1
|
Bergame CP, Dong C, Bandi S, Schlemper-Scheidt MD, Sutour S, von Reuß SH. Identification and synthesis of 4'- ortho-aminobenzoyl ascarosides as sex pheromones of gonochoristic Caenorhabditis nigoni. Org Biomol Chem 2025; 23:3654-3670. [PMID: 40126449 DOI: 10.1039/d5ob00271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Using a combination of RP-C18 chromatography, MS and NMR techniques, a new class of homologous modular ascarosides carrying a 4'-ortho-aminobenzoyl moiety was identified from Caenorhabditis nigoni and Caenorhabditis tropicalis. These compounds could not be detected using targeted ascaroside screens based on precursor ion screening for m/z 73.0294 [C3H5O2]-, which highlighted a limitation of the current protocols. Their structure assignment was established by total synthesis of AB-asc-C5 (SMID: abas#9) as a representative example in about 1% yield over 14 steps. To achieve this aim, a new method for the synthesis of orthogonally protected ascarosides has been developed which provides methyl 2-benzoyl-ascaroside as a highly versatile building block for regioselective ascaroside synthesis. Furthermore, a new synthesis for short chain C5 ascarosides was developed that employs selective reduction and Grubbs cross metathesis. The identity of synthetic AB-asc-C5 and the natural product isolated from C. nigoni was established by an NMR mixing experiment. Retention of C. nigoni males by the exclusively female produced AB-asc-C5 suggests a function as a sex pheromone component. Along with the indole ascarosides (icas), the new class of 4'-ortho-aminobenzoyl ascarosides (abas) represents a mechanism to translate bacterial food dependent L-tryptophan availability into species-specific signaling molecules.
Collapse
Affiliation(s)
- Célia P Bergame
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Chuanfu Dong
- Max Planck Institute for Chemical Ecology (MPICE), Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany
| | - Siva Bandi
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Marie-Désirée Schlemper-Scheidt
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
| | - Sylvain Sutour
- Neuchatel Platform of Analytical Chemistry (NPAC), University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - Stephan H von Reuß
- Laboratory for Bioanalytical Chemistry, Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.
- Max Planck Institute for Chemical Ecology (MPICE), Department of Bioorganic Chemistry, Hans-Knoell Strasse 8, D-07745 Jena, Germany
- Neuchatel Platform of Analytical Chemistry (NPAC), University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| |
Collapse
|
2
|
Zhang W, Wang R, Li Y, Li D, Wang X, Wen X, Feng Y, Liu Z, Ma S, Zhang X. Engineered Pine Endophytic Fungus Expressing Double-Stranded RNA Targeting Lethal Genes to Control the Plant-Parasitic Nematode Bursaphelenchus xylophilus. PHYTOPATHOLOGY 2025; 115:224-233. [PMID: 39718567 DOI: 10.1094/phyto-07-24-0203-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The pine wood nematode (PWN), Bursaphelenchus xylophilus, is one of the most serious invasive forest pests, responsible for pine wilt disease. Currently, there are no effective, environmentally friendly control methods available. RNA interference technology has been extensively utilized to screen functional genes in eukaryotes and to explore sustainable pest management approaches through genetic engineering. In this study, we identified 353 predicted lethal genes in PWN by comparing its genome with those of lethal genes from Caenorhabditis elegans. We selected five predicted lethal genes (Bxy1177, Bxy1239, Bxy1104, Bxy667, and BxyAK1) with identification values exceeding 60% to evaluate their nematicidal effects on PWN. We tested the double-stranded RNA (dsRNA) of these genes using two methods: first, soaking in a synthesized dsRNA solution in vitro, and second, feeding on a dsRNA-engineered endophytic fungus, Fusarium babinda. Following dsRNA ingestion, either through soaking or fungal feeding, the expression of genes Bxy1177, Bxy667, Bxy1104, and BxyAK1 was significantly suppressed. Notably, nematode populations that consumed fungi expressing dsL1177 and dsAK1 showed substantial declines over time. These findings provide novel insights and a practical foundation for employing endophytic fungi-expressed dsRNA in sustainable pest management strategies.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ruijiong Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Kunyushan Forest Ecosystem National Observation and Research Station, Yantai 264100, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Kunyushan Forest Ecosystem National Observation and Research Station, Yantai 264100, China
| | - Shuai Ma
- Chinese Academy of Forestry, Beijing l00091, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Yang B, Wang J, Zheng X, Wang X. Nematode Pheromones: Structures and Functions. Molecules 2023; 28:2409. [PMID: 36903652 PMCID: PMC10005090 DOI: 10.3390/molecules28052409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Pheromones are chemical signals secreted by one individual that can affect the behaviors of other individuals within the same species. Ascaroside is an evolutionarily conserved family of nematode pheromones that play an integral role in the development, lifespan, propagation, and stress response of nematodes. Their general structure comprises the dideoxysugar ascarylose and fatty-acid-like side chains. Ascarosides can vary structurally and functionally according to the lengths of their side chains and how they are derivatized with different moieties. In this review, we mainly describe the chemical structures of ascarosides and their different effects on the development, mating, and aggregation of nematodes, as well as how they are synthesized and regulated. In addition, we discuss their influences on other species in various aspects. This review provides a reference for the functions and structures of ascarosides and enables their better application.
