1
|
Smith CR, Kaltenegger E, Teisher J, Moore AJ, Straub SCK, Livshultz T. Homospermidine synthase evolution and the origin(s) of pyrrolizidine alkaloids in Apocynaceae. AMERICAN JOURNAL OF BOTANY 2025; 112:e16458. [PMID: 39887714 PMCID: PMC11848025 DOI: 10.1002/ajb2.16458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 02/01/2025]
Abstract
PREMISE Enzymes that are encoded by paralogous genes and produce identical specialized metabolites in distantly related plant lineages are strong evidence of parallel phenotypic evolution. Inference of phenotypic homology for metabolites produced by orthologous genes is less straightforward, since orthologs may be recruited in parallel into novel pathways. In prior research on pyrrolizidine alkaloids (PAs), specialized metabolites of Apocynaceae, the evolution of homospermidine synthase (HSS), an enzyme of PA biosynthesis, was reconstructed and a single origin of PAs inferred because HSS enzymes of all known PA-producing Apocynaceae species are orthologous and descended from an ancestral enzyme with the motif (VXXXD) of an optimized HSS. METHODS We increased sampling, tested the effect of amino acid motif on HSS function, revisited motif evolution, and tested for selection to infer evolution of HSS function and its correlation with phenotype. RESULTS Some evidence supports a single origin of PAs: an IXXXD HSS-like gene, similar in function to VXXXD HSS, evolved in the shared ancestor of all PA-producing species; loss of HSS function occurred multiple times via pseudogenization and perhaps via evolution of an IXXXN motif. Other evidence indicates multiple origins: the VXXXD motif, highly correlated with the PA phenotype, evolved two or four times independently; the ancestral IXXXD gene was not under positive selection, while some VXXXD genes were; and substitutions at sites experiencing positive selection occurred on multiple branches in the HSS-like gene tree. CONCLUSIONS The complexity of the genotype-function-phenotype map confounds the inference of PA homology from HSS-like gene evolution in Apocynaceae.
Collapse
Affiliation(s)
- Chelsea R. Smith
- Botany DepartmentAcademy of Natural Sciences of Drexel UniversityPhiladelphiaPAUSA
- Department of Biodiversity, Earth, and Environmental SciencesDrexel UniversityPhiladelphiaPAUSA
| | - Elisabeth Kaltenegger
- Botanisches Institut und Botanischer GartenChristian‐Albrechts‐Universitӓt zu KielKielGermany
| | - Jordan Teisher
- Botany DepartmentAcademy of Natural Sciences of Drexel UniversityPhiladelphiaPAUSA
- MO Herbarium, Missouri Botanical GardenSt. LouisMOUSA
| | - Abigail J. Moore
- School of Biological Sciences, University of OklahomaNormanOKUSA
| | | | - Tatyana Livshultz
- Botany DepartmentAcademy of Natural Sciences of Drexel UniversityPhiladelphiaPAUSA
- Department of Biodiversity, Earth, and Environmental SciencesDrexel UniversityPhiladelphiaPAUSA
| |
Collapse
|
2
|
Rech C, Ribeiro LP, Bento JMS, Pott CA, Nardi C. Monocrotaline presence in the Crotalaria (Fabaceae) plant genus and its influence on arthropods in agroecosystems. BRAZ J BIOL 2024; 84:e256916. [DOI: 10.1590/1519-6984.256916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract Crotalaria (Fabaceae) occurs abundantly in tropical and subtropical regions and has about 600 known species. These plants are widely used in agriculture, mainly as cover plants and green manures, in addition to their use in the management of phytonematodes. A striking feature of these species is the production of pyrrolizidine alkaloids (PAs), secondary allelochemicals involved in plant defense against herbivores. In Crotalaria species, monocrotaline is the predominant PA, which has many biological activities reported, including cytotoxicity, tumorigenicity, hepatotoxicity and neurotoxicity, with a wide range of ecological interactions. Thus, studies have sought to elucidate the effects of this compound to promote an increase in flora and fauna (mainly insects and nematodes) associated with agroecosystems, favoring the natural biological control. This review summarizes information about the monocrotaline, showing such effects in these environments, both above and below ground, and their potential use in pest management programs.
