1
|
Martina C, Krenn L, Krupicka L, Yamada H, Hood-Nowotny R, Lahuatte PF, Yar J, Schwemhofer T, Fischer B, Causton CE, Tebbich S. Evaluating Volatile Plant Compounds of Psidium galapageium (Myrtales: Myrtaceae) as Repellents Against Invasive Parasitic Diptera in the Galapagos Islands. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:89-98. [PMID: 34761264 DOI: 10.1093/jme/tjab183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Plant-based repellents represent a safe, economic, and viable alternative to managing invasive insects that threaten native fauna. Observations of self-medication in animals can provide important cues to the medicinal properties of plants. A recent study in the Galapagos Islands found that Darwin's finches apply the leaves of Psidium galapageium (Hooker 1847) to their feathers, extracts of which were repellent to mosquitoes and the parasitic fly Philornis downsi (Dodge & Aitkens 1968; Diptera: Muscidae). Introduced mosquitoes are suspected vectors of avian pathogens in the Galapagos Islands, whereas the larvae of P. downsi are blood-feeders, causing significant declines of the endemic avifauna. In this study, we investigated the volatile compounds found in P. galapageium, testing each against a model organism, the mosquito Anopheles arabiensis (Patton 1905; Diptera: Culicidae), with the aim of singling out the most effective compound for repelling dipterans. Examinations of an ethanolic extract of P. galapageium, its essential oil and each of their respective fractions, revealed a mixture of monoterpenes and sesquiterpenes, the latter consisting mainly of guaiol, trans-nerolidol, and β-eudesmol. Of these, trans-nerolidol was identified as the most effective repellent to mosquitoes. This was subsequently tested at four different concentrations against P. downsi, but we did not find a repellence response. A tendency to avoid the compound was observed, albeit significance was not achieved in any case. The lack of repellence suggests that flies may respond to a combination of the volatile compounds found in P. galapageium, rather than to a single compound.
Collapse
Affiliation(s)
- C Martina
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
- Insect Pest Control Section, International Atomic Energy Agency, 1400, Vienna, Austria
| | - L Krenn
- Department of Pharmacognosy, University of Vienna, A-1090, Vienna, Austria
| | - L Krupicka
- Department of Pharmacognosy, University of Vienna, A-1090, Vienna, Austria
| | - H Yamada
- Insect Pest Control Section, International Atomic Energy Agency, 1400, Vienna, Austria
| | - R Hood-Nowotny
- Institute of Soil Research, University of Natural Resources and Life Sciences (BOKU), 1180 Vienna, Austria
| | - P F Lahuatte
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - J Yar
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - T Schwemhofer
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - B Fischer
- Department of Evolutionary Biology, Unit for Theoretical Biology, University of Vienna, A-1090, Vienna, Austria
| | - C E Causton
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - S Tebbich
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Trumbo ST, Philbrick PKB, Stökl J, Steiger S. Burying Beetle Parents Adaptively Manipulate Information Broadcast from a Microbial Community. Am Nat 2021; 197:366-378. [PMID: 33625971 DOI: 10.1086/712602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractMicrobial volatiles provide essential information for animals, which compete to detect, respond to, and perhaps control this information. Burying beetle parents have the opportunity to influence microbially derived semiochemicals, because they monopolize a small carcass for their family, repairing feeding holes and applying exudates that alter the microbial community. To study adaptive manipulation of microbial cues, we integrated mechanistic and functional approaches. We contrasted gas chromatography-mass spectrometry (GC-MS) volatile profiles from carcasses that were or were not prepared by a resident pair of Nicrophorus orbicollis. Methyl thiocyanate (MeSCN), the primary attractant for burying beetles seeking a fresh carcass, was reduced 20-fold by carcass preparation, while dimethyl trisulfide (DMTS), which deters breeding beetles, was increased 20-fold. These results suggest that parental care serves to make previously public information more private (crypsis, MeSCN) and to disinform rivals with a deterrent (DMTS). Functional tests in the field demonstrated that carcass preparation reduced discovery and use by congeners (threefold) as well as by dipteran rivals. Because microbes and their chemicals influence nearly every aspect of animal ecology, animal manipulation of microbial cues may be as widespread as manipulation of their own signals.