Collapse
Affiliation(s)
| | | | | | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
4
|
Zheng G, You M, Li X, Zhou Q, Wang Z, Wang H, Lu Q. Diversity of fungi associated with Monochamusalternatus larval habitats in Bursaphelenchusxylophilus-infected Pinusmassoniana and identification of two new ophiostomatalean species (Ascomycota, Ophiostomatales). MycoKeys 2022; 92:1-25. [PMID: 36761318 PMCID: PMC9849073 DOI: 10.3897/mycokeys.92.80682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022] Open
Abstract
Bursaphelenchusxylophilus, a pathogenic pine wood nematode (PWN), is responsible for pine wilt disease (PWD), which has caused significant economic and ecological damage worldwide, particularly in East Asia. Multiple biological factors, such as the beetle vector Monochamus, symbiotic bacteria and associated fungi, are involved in the disease infection cycle. This study isolated and identified the fungal communities of Monochamusalternatus larval galleries and pupal chambers from different instars through field investigation, morphological observation and multi-locus DNA sequence analyses in Zhejiang Province, China. A total of 255 and 454 fungal strains were isolated from M.alternatus galleries and pupal chambers infected with PWN, from the 2nd-3rd and 4th-5th instar larvae, respectively. A total of 18 species of fungi were identified, 14 species were isolated from the 2nd-3rd instar larval galleries and six species from the galleries and pupal chambers of the 4th-5th instar larvae. Amongst them were six species belonging to four genera of ophiostomatalean fungi, including two novel species, Graphilbumxianjuensis sp. nov. and Ophiostomataizhouense sp. nov. and four known species, Ceratocystiopsisweihaiensis, Ophiostomaips, Sporothrixzhejiangensis and S.macroconidia. The findings revealed that the fungal diversity and abundance of the 2nd-3rd instar larvae differed markedly from those of the 4th-5th instar larvae. This difference could be the result of fungal succession. This study provides a thorough understanding of the fungi associated with PWD and lays the groundwork for future research.
Collapse
Affiliation(s)
- Guiheng Zheng
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Minqi You
- Agriculture and Rural Affairs Bureau of Huangyan District, Taizhou City 318020, ChinaAgriculture and Rural Affairs Bureau of Huangyan DistrictZhejiangChina
| | - Xuening Li
- Research Institute of Desertification, Chinese Academy of Forestry, Beijing 100091, ChinaResearch Institute of Desertification, Chinese Academy of ForestryBeijingChina
| | - Qinzheng Zhou
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Zheng Wang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Huimin Wang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Quan Lu
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| |
Collapse
|
5
|
Vicente CSL, Soares M, Faria JMS, Espada M, Mota M, Nóbrega F, Ramos AP, Inácio ML. Fungal Communities of the Pine Wilt Disease Complex: Studying the Interaction of Ophiostomatales With Bursaphelenchus xylophilus. FRONTIERS IN PLANT SCIENCE 2022; 13:908308. [PMID: 35812912 PMCID: PMC9257700 DOI: 10.3389/fpls.2022.908308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Considered one of the most devastating plant-parasitic nematodes worldwide, Bursaphelenchus xylophilus (commonly known as pinewood nematode, PWN) is the causal agent of the pine wilt disease in the Eurasian coniferous forests. This migratory parasitic nematode is carried by an insect vector (Monochamus spp.) into the host tree (Pinus species), where it can feed on parenchymal cells and reproduce massively, resulting in the tree wilting. In declining trees, PWN populations are strongly dependent on fungal communities colonizing the host (predominantly ophiostomatoid fungi known to cause sapwood blue-staining, the blue-stain fungi), which not only influence their development and life cycle but also the number of individuals carried by the insect vector into a new host. Our main aim is to understand if PWN-associated mycobiota plays a key role in the development of PWD, in interaction with the PWN and the insect vector, and to what extent it can be targeted to disrupt the disease cycle. For this purpose, we characterized the fungal communities of Pinus pinaster trees infected and non-infected with PWN in three collection sites in