1
|
Chang-Rabley E, van Zelm MC, Ricotta EE, Edwards ESJ. An Overview of the Strategies to Boost SARS-CoV-2-Specific Immunity in People with Inborn Errors of Immunity. Vaccines (Basel) 2024; 12:675. [PMID: 38932404 PMCID: PMC11209597 DOI: 10.3390/vaccines12060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.
Collapse
Affiliation(s)
- Emma Chang-Rabley
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
- Department of Immunology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Emily E. Ricotta
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Preventive Medicine and Biostatistics, Uniform Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
3
|
Fischer M, Olbrich P, Hadjadj J, Aumann V, Bakhtiar S, Barlogis V, von Bismarck P, Bloomfield M, Booth C, Buddingh EP, Cagdas D, Castelle M, Chan AY, Chandrakasan S, Chetty K, Cougoul P, Crickx E, Dara J, Deyà-Martínez A, Farmand S, Formankova R, Gennery AR, Gonzalez-Granado LI, Hagin D, Hanitsch LG, Hanzlikovà J, Hauck F, Ivorra-Cortés J, Kisand K, Kiykim A, Körholz J, Leahy TR, van Montfrans J, Nademi Z, Nelken B, Parikh S, Plado S, Ramakers J, Redlich A, Rieux-Laucat F, Rivière JG, Rodina Y, Júnior PR, Salou S, Schuetz C, Shcherbina A, Slatter MA, Touzot F, Unal E, Lankester AC, Burns S, Seppänen MRJ, Neth O, Albert MH, Ehl S, Neven B, Speckmann C. JAK inhibitor treatment for inborn errors of JAK/STAT signaling: An ESID/EBMT-IEWP retrospective study. J Allergy Clin Immunol 2024; 153:275-286.e18. [PMID: 37935260 DOI: 10.1016/j.jaci.2023.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Inborn errors of immunity (IEI) with dysregulated JAK/STAT signaling present with variable manifestations of immune dysregulation and infections. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but initially reported outcomes were poor. JAK inhibitors (JAKi) offer a targeted treatment option that may be an alternative or bridge to HSCT. However, data on their current use, treatment efficacy and adverse events are limited. OBJECTIVE We evaluated the current off-label JAKi treatment experience for JAK/STAT inborn errors of immunity (IEI) among European Society for Immunodeficiencies (ESID)/European Society for Blood and Marrow Transplantation (EBMT) Inborn Errors Working Party (IEWP) centers. METHODS We conducted a multicenter retrospective study on patients with a genetic disorder of hyperactive JAK/STAT signaling who received JAKi treatment for at least 3 months. RESULTS Sixty-nine patients (72% children) were evaluated (45 STAT1 gain of function [GOF], 21 STAT3-GOF, 1 STAT5B-GOF, 1 suppressor of cytokine signaling 1 [aka SOCS1] loss of function, 1 JAK1-GOF). Ruxolitinib was the predominantly prescribed JAKi (80%). Overall, treatment resulted in improvement (partial or complete remission) of clinical symptoms in 87% of STAT1-GOF and in 90% of STAT3-GOF patients. We documented highly heterogeneous dosing and monitoring regimens. The response rate and time to response varied across different diseases and manifestations. Adverse events including infection and weight gain were frequent (38% of patients) but were mild (grade I-II) and transient in most patients. At last follow-up, 52 (74%) of 69 patients were still receiving JAKi treatment, and 11 patients eventually underwent HSCT after receipt of previous JAKi bridging therapy, with 91% overall survival. CONCLUSIONS Our study suggests that JAKi may be highly effective to treat symptomatic JAK/STAT IEI patients. Prospective studies to define optimal JAKi dosing for the variable clinical presentations and age ranges should be pursued.