Collapse
Affiliation(s)
- C. Rech
- Universidade Estadual do Centro-Oeste, Brasil
| | - L. P. Ribeiro
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Brasil
| | | | - C. A. Pott
- Universidade Estadual do Centro-Oeste, Brasil
| | - C. Nardi
- Universidade Estadual do Centro-Oeste, Brasil
| |
Collapse
|
3
|
Wszelaki S, Podobiński P, Środoń K. Molluscicidal activity of plant alkaloids. J Appl Toxicol 2023; 43:1778-1792. [PMID: 36987554 DOI: 10.1002/jat.4466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Some snail species pose a serious threat for human health, economy, and the environment due to their widespread distribution and the transmission of dangerous parasites causing, among others, schistosomiasis and fascioliasis. Scientists from around the world have been studying the effects of plant extracts on snails for many years in order to find an alternative to molluscicides of synthetic origin. The main purpose of this study was to collect the results obtained so far on the effect of plant alkaloids on snails in the context of their molluscicidal properties. This work presents the results of publications on the effect of plant alkaloids on snails, which were published in the years 1974-2021. The Solanaceae, Papaveraceae, and Asteraceae are the plant families most frequently cited for containing alkaloids with molluscicidal activity. The alkaloids identified as molluscicidal belonged to various groups, of which the most numerous were pseudoalkaloids and tyrosine-derived alkaloids. Most of the tested alkaloids were characterized by a high mortality rate among the studied groups of snails. Based on the collected research results, it was found that plant alkaloids can be extremely useful in the fight against problematic species of snails and cause much lower harm to the environment than synthetic molluscicides.
Collapse
Affiliation(s)
- Sebastian Wszelaki
- Wrocław University of Environmental and Life Sciences, 25 Norwida St, Wrocław, 50-375, Poland
| | - Paweł Podobiński
- Wrocław University of Environmental and Life Sciences, 25 Norwida St, Wrocław, 50-375, Poland
| | - Kacper Środoń
- University of Wroclaw, 1 placUniwersytecki St, Wrocław, 50-137, Poland
| |
Collapse
|
4
|
Egli D, Harvey KJ, Moore BD, Mitchell C, Olckers T. Variations in chemical defences and patterns of natural enemy attack between native and introduced populations of fireweed (
Senecio madagascariensis
): Implications for biological control. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniella Egli
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01 Scottsville 3209 South Africa
| | - Kerinne J. Harvey
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01 Scottsville 3209 South Africa
| | - Ben D. Moore
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Christopher Mitchell
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Terence Olckers
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01 Scottsville 3209 South Africa
| |
Collapse
|
5
|
Wei X, Klinkhamer PGL, Mulder PPJ, van der Veen-van Wijk K, Vrieling K. Seasonal variation in defence compounds: A case study on pyrrolizidine alkaloids of clones of Jacobaea vulgaris, Jacobaea aquatica and their hybrids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111067. [PMID: 34763859 DOI: 10.1016/j.plantsci.2021.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Concentration of plant secondary metabolites (SMs) show seasonal variations. However, it is still not well understood how these abiotic and biotic factors influence the seasonal variations of SMs. In addition, it is of interest to know if and how SMs are reallocated to the different plant organs, in particular whether SMs are reallocated to the remaining tissues when biomass is lost, e.g., during winter. Here we used Jacobaea vulgaris, Jacobaea aquatica, two F1 and four F2 hybrids that differed in their pyrrolizidine alkaloids (PAs) bouquet as a study system. A series of clones of these genotypes were investigated during their vegetative stage spanning 14 months in a semi-natural environment. We found that the total PA concentration in roots and shoots showed a gradual increase until the spring of the second year, whereafter it dropped substantially in shoots. The variation in PA composition due to seasonal changes was significant but relatively small. Senecionine-like PAs were the dominant PAs in roots, while jacobine-/erucifoline-like PAs were dominant in shoots. The variation of PA concentration was significantly correlated with temperature, day length, and plant age. A correlation analysis showed that PAs were not reallocated when biomass was lost in winter. Overall, our study showed that PA composition of each genotype changed over seasons in a different manner but seasonal variation did not overrule the differences in PA composition among genotypes.