Collapse
|
3
|
Cimadom A, Tebbich S. Timing of infestation influences virulence and parasite success in a dynamic multi-host-parasite interaction between the invasive parasite, Philornis downsi, and Darwin's finches. Oecologia 2021; 195:249-259. [PMID: 33258992 PMCID: PMC7882474 DOI: 10.1007/s00442-020-04807-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Recently commenced host-parasite interactions provide an excellent opportunity to study co-evolutionary processes. Multi-host systems are especially informative because variation in virulence between hosts and temporal changes provides insight into evolutionary dynamics. However, empirical data under natural conditions are scarce. In the present study, we investigated the interaction between Darwin's finches and the invasive fly Philornis downsi whose larvae feed on the blood of nestlings. Recently, however, the fly has changed its behavior and now also attacks incubating females. Two sympatric hosts are affected differently by the parasite and parasite load has changed over time. Our study observed a reversal of trends described two decades ago: while, currently, small tree finches (Camarhynchus parvulus) experience significantly higher parasite load than warbler finches (Certhidea olivacea), this was the opposite two decades ago. Currently, fledging success is higher in warbler finches compared to small tree finches. Our data indicate that not only intensity but also timing of infestation influences hosts' reproductive success and parasite fitness. During incubation, prevalence was higher in warbler finches, but once chicks had hatched, prevalence was 100% in both species and parasite load was higher in small tree finches. Furthermore, our results suggest faster development and higher reproductive success of P. downsi in small tree finch nests. A change in host preference driven by larvae competition could have led to the reversal in parasite load.
Collapse
Affiliation(s)
- Arno Cimadom
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Sabine Tebbich
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Population structure of a nest parasite of Darwin’s finches within its native and invasive ranges. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01315-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Behavioral Responses of the Invasive Fly Philornis downsi to Stimuli from Bacteria and Yeast in the Laboratory and the Field in the Galapagos Islands. INSECTS 2019; 10:insects10120431. [PMID: 31795249 PMCID: PMC6956314 DOI: 10.3390/insects10120431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
Abstract
Philornis downsi Dodge and Aitken (Diptera: Muscidae) is an avian parasitic fly that has invaded the Galapagos archipelago and exerts an onerous burden on populations of endemic land birds. As part of an ongoing effort to develop tools for the integrated management of this fly, our objective was to determine its long- and short-range responses to bacterial and fungal cues associated with adult P. downsi. We hypothesized that the bacterial and fungal communities would elicit attraction at distance through volatiles, and appetitive responses upon contact. Accordingly, we amplified bacteria from guts of adult field-caught flies and from bird feces, and yeasts from fermenting papaya juice (a known attractant of P. downsi), on selective growth media, and assayed the response of flies to these microbes or their exudates. In the field, we baited traps with bacteria or yeast and monitored adult fly attraction. In the laboratory, we used the proboscis extension response (PER) to determine the sensitivity of males and females to tarsal contact with bacteria or yeast. Long range trapping efforts yielded two female flies over 112 trap-nights (attracted by bacteria from bird feces and from the gut of adult flies). In the laboratory, tarsal contact with stimuli from gut bacteria elicited significantly more responses than did yeast stimuli. We discuss the significance of these findings in context with other studies in the field and identify targets for future work.
Collapse
|
6
|
Causton CE, Moon RD, Cimadom A, Boulton RA, Cedeño D, Lincango MP, Tebbich S, Ulloa A. Population dynamics of an invasive bird parasite, Philornis downsi (Diptera: Muscidae), in the Galapagos Islands. PLoS One 2019; 14:e0224125. [PMID: 31626686 PMCID: PMC6874344 DOI: 10.1371/journal.pone.0224125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/06/2019] [Indexed: 01/05/2023] Open
Abstract
The invasive parasitic fly, Philornis downsi (Muscidae), is one of the greatest threats to the avifauna of the Galapagos Islands. The larvae of this fly feed on the blood and tissues of developing nestlings of at least 18 endemic and native birds. The aim of the current study was to investigate biotic and abiotic factors that may influence the population dynamics of this invasive parasite. To study the influence of vegetation zone and related climatic factors on fly numbers, a bi-weekly monitoring program using papaya-baited traps was carried out at a dry, lowland site and at a humid, highland site on Santa Cruz Island between 2012-2014. Female flies, a large proportion of which were inseminated and gravid, were collected throughout the year at both sites, indicating females were active during and between the bird breeding seasons. This is the first evidence that female flies are able to persist even when hosts are scarce. On the other hand, catch rates of male flies declined between bird breeding seasons. Overall, catch rates of P. downsi were higher in the drier, lowland habitat, which may be a consequence of host or resource availability. Time was a stronger predictor of adult fly numbers than climate, further suggesting that P. downsi does not appear to be limited by its environment, but rather by host availability. Seasonal catch rates suggested that populations in both habitats were continuous and multivoltine. Numbers of adult female flies appeared to be regulated chiefly by simple direct density dependence, and may be governed by availability of bird nests with nestlings. Nevertheless, confounding factors such as the existence of reservoir hosts that perpetuate fly populations and changes in behavior of P. downsi may increase the vulnerability of bird hosts that are already IUCN red-listed or in decline.