Continental Portugal with different PWD temporal incidences. Our results showed that non-infected P. pinaster mycoflora is more diverse (in terms of abundance and fungal richness) than PWN-infected pine trees in the most recent PWD foci, as opposed to the fungal communities of long-term PWD history sites. Then, due to their ecological importance for PWN survival, representatives of the main ophiostomatoid fungi isolated (Ophiostoma, Leptographium, and Graphilbum) were characterized for their adaptative response to temperature, competition in-between taxa, and as food source for PWN. Under the conditions studied, Leptographium isolates showed promising results for PWN control. They could outcompete the other species, especially O. ips, and significantly reduce the development of PWN populations when compared to Botrytis cinerea (routinely used for PWN lab culturing), suggesting this to be a natural antagonist not only for the other blue-stain species but also for the PWN.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora - Pólo da Mitra, Évora, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta do Marquês, Oeiras, Portugal
| | - Miguel Soares
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, Lisboa, Portugal
| | - Jorge M. S. Faria
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta do Marquês, Oeiras, Portugal
| | - Margarida Espada
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora - Pólo da Mitra, Évora, Portugal
| | - Manuel Mota
- MED - Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Department of Biology, Universidade de Évora - Pólo da Mitra, Évora, Portugal
| | - Filomena Nóbrega
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta do Marquês, Oeiras, Portugal
| | - Ana P. Ramos
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, Lisboa, Portugal
| | - Maria L. Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta do Marquês, Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| |
Collapse
|
6
|
Tian H, Koski TM, Zhao L, Liu Z, Sun J. Invasion History of the Pinewood Nematode Bursaphelenchus xylophilus Influences the Abundance of Serratia sp. in Pupal Chambers and Tracheae of Insect-Vector Monochamus alternatus. FRONTIERS IN PLANT SCIENCE 2022; 13:856841. [PMID: 35668811 PMCID: PMC9164154 DOI: 10.3389/fpls.2022.856841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 06/01/2023]
Abstract
Pine wilt disease (PWD) has caused extensive mortality in pine forests worldwide. This disease is a result of a multi-species interaction among an invasive pinewood nematode (PWN) Bursaphelenchus xylophilus, its vector Monochamus sp. beetle, and the host pine tree (Pinus sp.). In other systems, microbes have been shown to attenuate negative impacts on invasive species after the invasion has reached a certain time point. Despite that the role of PWD associated microbes involved in the PWD system has been widely studied, it is not known whether similar antagonistic "hidden microbial players" exist in this system due to the lack of knowledge about the potential temporal changes in the composition of associated microbiota. In this study, we investigated the bacteria-to-fungi ratio and isolated culturable bacterial isolates from pupal chambers and vector beetle tracheae across five sampling sites in China differing in the duration of PWN invasion. We also tested the pathogenicity of two candidate bacteria strains against the PWN-vector beetle complex. A total of 118 bacterial species belonging to 4 phyla, 30 families, and 54 genera were classified based on 16S sequencing. The relative abundance of the genus Serratia was lower in pupal chambers and tracheae in newly PWN invaded sites (<10 years) compared to the sites that had been invaded for more than 20 years. Serratia marcescens strain AHPC29 was widely distributed across all sites and showed nematicidal activity against PWN. The insecticidal activity of this strain was dependent on the life stage of the vector beetle Monochamus alternatus: no insecticidal activity was observed against final-instar larvae, whereas S. marcescens was highly virulent against pupae. Our findings improved the understanding of the temporal variation in the microbial community associated with the PWN-vector beetle complex and the progress of PWD and can therefore facilitate the development of biological control agents against PWN and its vector beetle.