Collapse
Affiliation(s)
- Xianqin Wei
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China; Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands.
| | - Peter G L Klinkhamer
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Patrick P J Mulder
- Wageningen Food Safety Research-Wageningen University & Research, Akkermaalsbos 2, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
| | - Karin van der Veen-van Wijk
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Klaas Vrieling
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
6
|
Schramm S, Rozhon W, Adedeji-Badmus AN, Liang Y, Nayem S, Winkelmann T, Poppenberger B. The Orphan Crop Crassocephalum crepidioides Accumulates the Pyrrolizidine Alkaloid Jacobine in Response to Nitrogen Starvation. FRONTIERS IN PLANT SCIENCE 2021; 12:702985. [PMID: 34394157 PMCID: PMC8355542 DOI: 10.3389/fpls.2021.702985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Crassocephalum crepidioides is an African orphan crop that is used as a leafy vegetable and medicinal plant. Although it is of high regional importance in Sub-Saharan Africa, the plant is still mainly collected from the wild and therefore efforts are made to promote its domestication. However, in addition to beneficial properties, there was first evidence that C. crepidioides can accumulate the highly toxic pyrrolizidine alkaloid (PA) jacobine and here it was investigated, how jacobine production is controlled. Using ecotypes from Africa and Asia that were characterized in terms of their PA profiles, it is shown that the tetraploid C. crepidioides forms jacobine, an ability that its diploid close relative Crassocephalum rubens appears to lack. Evidence is provided that nitrogen (N) deficiency strongly increases jacobine in the leaves of C. crepidioides, that this capacity depends more strongly on the shoot than the root system, and that homospermidine synthase (HSS) activity is not rate-limiting for this reaction. A characterization of HSS gene representation and transcription showed that C. crepidioides and C. rubens possess two functional versions, one of which is conserved, that the HSS transcript is mainly present in roots and that its abundance is not controlled by N deficiency. In summary, this work improves our understanding of how environmental cues impact PA biosynthesis in plants and provides a basis for the development of PA-free C. crepidioides cultivars, which will aid its domestication and safe use.
Collapse
Affiliation(s)
- Sebastian Schramm
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Adebimpe N. Adedeji-Badmus
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Yuanyuan Liang
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Shahran Nayem
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Traud Winkelmann
- Woody Plant and Propagation Physiology Section, Institute of Horticultural Production Systems, Gottfried Wilhelm Leibniz University Hannover, Hanover, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
7
|
Fieber AM, Bourdeau PE. Elevated pCO 2 reinforces preference among intertidal algae in both a specialist and generalist herbivore. MARINE POLLUTION BULLETIN 2021; 168:112377. [PMID: 33901905 DOI: 10.1016/j.marpolbul.2021.112377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Ocean acidification (OA) can induce changes in marine organisms and species interactions. We examined OA effects on intertidal macroalgal growth, palatability, and consumption by a specialist crab (Pugettia producta) and a generalist snail (Tegula funebralis) herbivore. Moderate increases in pCO2 increased algal growth in most species, but effects of pCO2 on C:N and phenolic content varied by species. Elevated pCO2 had no effect on algal acceptability to herbivores, but did affect their preference ranks. Under elevated pCO2, electivity for a preferred kelp (Egregia menziesii) and preference rankings among algal species strengthened for both P. producta and T. funebralis, attributable to resilience of E. menziesii in elevated pCO2 and to changes in palatability among less-preferred species. Preferred algae may therefore grow more under moderate pCO2 increases in the future, but their appeal to herbivores may be strengthened by associated shifts in nutritional quality and defensive compounds in other species.