Collapse
Affiliation(s)
- Charlotte E. Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
| | - Roger D. Moon
- Department of Entomology, University of Minnesota, St. Paul, MN, United
States of America
| | - Arno Cimadom
- Department of Behavioural Biology, University of Vienna, Vienna,
Austria
| | - Rebecca A. Boulton
- College of Life and Environmental Sciences, University of Exeter,
Cornwall, United Kingdom
| | - Daniel Cedeño
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
| | - María Piedad Lincango
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
- Facultad De Ciencias Agrícolas, Universidad Central Del Ecuador, Quito,
Pichincha, Ecuador
| | - Sabine Tebbich
- Department of Behavioural Biology, University of Vienna, Vienna,
Austria
| | - Angel Ulloa
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
| |
Collapse
|
7
|
Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore. Appl Environ Microbiol 2019; 85:AEM.01761-19. [PMID: 31444202 PMCID: PMC6803314 DOI: 10.1128/aem.01761-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/18/2019] [Indexed: 01/25/2023] Open
Abstract
Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques. Yeasts form mutualistic interactions with insects. Hallmarks of this interaction include provision of essential nutrients, while insects facilitate yeast dispersal and growth on plant substrates. A phylogenetically ancient chemical dialogue coordinates this interaction, where the vocabulary, the volatile chemicals that mediate the insect response, remains largely unknown. Here, we used gas chromatography-mass spectrometry, followed by hierarchical cluster and orthogonal partial least-squares discriminant analyses, to profile the volatomes of six Metschnikowia spp., Cryptococcus nemorosus, and brewer’s yeast (Saccharomyces cerevisiae). The yeasts, which are all found in association with insects feeding on foliage or fruit, emit characteristic, species-specific volatile blends that reflect the phylogenetic context. Species specificity of these volatome profiles aligned with differential feeding of cotton leafworm (Spodoptera littoralis) larvae on these yeasts. Bioactivity correlates with yeast ecology; phylloplane species elicited a stronger response than fruit yeasts, and larval discrimination may provide a mechanism for establishment of insect-yeast associations. The yeast volatomes contained a suite of insect attractants known from plant and especially floral headspace, including (Z)-hexenyl acetate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), (3E)-4,8-dimethylnona-1,3,7-triene (DMNT), linalool, α-terpineol, β-myrcene, or (E,E)-α-farnesene. A wide overlap of yeast and plant volatiles, notably floral scents, further emphasizes the prominent role of yeasts in plant-microbe-insect relationships, including pollination. The knowledge of insect-yeast interactions can be readily brought to practical application, as live yeasts or yeast metabolites mediating insect attraction provide an ample toolbox for the development of sustainable insect management. IMPORTANCE Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques.
Collapse
|
8
|
Cha DH, Loeb GM, Linn CE, Hesler SP, Landolt PJ. A Multiple-Choice Bioassay Approach for Rapid Screening of Key Attractant Volatiles. ENVIRONMENTAL ENTOMOLOGY 2018; 47:946-950. [PMID: 29668879 DOI: 10.1093/ee/nvy054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Fermentation volatiles attract a wide variety of insects and are used for integrated pest management. However, identification of the key behavior modifying chemicals has often been challenging due to the time consuming nature of thorough behavioral tests and unexpected discrepancies between laboratory and field results. Thus we report on a multiple-choice bioassay approach that may expedite the process of identifying field-worthy attractants in the laboratory. We revisited the four-component key chemical blend (acetic acid, ethanol, acetoin, and methionol) identified from 12 antennally active wine and vinegar chemicals for Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). The identification of this blend took 2 yr of continuous laboratory two-choice assays and then similarly designed field trials. This delay was mainly due to a discrepancy between laboratory and field results that laboratory two-choice assay failed to identify methionol as an attractant component. Using a multiple-choice approach, we compared the co-attractiveness of the 12 potential attractants to an acetic acid plus ethanol mixture, known as the basal attractant for D. suzukii, and found similar results as the previous field trials. Only two compounds, acetoin and, importantly, methionol, increased attraction to a mixture of acetic acid and ethanol, suggesting the identification of the four-component blend could have been expedited. Interestingly, the co-attractiveness of some of the 12 individual compounds, including a key attractant, methionol, appears to change when they were tested under different background odor environments, suggesting that background odor can influence detection of potential attractants. Our findings provide a potentially useful approach to efficiently identify behaviorally bioactive fermentation chemicals.