Collapse
Affiliation(s)
- Marco Fischer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Immunology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter Olbrich
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/ Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Seville, Spain; Departamento de Pediatría, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jérôme Hadjadj
- Sorbonne University, Department of Internal Medicine, APHP, Saint-Antoine Hospital, F-75012 Paris, France
| | - Volker Aumann
- Pediatric Oncology Department, Otto von Guericke University Children's Hospital Magdeburg, Magdeburg, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Vincent Barlogis
- Pediatric Hematology Unit, Latimone University Hospital, Marseille, France
| | - Philipp von Bismarck
- Clinic for General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Markéta Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Claire Booth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital London, London, England, United Kingdom
| | - Emmeline P Buddingh
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem cell Transplantation program, Leiden University Medical Center, Leiden, The Netherlands
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Medical School, Ankara, Turkey
| | - Martin Castelle
- Immuno-hematology and Rheumatology Unit, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM 1163, Institut Imagine, Paris, Île-de-France, France
| | - Alice Y Chan
- Division of Allergy, Immunology, Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, Calif
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Kritika Chetty
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital London, London, England, United Kingdom
| | - Pierre Cougoul
- Oncopole, Institut Universitaire du cancer de toulouse, Toulouse, France
| | - Etienne Crickx
- Internal Medicine Department, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Jasmeen Dara
- Division of Allergy, Immunology, Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, Calif
| | - Angela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain; Universitat de Barcelona Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renata Formankova
- Department of Paediatric Haematology and Oncology, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrew R Gennery
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Luis Ignacio Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, Hospital 12 Octubre Research Institute, Hospital 12 Octubre (i+12) Complutense University School of Medicine, Madrid, Spain
| | - David Hagin
- Allergy and Clinical Immunology Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Leif Gunnar Hanitsch
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and the Berlin Institute of Health (BIH), BIH Center for Regenerative Therapies, Berlin, Germany
| | - Jana Hanzlikovà
- Department of Immunology and Allergology, Faculty of Medicine and Faculty Hospital, Pilsen, Czech Republic
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - José Ivorra-Cortés
- Rheumatology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Pediatric Immunology and Allergy, Istanbul, Turkey
| | - Julia Körholz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timothy Ronan Leahy
- Children's Health Ireland, Crumlin, Dublin, Ireland; University of Dublin, Trinity College, Dublin, Ireland
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Zohreh Nademi
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Brigitte Nelken
- Pediatric Hematology Unit, Centre Hospitalier Universitaire Regional de Lille, Lille, France
| | - Suhag Parikh
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Silvi Plado
- Department of Pediatrics, Tallinn Children's Hospital, Tallinn, Estonia
| | - Jan Ramakers
- Department of Pediatrics. Hospital Universitari Son Espases, Palma, Spain; Multidisciplinary Group for Research in Pediatrics, Hospital Universtari Son Espases, Balearic Island Health Research Institute (IdISBa), Palma, Spain
| | - Antje Redlich
- Pediatric Oncology Department, Otto von Guericke University Children's Hospital Magdeburg, Magdeburg, Germany
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM, UMR 1163, Paris, France
| | - Jacques G Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Pérsio Roxo Júnior
- Division of Pediatric Immunology and Allergy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Sarah Salou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Mary A Slatter
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Fabien Touzot
- Department of Pediatrics, CHU Ste-Justine, Université de Montréal, Montreal, Canada
| | - Ekrem Unal
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem cell Transplantation program, Leiden University Medical Center, Leiden, The Netherlands
| | - Siobhan Burns
- Institute of Immunity and Transplantation, University College London, London, England, United Kingdom
| | - Mikko R J Seppänen
- The Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents and Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and HUS Helsinki, University Hospital, Helsinki, Finland
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/ Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Seville, Spain
| | - Michael H Albert
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bénédicte Neven
- Immuno-hematology and Rheumatology Unit, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM 1163, Institut Imagine, Paris, Île-de-France, France
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Selvapandiyan A, Puri N, Kumar P, Alam A, Ehtesham NZ, Griffin G, Hasnain SE. Zooming in on common immune evasion mechanisms of pathogens in phagolysosomes: potential broad-spectrum therapeutic targets against infectious diseases. FEMS Microbiol Rev 2023; 47:6780197. [PMID: 36309472 DOI: 10.1093/femsre/fuac041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 01/19/2023] Open
Abstract
The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome-lysosome fusion forming phagolysosomes, acidification of phagolysosomes, and at times after escape into the cytosol. Phagolysosome is the final organelle in the phagocyte with sophisticated mechanisms to degrade the pathogens. The immune evasion strategies by the pathogens include the arrest of host cell apoptosis, decrease in reactive oxygen species, the elevation of Th2 anti-inflammatory response, avoidance of autophagy and antigen cross-presentation pathways, and escape from phagolysosomal killing. Since the phagolysosome organelle in relation to infection/cure is seldom discussed in the literature, we summarize here the common host as well as pathogen targets manipulated or utilized by the pathogens established in phagosomes and phagolysosomes, to hijack the host immune system for their benefit. These common molecules or pathways can be broad-spectrum therapeutic targets for drug development for intervention against infectious diseases caused by different intracellular pathogens.