Collapse
Affiliation(s)
- Andrea M Fieber
- Telonicher Marine Laboratory, Humboldt State University, Trinidad, USA; Department of Biological Sciences, Humboldt State University, Arcata, USA.
| | - Paul E Bourdeau
- Telonicher Marine Laboratory, Humboldt State University, Trinidad, USA; Department of Biological Sciences, Humboldt State University, Arcata, USA
| |
Collapse
|
8
|
The geographical and seasonal mosaic in a plant-herbivore interaction: patterns of defences and herbivory by a specialist and a non-specialist. Sci Rep 2019; 9:15206. [PMID: 31645656 PMCID: PMC6811555 DOI: 10.1038/s41598-019-51528-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/24/2019] [Indexed: 12/01/2022] Open
Abstract
In order to evaluate the geographic mosaic theory of coevolution, it is crucial to investigate geographical variation on the outcome of ecological interactions and the functional traits which dictate these outcomes. Plant populations are attacked by specialist and non-specialist herbivores and may have different types of chemical and biotic defences. We investigated geographical and seasonal variation in the interaction between the plant Crotalaria pallida and its two major herbivores (the specialist Utetheisa ornatrix and the non-specialist Etiella zinckenella). We first showed that attack by the two herbivores and a chemical and a biotic defence vary greatly in time and space. Second, we performed a common garden experiment that revealed genetic variation among populations in herbivore resistance and a chemical defence, but no genetic variation in a biotic defence. Third, we sampled 20 populations on a much larger geographical scale and showed great variation in attack rates by the two herbivores and a chemical defence. Finally, we showed that herbivory is not correlated with a chemical defence in the 20 field populations. Our study shows that to understand the evolution of ecological interactions it is crucial to investigate how the outcome of the interaction and the important species traits vary geographically and seasonally.
Collapse
|
9
|
Luo J, Yang X, Qiu S, Li X, Xiang E, Fang Y, Wang Y, Zhang L, Wang H, Zheng J, Guo Y. Sex difference in monocrotaline-induced developmental toxicity and fetal hepatotoxicity in rats. Toxicology 2019; 418:32-40. [PMID: 30825512 DOI: 10.1016/j.tox.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are a class of hepatic toxins widely existing in plants. Cytochromes P450 (CYP) mediates PA bioactivation and toxicities in mammals. It has been reported that PAs can induce developmental toxicity, but systematic research is lacking. In this study, we investigated developmental toxicity of monocrotaline (MCT) in rats. Pregnant rats were administered with MCT (20 mg/kg) intragastrically from gestation day 9 to 20, followed by determination of changes in fetal growth, hepatic morphology, serum biochemical indices, and indicators of hepatocytes apoptosis. MCT was found to induce developmental toxicity and fetal hepatotoxicity, particularly in female fetuses. Metabolic activation was also studied by examination of bioactivation efficiency of MCT in fetal liver microsomes, serum MCT, pyrrole-protein adduction derived from MCT, and hepatic CYP3 A expression of fetuses in vivo. Male fetuses showed greater basal MCT bioactivation than that of female fetuses, but continuous exposure to MCT caused a selective CYP3 A induction in female fetuses, which may contribute to the sex difference in MCT-induced developmental toxicity.
Collapse
Affiliation(s)
- Jinyuan Luo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Xiaojing Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People's Republic of China.
| | - Shuaikai Qiu
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Xia Li
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - E Xiang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Yan Fang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Yanqing Wang
- Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China.
| | - Li Zhang
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China; Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| |
Collapse
|
10
|
Calf OW, Huber H, Peters JL, Weinhold A, Poeschl Y, van Dam NM. Gastropods and Insects Prefer Different Solanum dulcamara Chemotypes. J Chem Ecol 2019; 45:146-161. [PMID: 29961916 PMCID: PMC6469604 DOI: 10.1007/s10886-018-0979-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 01/22/2023]
Abstract
Solanum dulcamara (Bittersweet nightshade) shows significant intraspecific variation in glycoalkaloid (GA) composition and concentration. We previously showed that constitutive differences in overall GA levels are correlated with feeding preference of the grey field slug (GFS; Deroceras reticulatum). One particularly preferred accession, ZD11, contained low GA levels, but high levels of previously unknown structurally related uronic acid conjugated compounds (UACs). Here we test whether different slug species as well as insect herbivores show similar feeding preferences among six S. dulcamara accessions with different GA chemotypes. In addition, we investigate whether slug feeding can lead to induced changes in the chemical composition and affect later arriving herbivores. A leaf disc assay using greenhouse-grown plants showed that three slug species similarly preferred accessions with low GA levels. Untargeted metabolomic analyses showed that previous slug feeding consistently increased the levels of N-caffeoyl-putrescine and a structurally related metabolite, but not the levels of GAs and UACs. Slug-induced responses only affected slug preference in one accession. A common garden experiment using the same six accessions revealed that ZD11 received the highest natural gastropod feeding damage, but suffered the lowest damage by specialist flea beetles. The latter preferred to feed on accessions with high GA levels. Our study indicates that different selection pressures imposed by generalist gastropods and specialist insects may explain part of the observed chemical diversity in S. dulcamara.