Collapse
Affiliation(s)
- Dong H Cha
- US Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, HI
| | - Gregory M Loeb
- Department of Entomology, Cornell University, Geneva, NY
| | - Charles E Linn
- Department of Entomology, Cornell University, Geneva, NY
| | | | - Peter J Landolt
- Yakima Agricultural Research Laboratory, USDA-ARS, Wapato, WA
| |
Collapse
|
9
|
McNew SM, Clayton DH. Alien Invasion: Biology of Philornis Flies Highlighting Philornis downsi, an Introduced Parasite of Galápagos Birds. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:369-387. [PMID: 29058976 DOI: 10.1146/annurev-ento-020117-043103] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The muscid genus Philornis comprises approximately 50 described species of flies, nearly all of which are obligate parasites of nestling birds. Philornis species are native to the Neotropics and widely distributed from Florida to Argentina. Most research on this group has focused on P. downsi, which was introduced to the Galápagos Islands in the late twentieth century. Although Philornis parasitism kills nestlings in several native host species, nowhere do the effects seem more severe than in P. downsi in the Galápagos. Here, we review studies of native and introduced Philornis in an attempt to identify factors that may influence virulence and consider implications for the conservation of hosts in the Galápagos.
Collapse
Affiliation(s)
- Sabrina M McNew
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA;
| | - Dale H Clayton
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA;
| |
Collapse
|
10
|
Fessl B, Heimpel GE, Causton CE. Invasion of an Avian Nest Parasite, Philornis downsi, to the Galapagos Islands: Colonization History, Adaptations to Novel Ecosystems, and Conservation Challenges. DISEASE ECOLOGY 2018. [DOI: 10.1007/978-3-319-65909-1_9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Ben-Yosef M, Zaada DSY, Dudaniec RY, Pasternak Z, Jurkevitch E, Smith RJ, Causton CE, Lincango MP, Tobe SS, Mitchell JG, Kleindorfer S, Yuval B. Host-specific associations affect the microbiome ofPhilornis downsi, an introduced parasite to the Galápagos Islands. Mol Ecol 2017; 26:4644-4656. [DOI: 10.1111/mec.14219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/25/2017] [Accepted: 06/13/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology; Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - Doron S. Y. Zaada
- Department of Entomology; Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - Rachael Y. Dudaniec
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - Zohar Pasternak
- Department of Microbiology and Plant Pathology; Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - Edouard Jurkevitch
- Department of Microbiology and Plant Pathology; Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - Renee J. Smith
- School of Biological Sciences; Flinders University; Adelaide SA Australia
| | - Charlotte E. Causton
- Charles Darwin Foundation; Puerto Ayora Santa Cruz Island Galápagos Islands Ecuador
| | - Maria Piedad Lincango
- Charles Darwin Foundation; Puerto Ayora Santa Cruz Island Galápagos Islands Ecuador
- Facultad De Ciencias Agrícolas; Universidad Central Del Ecuador; Quito Pichincha Ecuador
| | - Shanan S. Tobe
- School of Biological Sciences; Flinders University; Adelaide SA Australia
- Department of Chemistry and Physics; Arcadia University; Glenside PA USA
| | - James G. Mitchell
- School of Biological Sciences; Flinders University; Adelaide SA Australia
| | - Sonia Kleindorfer
- School of Biological Sciences; Flinders University; Adelaide SA Australia
| | - Boaz Yuval
- Department of Entomology; Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| |
Collapse
|
12
|
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 2017; 41:S95-S128. [PMID: 28830094 PMCID: PMC5916228 DOI: 10.1093/femsre/fux031] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.
Collapse
Affiliation(s)
- Maria C Dzialo
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Rahel Park
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A B-2860 Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|