Collapse
Affiliation(s)
- Haokai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ziying Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
7
|
Chang R, Zhang X, Si H, Zhao G, Yuan X, Liu T, Bose T, Dai M. Ophiostomatoid species associated with pine trees ( Pinus spp.) infested by Cryphaluspiceae from eastern China, including five new species. MycoKeys 2021; 83:181-208. [PMID: 34720643 PMCID: PMC8528803 DOI: 10.3897/mycokeys.83.70925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Cryphaluspiceae attacks various economically important conifers. Similar to other bark beetles, Cr.piceae plays a role as a vector for an assortment of fungi and nematodes. Previously, several ophiostomatoid fungi were isolated from Cr.piceae in Poland and Japan. In the present study, we explored the diversity of ophiostomatoid fungi associated with Cr.piceae infesting pines in the Shandong Province of China. We isolated ophiostomatoid fungi from both galleries and beetles collected from our study sites. These fungal isolates were identified using both molecular and morphological data. In this study, we recovered 175 isolates of ophiostomatoid fungi representing seven species. Ophiostomaips was the most frequently isolated species. Molecular and morphological data indicated that five ophiostomatoid fungal species recovered were previously undescribed. Thus, we proposed these five novel species as Ceratocystiopsisyantaiensis, C.weihaiensis, Graphilbumtranslucens, Gr.niveum, and Sporothrixvillosa. These new ophiostomatoid fungi add to the increasing number of fungi known from China, and this evidence suggests that numerous novel taxa are awaiting discovery in other forests of China.
Collapse
Affiliation(s)
- Runlei Chang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China Shandong Normal University Jinan China
| | - Xiuyu Zhang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China Shandong Normal University Jinan China
| | - Hongli Si
- College of Life Sciences, Shandong Normal University, Jinan 250014, China Shandong Normal University Jinan China
| | - Guoyan Zhao
- College of Life Sciences, Shandong Normal University, Jinan 250014, China Shandong Normal University Jinan China
| | - Xiaowen Yuan
- Kunyushan Forest Farm, Yantai 264112, China Kunyushan Forest Farm Yantai China
| | - Tengteng Liu
- College of Life Sciences, Shandong Normal University, Jinan 250014, China Shandong Normal University Jinan China
| | - Tanay Bose
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria 0002, South Africa University of Pretoria Pretoria South Africa
| | - Meixue Dai
- College of Life Sciences, Shandong Normal University, Jinan 250014, China Shandong Normal University Jinan China
| |
Collapse
|
8
|
Vicente CSL, Soares M, Faria JMS, Ramos AP, Inácio ML. Insights into the Role of Fungi in Pine Wilt Disease. J Fungi (Basel) 2021; 7:jof7090780. [PMID: 34575818 PMCID: PMC8469835 DOI: 10.3390/jof7090780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Pine wilt disease (PWD) is a complex disease that severely affects the biodiversity and economy of Eurasian coniferous forests. Three factors are described as the main elements of the disease: the pinewood nematode (PWN) Bursaphelenchus xylophilus, the insect-vector Monochamus spp., and the host tree, mainly Pinus spp. Nonetheless, other microbial interactors have also been considered. The study of mycoflora in PWD dates back the late seventies. Culturomic studies have revealed diverse fungal communities associated with all PWD key players, composed frequently of saprophytic fungi (i.e., Aspergillus, Fusarium, Trichoderma) but also of necrotrophic pathogens associated with bark beetles, such as ophiostomatoid or blue-stain fungi. In particular, the ophiostomatoid fungi often recovered from wilted pine trees or insect pupal chambers/tunnels, are considered crucial for nematode multiplication and distribution in the host tree. Naturally occurring mycoflora, reported as possible biocontrol agents of the nematode, are also discussed in this review. This review discloses the contrasting effects of fungal communities in PWD and highlights promising fungal species as sources of PWD biocontrol in the framework of sustainable pest management actions.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| | - Miguel Soares
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
| | - Jorge M. S. Faria
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
| | - Ana P. Ramos
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
- Linking Environment Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal
| | - Maria L. Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| |
Collapse
|
9
|
Pimentel CS, Firmino PN, Ayres MP. Interactions between pinewood nematodes and the fungal community of pine trees. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Zhang Y, Li S, Li H, Wang R, Zhang KQ, Xu J. Fungi-Nematode Interactions: Diversity, Ecology, and Biocontrol Prospects in Agriculture. J Fungi (Basel) 2020; 6:E206. [PMID: 33020457 PMCID: PMC7711821 DOI: 10.3390/jof6040206] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/27/2023] Open
Abstract