Collapse
Affiliation(s)
- Onno W Calf
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| | - Heidrun Huber
- Experimental Plant Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Janny L Peters
- Molecular Plant Physiology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120, Halle, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany.
| |
Collapse
|
11
|
Schramm S, Köhler N, Rozhon W. Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants. Molecules 2019; 24:E498. [PMID: 30704105 PMCID: PMC6385001 DOI: 10.3390/molecules24030498] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are heterocyclic secondary metabolites with a typical pyrrolizidine motif predominantly produced by plants as defense chemicals against herbivores. They display a wide structural diversity and occur in a vast number of species with novel structures and occurrences continuously being discovered. These alkaloids exhibit strong hepatotoxic, genotoxic, cytotoxic, tumorigenic, and neurotoxic activities, and thereby pose a serious threat to the health of humans since they are known contaminants of foods including grain, milk, honey, and eggs, as well as plant derived pharmaceuticals and food supplements. Livestock and fodder can be affected due to PA-containing plants on pastures and fields. Despite their importance as toxic contaminants of agricultural products, there is limited knowledge about their biosynthesis. While the intermediates were well defined by feeding experiments, only one enzyme involved in PA biosynthesis has been characterized so far, the homospermidine synthase catalyzing the first committed step in PA biosynthesis. This review gives an overview about structural diversity of PAs, biosynthetic pathways of necine base, and necic acid formation and how PA accumulation is regulated. Furthermore, we discuss their role in plant ecology and their modes of toxicity towards humans and animals. Finally, several examples of PA-producing crop plants are discussed.
Collapse
Affiliation(s)
- Sebastian Schramm
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| | - Nikolai Köhler
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| |
Collapse
|
12
|
Lin T, Klinkhamer PGL, Pons TL, Mulder PPJ, Vrieling K. Evolution of Increased Photosynthetic Capacity and Its Underlying Traits in Invasive Jacobaea vulgaris. FRONTIERS IN PLANT SCIENCE 2019; 10:1016. [PMID: 31440269 PMCID: PMC6694182 DOI: 10.3389/fpls.2019.01016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/19/2019] [Indexed: 05/14/2023]
Abstract
The evolution of increased competitive ability (EICA) hypothesis and the shifting defense hypothesis (SDH) predict that evolutionary changes occur in a suite of traits related to defense and growth in invasive plant species as result of the absence of specialist herbivores. We tested how this suite of traits changed due to the absence of specialist herbivores in multiple invasive regions that differ in climatic conditions with native and invasive Jacobaea vulgaris in a controlled environment. We hypothesized that invasive J. vulgaris in all invasive regions have i) a higher plant growth and underlying traits, such as photosynthetic capacity, ii) lower regrowth-related traits, such as carbohydrate storage, and iii) an increased plant qualitative defense, such as pyrrolizidine alkaloids (PAs). Our results show that invasive J. vulgaris genotypes have evolved a higher photosynthetic rate and total PA concentration but a lower investment in root carbohydrates, which supports the SDH hypothesis. All the traits changed consistently and significantly in the same direction in all four invasive regions, indicative of a parallel evolution. Climatic and soil variables did differ between ranges but explained only a very small part of the variation in trait values. The latter suggests that climate and soil changes were not the main selective forces on these traits.
