogenic human γ-herpesviruses that are each associated with 1-2% of human tumors. They encode bona fide oncogenes that they express during latent infection to amplify their host cells and themselves within these. In contrast, lytic virus particle producing infection has been considered to destroy host cells and might be even induced to therapeutically eliminate EBV and KSHV associated tumors. However, it has become apparent in recent years that early lytic replication supports tumorigenesis by these two human oncogenic viruses. This review will discuss the evidence for this paradigm change and how lytic gene products might condition the microenvironment to facilitate EBV and KSHV associated tumorigenesis.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
47
|
Huang X, Liu D, Gao Z, Liu C. Case Report: EBV-Positive Extra-Nodal Marginal Zone Lymphoma Associated With XMEN Disease Caused by a Novel Hemizygous Mutation in MAGT1. Front Oncol 2021; 11:653266. [PMID: 33869058 PMCID: PMC8044963 DOI: 10.3389/fonc.2021.653266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background X-linked immunodeficiency with magnesium defect and Epstein-Barr virus infection and neoplasia (XMEN) disease is an X-linked genetic disorder of immune system caused by loss-of-function mutation in gene encoding Magnesium transporter 1 (MAGT1). Individuals with XMEN disease are prone to developing Epstein Barr Virus (EBV)-associated lymphomas. Herein, we report the first known case of an EBV+ EMZL associated with XMEN disease. Case presentation The patient was an 8-year-old Chinese boy who suffered from recurrent infections from birth. Six months before, the patient presented with a painless mass on his upper lip and excisional biopsy revealed an EBV-positive extra-nodal marginal zone lymphoma (EBV+ EMZL). Furthermore, molecular investigations with next-generation sequencing identified a novel germline mutation in MAGT1 (c.828_829insAT) in the patient. The c.828_829insAT variant was predicted to cause premature truncation of MAGT1 (p.A277M.fs*11) and consequently was defined as likely pathogenic. The mutation was inherited from his asymptomatic heterozygous carrier mother. Hence the patient was diagnosed with an XMEN disease both clinically and genetically. Conclusion Our results expand the genetic spectrum of XMEN disease and also the clinical spectrum of EBV+ EMZL. We highlight the importance of the genetic etiology underlying EBV+ lymphoma in the pediatric population.
Collapse
Affiliation(s)
- Xin Huang
- Department of Pathology, School of Basic Medical Science & Third Hospital, Peking University Health Science Center, Beijing, China
| | - Dan Liu
- Department of Pathology, Children's Hospital, Capital Institute of Pediatrics, Beijing, China
| | - Zifen Gao
- Department of Pathology, School of Basic Medical Science & Third Hospital, Peking University Health Science Center, Beijing, China
| | - Cuiling Liu
- Department of Pathology, School of Basic Medical Science & Third Hospital, Peking University Health Science Center, Beijing, China
| |
Collapse
|
48
|
Mg 2+ Transporters in Digestive Cancers. Nutrients 2021; 13:nu13010210. [PMID: 33450887 PMCID: PMC7828344 DOI: 10.3390/nu13010210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Despite magnesium (Mg2+) representing the second most abundant cation in the cell, its role in cellular physiology and pathology is far from being elucidated. Mg2+ homeostasis is regulated by Mg2+ transporters including Mitochondrial RNA Splicing Protein 2 (MRS2), Transient Receptor Potential Cation Channel Subfamily M, Member 6/7 (TRPM6/7), Magnesium Transporter 1 (MAGT1), Solute Carrier Family 41 Member 1 (SCL41A1), and Cyclin and CBS Domain Divalent Metal Cation Transport Mediator (CNNM) proteins. Recent data show that Mg2+ transporters may regulate several cancer cell hallmarks. In this review, we describe the expression of Mg2+ transporters in digestive cancers, the most common and deadliest malignancies worldwide. Moreover, Mg2+ transporters’ expression, correlation and impact on patient overall and disease-free survival is analyzed using Genotype Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) datasets. Finally, we discuss the role of these Mg2+ transporters in the regulation of cancer cell fates and oncogenic signaling pathways.