Collapse
Affiliation(s)
| | - Niti Puri
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pankaj Kumar
- Department of Biochemistry, Jamia Hamdard, New Delhi, 110062, India.,Centre for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Anwar Alam
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, 110016, India
| | - Nasreen Zafar Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - George Griffin
- Department of Cellular and Molecular Medicine, St. George's University of London, London, SW17 0RE, United Kingdom
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, 110016, India.,Department of Life Science, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, 201310, India
| |
Collapse
|
9
|
Fang H, Sun Z, Chen Z, Chen A, Sun D, Kong Y, Fang H, Qian G. Bioinformatics and systems-biology analysis to determine the effects of Coronavirus disease 2019 on patients with allergic asthma. Front Immunol 2022; 13:988479. [PMID: 36211429 PMCID: PMC9537444 DOI: 10.3389/fimmu.2022.988479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 12/05/2022] Open
Abstract
Background The coronavirus disease (COVID-19) pandemic has posed a significant challenge for global health systems. Increasing evidence shows that asthma phenotypes and comorbidities are major risk factors for COVID-19 symptom severity. However, the molecular mechanisms underlying the association between COVID-19 and asthma are poorly understood. Therefore, we conducted bioinformatics and systems biology analysis to identify common pathways and molecular biomarkers in patients with COVID-19 and asthma, as well as potential molecular mechanisms and candidate drugs for treating patients with both COVID-19 and asthma. Methods Two sets of differentially expressed genes (DEGs) from the GSE171110 and GSE143192 datasets were intersected to identify common hub genes, shared pathways, and candidate drugs. In addition, murine models were utilized to explore the expression levels and associations of the hub genes in asthma and lung inflammation/injury. Results We discovered 157 common DEGs between the asthma and COVID-19 datasets. A protein–protein-interaction network was built using various combinatorial statistical approaches and bioinformatics tools, which revealed several hub genes and critical modules. Six of the hub genes were markedly elevated in murine asthmatic lungs and were positively associated with IL-5, IL-13 and MUC5AC, which are the key mediators of allergic asthma. Gene Ontology and pathway analysis revealed common associations between asthma and COVID-19 progression. Finally, we identified transcription factor–gene interactions, DEG–microRNA coregulatory networks, and potential drug and chemical-compound interactions using the hub genes. Conclusion We identified the top 15 hub genes that can be used as novel biomarkers of COVID-19 and asthma and discovered several promising candidate drugs that might be helpful for treating patients with COVID-19 and asthma.
Collapse
Affiliation(s)
- Hongwei Fang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhun Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhouyi Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Donglin Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yan Kong
- Department of Anesthesiology (High-Tech Branch), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Guojun Qian, ; Hao Fang,
| | - Guojun Qian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Guojun Qian, ; Hao Fang,
| |
Collapse
|