Collapse
Affiliation(s)
- Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
- *Correspondence: Tiantian Lin,
| | - Peter G. L. Klinkhamer
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
| | - Thijs L. Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | | | - Klaas Vrieling
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
13
|
de Vries J, Evers JB, Dicke M, Poelman EH. Ecological interactions shape the adaptive value of plant defence: Herbivore attack versus competition for light. Funct Ecol 2019; 33:129-138. [PMID: 31007332 PMCID: PMC6472621 DOI: 10.1111/1365-2435.13234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022]
Abstract
Plants defend themselves against diverse communities of herbivorous insects. This requires an investment of limited resources, for which plants also compete with neighbours. The consequences of an investment in defence are determined by the metabolic costs of defence as well as indirect or ecological costs through interactions with other organisms. These ecological costs have a potentially strong impact on the evolution of defensive traits, but have proven to be difficult to quantify.We aimed to quantify the relative impact of the direct and indirect or ecological costs and benefits of an investment in plant defence in relation to herbivory and intergenotypic competition for light. Additionally, we evaluated how the benefits of plant defence balance its costs in the context of herbivory and intergenotypic competition.To this end, we utilised a functional-structural plant (FSP) model of Brassica nigra that simulates plant growth and development, morphogenesis, herbivory and plant defence. In the model, a simulated investment in defences affected plant growth by competing with other plant organs for resources and affected the level and distribution of herbivore damage.Our results show that the ecological costs of intergenotypic competition for light are highly detrimental to the fitness of defended plants, as it amplifies the size difference between defended and undefended plants. This leads to herbivore damage counteracting the effects of intergenotypic competition under the assumption that herbivore damage scales with plant size. Additionally, we show that plant defence relies on reducing herbivore damage rather than the dispersion of herbivore damage, which is only beneficial under high levels of herbivore damage.We conclude that the adaptive value of plant defence is highly dependent on ecological interactions and is predominantly determined by the outcome of competition for light. plain language summary is available for this article.
Collapse
Affiliation(s)
- Jorad de Vries
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
- Centre for Crop System AnalysisWageningen UniversityWageningenThe Netherlands
| | - Jochem B. Evers
- Centre for Crop System AnalysisWageningen UniversityWageningenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
14
|
Liu X, Vrieling K, Klinkhamer PGL. Phytochemical Background Mediates Effects of Pyrrolizidine Alkaloids on Western Flower Thrips. J Chem Ecol 2018; 45:116-127. [PMID: 30221331 PMCID: PMC6469620 DOI: 10.1007/s10886-018-1009-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/23/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
Plants produce an extremely diverse array of metabolites that mediate many aspects of plant-environment interactions. In the context of plant-herbivore interactions, it is as yet poorly understood how natural backgrounds shape the bioactivity of individual metabolites. We tested the effects of a methanol extract of Jacobaea plants and five fractions derived from this extract, on survival of western flower thrips (WFT). When added to an artificial diet, the five fractions all resulted in a higher WFT survival rate than the methanol extract. In addition, their expected combined effect on survival, assuming no interaction between them, was lower than that of the methanol extract. The bioactivity was restored when the fractions were combined again in their original proportion. These results strongly suggest synergistic interactions among the fractions on WFT survival rates. We then tested the effects of two pyrrolizidine alkaloids (PAs), free base retrorsine and retrorsine N-oxide, alone and in combination with the five shoot fractions on WFT survival. The magnitude of the effects of the two PAs depended on the fraction to which they were added. In general, free base retrorsine was more potent than retrorsine N-oxide, but this was contingent on the fraction to which these compounds were added. Our results support the commonly held, though seldom tested, notion that the efficacy of plant metabolites with respect to plant defence is dependent on their phytochemical background. It also shows that the assessment of bioactivity cannot be decoupled from the natural chemical background in which these metabolites occur.