Collapse
|
49
|
Dominguez LJ, Veronese N, Guerrero-Romero F, Barbagallo M. Magnesium in Infectious Diseases in Older People. Nutrients 2021; 13:180. [PMID: 33435521 PMCID: PMC7827130 DOI: 10.3390/nu13010180] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Reduced magnesium (Mg) intake is a frequent cause of deficiency with age together with reduced absorption, renal wasting, and polypharmacotherapy. Chronic Mg deficiency may result in increased oxidative stress and low-grade inflammation, which may be linked to several age-related diseases, including higher predisposition to infectious diseases. Mg might play a role in the immune response being a cofactor for immunoglobulin synthesis and other processes strictly associated with the function of T and B cells. Mg is necessary for the biosynthesis, transport, and activation of vitamin D, another key factor in the pathogenesis of infectious diseases. The regulation of cytosolic free Mg in immune cells involves Mg transport systems, such as the melastatin-like transient receptor potential 7 channel, the solute carrier family, and the magnesium transporter 1 (MAGT1). The functional importance of Mg transport in immunity was unknown until the description of the primary immunodeficiency XMEN (X-linked immunodeficiency with Mg defect, Epstein-Barr virus infection, and neoplasia) due to a genetic deficiency of MAGT1 characterized by chronic Epstein-Barr virus infection. This and other research reporting associations of Mg deficit with viral and bacterial infections indicate a possible role of Mg deficit in the recent coronavirus disease 2019 (COVID-19) and its complications. In this review, we will discuss the importance of Mg for the immune system and for infectious diseases, including the recent pandemic of COVID-19.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90100 Palermo, Italy; (L.J.D.); (M.B.)
| | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90100 Palermo, Italy; (L.J.D.); (M.B.)
| | | | - Mario Barbagallo
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90100 Palermo, Italy; (L.J.D.); (M.B.)
| |
Collapse
|
50
|
Jalil M, Rowane M, Rajan J, Hostoffer R. Successful Anti-SARS-CoV-2 Spike Protein Antibody Response to Vaccination in MAGT1 Deficiency. ALLERGY & RHINOLOGY 2021; 12:21526567211056239. [PMID: 34868726 PMCID: PMC8640323 DOI: 10.1177/21526567211056239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Novel messenger RNA vaccines against severe acute respiratory syndrome coronavirus (SARS-CoV-2) have been vital in resolving the coronavirus disease-2019 (COVID-19) pandemic. Detection of neutralizing antibodies (NAbs) against the SARS-CoV-2 spike protein (S) confirms immunogenicity with high sensitivity and specificity. Few recent studies with primary and secondary immunodeficient cohorts present adequate or reduced antibody response. We describe the first reported successful response to anti-SARS-CoV-2 S antibody post-vaccination in magnesium transporter 1 (MAGT1) gene deficiency, more commonly recognized as x-linked immunodeficiency with magnesium defect, Epstein-Barr Virus infection, and neoplasia (XMEN). Case Presentation We present a 30-year-old male with selective anti-polysaccharide antibody deficiency, peripheral blood CD5 + /CD19 + B-cell predominance (97%), MAGT1 mutation, and reduced CD16 + CD56 + natural killer- and/or CD8 + T-cell receptor, Group 2, Member D expression. His initial immunological evaluation revealed all seronegative post-vaccination antibody titers but clinically adequate response to protein antigens tetanus and diphtheria anti-toxoids. COVID-19 vaccination and associated serology antibody testing was recommended at this office visit. Anti-SARS-CoV-2 immunoglobulin (Ig)M and IgG antibodies before and after the first BNT162b2 mRNA COVID-19 vaccine doses, as well as nucleocapsid antibody, were negative. S protein total antibody was reactive after the second dose. Discussion Robust immunological sequelae post-COVID-19 vaccination in the general population are well-documented in the recent literature. Few studies have evaluated COVID-19 vaccination antibody response in immunodeficient patients. The majority positive anti-S antibody detection in most primary immunodeficient (PID) patients among the few studies in the literature, such as the present case, support the safety and efficacy of mRNA COVID-19 vaccination in immunodeficient patients, although larger scale studies are needed.
Conclusion We demonstrate successful vaccination in the PID MAGT1 deficiency in this first reported case of reactive anti-S antibody post-COVID-19 vaccination.
Collapse
Affiliation(s)
- Maaz Jalil
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Marija Rowane
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Jayanth Rajan
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, Pennsylvania
| | - Robert Hostoffer
- Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
- Allergy/Immunology Associates, Inc., Mayfield Heights, Ohio
| |
Collapse
|