Fungi and nematodes are among the most abundant organisms in soil habitats. They provide essential ecosystem services and play crucial roles for maintaining the stability of food-webs and for facilitating nutrient cycling. As two of the very abundant groups of organisms, fungi and nematodes interact with each other in multiple ways. Here in this review, we provide a broad framework of interactions between fungi and nematodes with an emphasis on those that impact crops and agriculture ecosystems. We describe the diversity and evolution of fungi that closely interact with nematodes, including food fungi for nematodes as well as fungi that feed on nematodes. Among the nematophagous fungi, those that produce specialized nematode-trapping devices are especially interesting, and a great deal is known about their diversity, evolution, and molecular mechanisms of interactions with nematodes. Some of the fungi and nematodes are significant pathogens and pests to crops. We summarize the ecological and molecular mechanisms identified so far that impact, either directly or indirectly, the interactions among phytopathogenic fungi, phytopathogenic nematodes, and crop plants. The potential applications of our understanding to controlling phytophagous nematodes and soilborne fungal pathogens in agricultural fields are discussed.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
| | - Shuoshuo Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ruirui Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
11
|
Hartley CJ, Lillis PE, Owens RA, Griffin CT. Infective juveniles of entomopathogenic nematodes (Steinernema and Heterorhabditis) secrete ascarosides and respond to interspecific dispersal signals. J Invertebr Pathol 2019; 168:107257. [PMID: 31634473 DOI: 10.1016/j.jip.2019.107257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/23/2023]
Abstract
Ascarosides are a modular series of signalling molecules that are widely conserved in nematodes where they function as pheromones with both behavioural and developmental effects. Here we show that the developmentally arrested infective juvenile (IJ) stage of entomopathogenic nematodes (EPN) secrete ascarosides into the surrounding medium. The exometabolome of Steinernema carpocapsae and Heterorhabditis megidis was examined at 0, 1, 7 and 21 days of storage. The concentration of several ascarosides (ascr#11, ascr#9, ascr#12, ascr#1 and ascr#14 for both species, plus ascr#10 for H. megidis) showed a progressive increase over this period, while the concentration of longer chain ascarosides increased up to day 7, with an apparent decline thereafter. Ascr #9 was the main ascaroside produced by both species. Similar ascarosides were found over a 7-day period for Steinernema longicaudum and S. feltiae. Ascaroside blends have previously been shown to promote nematode dispersal. S. carpocapsae and H. megidis IJs were stored for up to 12 weeks and assayed at intervals. IJs where exometabolome was allowed to accumulate showed higher dispersal rates than those where water was changed frequently, indicating that IJ exometabolome maintained high dispersal. Infectivity was not affected. IJ exometabolome accumulated over 7 days promoted dispersal of freshly harvested IJs, both of their own and other EPN species. Similarly, extracts of nematode-infected cadavers promoted dispersal of con- and heterospecific IJs. Thus, IJs are encouraged to disperse from a source cadaver or from other crowded conditions by public information cues, a finding that may have application in enhancing biocontrol. However, the complexity of the ascaroside blend produced by IJs suggests that it may have ecological functions other than dispersal.
Collapse
Affiliation(s)
- Cathryn J Hartley
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Peter E Lillis
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Christine T Griffin
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
12
|
Liang LM, Zou CG, Xu J, Zhang KQ. Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180317. [PMID: 30967028 PMCID: PMC6367146 DOI: 10.1098/rstb.2018.0317] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/12/2022] Open
Abstract
Plant-parasitic nematodes (PPNs) cause severe damage to agricultural crops worldwide. As most chemical nematicides have negative environmental side effects, there is a pressing need for developing efficient biocontrol methods. Nematophagous microbes, the natural enemies of nematodes, are potential biocontrol agents against PPNs. These natural enemies include both bacteria and fungi and they use diverse methods to infect and kill nematodes. For instance, nematode-trapping fungi can sense host signals and produce special trapping devices to capture nematodes, whereas endo-parasitic fungi can kill nematodes by spore adhesion and invasive growth to break the nematode cuticle. By contrast, nematophagous bacteria can secrete virulence factors to kill nematodes. In addition, some bacteria can mobilize nematode-trapping fungi to kill nematodes. In response, nematodes can also sense and defend against the microbial pathogens using strategies such as producing anti-microbial peptides regulated by the innate immunity system. Recent progresses in our understanding of the signal pathways involved in microbe-nematode interactions are providing new insights in developing efficient biological control strategies against PPNs. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Lian-Ming Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
- School of Life Science, Yunnan University, Kunming 650091, People's Republic of China
| | - Cheng-Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
- School of Life Science, Yunnan University, Kunming 650091, People's Republic of China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
- Department of Biology, McMaster University, Hamilton, Ontario, CanadaL8S 4K1
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and The Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
- School of Life Science, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|