Collapse
Affiliation(s)
- Xiaojie Liu
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300, RA, Leiden, The Netherlands. .,Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China.
| | - Klaas Vrieling
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300, RA, Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300, RA, Leiden, The Netherlands
| |
Collapse
|
15
|
Gill GP, Bryant CJ, Fokin M, Huege J, Fraser K, Jones C, Cao M, Faville MJ. Low pyrrolizidine alkaloid levels in perennial ryegrass is associated with the absence of a homospermidine synthase gene. BMC PLANT BIOLOGY 2018; 18:56. [PMID: 29625552 PMCID: PMC5889531 DOI: 10.1186/s12870-018-1269-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pyrrolizidine alkaloids (PAs) are a class of secondary metabolites that function as feeding deterrents in a range of different plant species. In perennial ryegrass (Lolium perenne L.) the only PAs that have been identified are the thesinine-rhamnoside group, which displays significant genetic variation. Homospermidine synthase (HSS) has evolved from deoxyhypusine synthase (DHS) and catalyses the first step in the PA pathway, making it a key candidate for the investigation of genes influencing observed PA trait variation. RESULTS During PCR amplification and sequence analysis of DHS we identified two putative HSS genes in perennial ryegrass. One of the genes (LpHSS1) was absent in some perennial ryegrass plants. Thesinine-rhamnoside levels were measured using liquid chromatography coupled with mass spectrometry in a diverse association mapping population, consisting of 693 plants free of fungal endophytic symbionts. Association tests that accounted for population structure identified a significant association of absence of the LpHSS1 gene with lower levels of thesinine-rhamnoside PAs. HSS-like gene sequences were identified for other grass species of the Poaceae, including tall fescue, wheat, maize and sorghum. CONCLUSION HSS is situated at the crucial first step in the PA pathway making it an important candidate gene for investigation of involvement in PA phenotypic variation. In this study, PA level in perennial ryegrass was strongly associated with the presence or absence of the LpHSS1 gene. A genetic marker, developed for the presence/absence of LpHSS1, may be used for marker-assisted breeding to either lower or increase PAs in breeding populations of perennial or Italian ryegrass to investigate a potential role in the deterrence of herbivore pests. The presence of HSS-like genes in several other Poaceae species suggests that PA biosynthesis may occur in plant family members beyond perennial ryegrass and tall fescue and identifies a potential route for manipulating PA levels.
Collapse
Affiliation(s)
- Geoffrey P. Gill
- Pastoral Genomics, c/o AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Catherine J. Bryant
- Pastoral Genomics, c/o AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Mikhail Fokin
- Pastoral Genomics, c/o AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Jan Huege
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Karl Fraser
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Chris Jones
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Mingshu Cao
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442 New Zealand
| | - Marty J. Faville
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442 New Zealand
| |
Collapse
|
16
|
Hill EM, Robinson LA, Abdul-Sada A, Vanbergen AJ, Hodge A, Hartley SE. Arbuscular Mycorrhizal Fungi and Plant Chemical Defence: Effects of Colonisation on Aboveground and Belowground Metabolomes. J Chem Ecol 2018; 44:198-208. [PMID: 29392532 PMCID: PMC5843688 DOI: 10.1007/s10886-017-0921-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/08/2017] [Accepted: 12/25/2017] [Indexed: 12/01/2022]
Abstract
Arbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots. Metabolomics analyses revealed that 33 compounds were significantly increased in the root tissue of AMF colonised plants, including seven blumenols, plant-derived compounds known to be associated with AMF colonisation. One of these was a novel structure conjugated with a malonyl-sugar and uronic acid moiety, hitherto an unreported combination. Such structural modifications of blumenols could be significant for their previously reported functional roles associated with the establishment and maintenance of AM colonisation. Pyrrolizidine alkaloids (PAs), key anti-herbivore defence compounds in ragwort, dominated the metabolomic profiles of root and shoot extracts. Analyses of the metabolomic profiles revealed an increase in four PAs in roots (but not shoots) of AMF colonised plants, with the potential to protect colonised plants from below-ground organisms.
Collapse
Affiliation(s)
- Elizabeth M Hill
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Lynne A Robinson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
- Centre for Ecology and Hydrology (CEH), Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - Ali Abdul-Sada
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Adam J Vanbergen
- Centre for Ecology and Hydrology (CEH), Bush Estate, Penicuik, Midlothian, EH26 0QB, UK
| | - Angela Hodge
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Sue E Hartley
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- York Environment and Sustainability Institute, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
17
|
Phytochemical investigations and food-choice experiments with two mollusc species in three central European Senecio L. (Asteraceae, Senecioneae) species and their hybrids. CHEMOECOLOGY 2017. [DOI: 10.1007/s00049-017-0241-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Liu X, Klinkhamer PGL, Vrieling K. The effect of structurally related metabolites on insect herbivores: A case study on pyrrolizidine alkaloids and western flower thrips. PHYTOCHEMISTRY 2017; 138:93-103. [PMID: 28267991 DOI: 10.1016/j.phytochem.2017.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 05/20/2023]
Abstract
Plant specialised metabolites (SMs) are very diverse in terms of both their number and chemical structures with more than 200,000 estimated compounds. This chemical diversity occurs not only among different groups of compounds but also within the groups themselves. In the context of plant-insect interactions, the chemical diversity within a class of structurally related metabolites is generally also related to their bioactivity. In this study, we tested firstly whether individual SMs within the group of pyrrolizidine alkaloids (PAs) differ in their effects on insect herbivores (western flower thrips, Frankliniella occidentalis). Secondly, we tested combinations of PA N-oxides to determine whether they are more active than their individual components. We also evaluated the bioactivity of six PA free bases and their corresponding N-oxides. At concentrations similar to that in plants, several PAs reduced thrip's survival but the effect also differed strongly among PAs. In general, PA free bases caused a lower survival than their corresponding N-oxides. Among the tested PA free bases, we found jacobine and retrorsine to be the most active against second instar larvae of thrips, followed by erucifoline and seneciphylline, while senecionine and monocrotaline did not exhibit significant dose-dependent effects on thrip's survival. In the case of PA N-oxides, we found that only senecionine N-oxide and jacobine N-oxide reduced thrip's survival, although the effect of senecionine N-oxide was weak. Combinations of PA N-oxides showed no synergistic effects. These findings indicate the differences observed in the effect of structurally related SMs on insect herbivores. It is of limited value to study the bioactivity of combined groups, such as PAs, without taking their composition into account.
Collapse
Affiliation(s)
- Xiaojie Liu
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands.
| | - Peter G L Klinkhamer
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| | - Klaas Vrieling
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
19
|
Samani P, Bell G. Experimental evolution of the grain of metabolic specialization in yeast. Ecol Evol 2016; 6:3912-22. [PMID: 27516854 PMCID: PMC4972220 DOI: 10.1002/ece3.2151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/27/2022] Open
Abstract
Adaptation to any given environment may be accompanied by a cost in terms of reduced growth in the ancestral or some alternative environment. Ecologists explain the cost of adaptation through the concept of a trade‐off, by which gaining a new trait involves losing another trait. Two mechanisms have been invoked to explain the evolution of trade‐offs in ecological systems, mutational degradation, and functional interference. Mutational degradation occurs when a gene coding a specific trait is not under selection in the resident environment; therefore, it may be degraded through the accumulation of mutations that are neutral in the resident environment but deleterious in an alternative environment. Functional interference evolves if the gene or a set of genes have antagonistic effects in two or more ecologically different traits. Both mechanisms pertain to a situation where the selection and the alternative environments are ecologically different. To test this hypothesis, we conducted an experiment in which 12 experimental populations of wild yeast were each grown in a minimal medium supplemented with a single substrate. We chose 12 different carbon substrates that were metabolized through similar and different pathways in order to represent a wide range of ecological conditions. We found no evidence for trade‐offs between substrates on the same pathway. The indirect response of substrates on other pathways, however, was consistently negative, with little correlation between the direct and indirect responses. We conclude that the grain of specialization in this case is the metabolic pathway and that specialization appears to evolve through mutational degradation.
Collapse
Affiliation(s)
- Pedram Samani
- Biology Department McGill University Montreal QCH3A 1B1 Canada; University of Montana 32 Campus Drive Missoula 59812 Montana
| | - Graham Bell
- Biology Department McGill University Montreal QC H3A 1B1 Canada
| |
Collapse
|