1
|
Grundmann CO, Guzman J, Vilcinskas A, Pupo MT. The insect microbiome is a vast source of bioactive small molecules. Nat Prod Rep 2024; 41:935-967. [PMID: 38411238 DOI: 10.1039/d3np00054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: September 1964 to June 2023Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.
Collapse
Affiliation(s)
| | - Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Mônica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Steffan SA, Dharampal PS, Kueneman JG, Keller A, Argueta-Guzmán MP, McFrederick QS, Buchmann SL, Vannette RL, Edlund AF, Mezera CC, Amon N, Danforth BN. Microbes, the 'silent third partners' of bee-angiosperm mutualisms. Trends Ecol Evol 2024; 39:65-77. [PMID: 37940503 DOI: 10.1016/j.tree.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.
Collapse
Affiliation(s)
- Shawn A Steffan
- US Department of Agriculture, Agricultural Research Service, 1575 Linden Drive, Madison, WI 53706, USA; Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA.
| | - Prarthana S Dharampal
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA; Biology Department, McHenry County College, 8900 Northwest Hwy #14, Crystal Lake, IL 60012, USA
| | - Jordan G Kueneman
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Stephen L Buchmann
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Anna F Edlund
- Department of Biology, Bethany College, 31 E Campus Drive, Bethany, WV 26032, USA
| | - Celeste C Mezera
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Nolan Amon
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Wang H, Wang N, Tan Y, Mi Q, Mao Y, Zhao C, Tian X, Liu W, Huang L. Paenibacillus polymyxa YLC1: a promising antagonistic strain for biocontrol of Pseudomonas syringae pv. actinidiae, causing kiwifruit bacterial canker. PEST MANAGEMENT SCIENCE 2023; 79:4357-4366. [PMID: 37417001 DOI: 10.1002/ps.7633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Kiwifruit bacterial canker (KBC) caused by Pseudomonas syringae pv. actinidiae (Psa) is the main limiting factor in the kiwifruit industry. This study aimed to identify bacterial strains with antagonistic activity against Psa, analyze antagonistically active substances and provide a new basis for the biological control of KBC. RESULTS A total of 142 microorganisms were isolated from the rhizosphere soil of asymptomatic kiwifruit. Among them, an antagonistic bacterial strain was identified as Paenibacillus polymyxa YLC1 by 16S rRNA sequencing. KBC control by strain YLC1 (85.4%) was comparable to copper hydroxide treatment (81.8%) under laboratory conditions and field testing. Active substances of strain YLC1 were identified by genetic sequence analysis using antiSMASH. Six biosynthetic active compound gene clusters were identified as encoding ester peptide synthesis, such as polymyxins. An active fraction was purified and identified as polymyxin B1 using chromatography, hydrogen nuclear magnetic resonance (NMR), and liquid chromatography-mass spectrometry. In addition, polymyxin B1 also was found significantly to suppress the expression of T3SS-related genes, but did not affect the growth of Psa at low concentrations. CONCLUSION In this study, a biocontrol strain P. polymyxa YLC1 obtained from kiwifruit rhizosphere soil exhibited excellent control effects on KBC in vitro and in field tests. Its active compound was identified as polymyxin B1, which inhibits a variety of pathogenic bacteria. We conclude that P. polymyxa YLC1 is a biocontrol strain with excellent prospects for development and application. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Nana Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Life Science, Northwest A&F University, Yangling, People's Republic of China
| | - Yunxiao Tan
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Qianqian Mi
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Yiru Mao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Chao Zhao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Xiangrong Tian
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Forestry, Northwest A&F University, Yangling, People's Republic of China
| | - Wei Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| | - Lili Huang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, People's Republic of China
| |
Collapse
|
4
|
Du L, Haldar S, King JB, Mattes AO, Srivastava S, Wendt KL, You J, Cunningham C, Cichewicz RH. Persephacin Is a Broad-Spectrum Antifungal Aureobasidin Metabolite That Overcomes Intrinsic Resistance in Aspergillus fumigatus. JOURNAL OF NATURAL PRODUCTS 2023; 86:1980-1993. [PMID: 37523665 DOI: 10.1021/acs.jnatprod.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Fungi pose a persistent threat to humankind with worrying indications that emerging and re-emerging pathogens (e.g., Candida auris, Coccidioides spp., drug-resistant Aspergilli, and more) exhibit resistance to the limited number of approved antifungals. To address this problem, our team is exploring endophytic fungi as a resource for the discovery of new antifungal natural products. The rationale behind this decision is based on evidence that endophytes engage with plants in mutualistic relationships wherein some fungi actively participate by producing chemical defense measures that suppress pathogenic microorganisms. To improve the odds of bioactive metabolite discovery, we developed a new hands-free laser-cutting system capable of generating >50 plant samples per minute that, in turn, enabled our team to prepare and screen large numbers of endophytic fungi. One of the fungal isolates obtained in this way was identified as an Elsinoë sp. that produced a unique aureobasidin analogue, persephacin (1). Some distinctive features of 1 are the absence of both phenylalanine residues combined with the incorporation of a novel amino acid residue, persephanine (9). Compound 1 exhibits potent antifungal effects against a large number of pathogenic yeast (including several clinical C. auris strains), as well as phylogenetically diverse filamentous fungi (e.g., Aspergillus fumigatus). In an ex vivo eye infection model, compound 1 outperformed standard-of-care treatments demonstrating the ability to suppress fluconazole-resistant Candida albicans and A. fumigatus at a concentration (0.1% solution) well below the clinically recommended levels used for fluconazole and natamycin (2% and 5% solutions, respectively). In 3D tissue models for acute dermal and ocular safety, 1 was found to be nontoxic and nonirritating at concentrations required to elicit antifungal activity. Natural product 1 appears to be a promising candidate for further investigation as a broad-spectrum antifungal capable of controlling a range of pathogens that negatively impact human, animal, and plant health.
Collapse
Affiliation(s)
- Lin Du
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Saikat Haldar
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jarrod B King
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Allison O Mattes
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shikha Srivastava
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Karen L Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jianlan You
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chad Cunningham
- Electronics & Instrument Shop, Department of Physics and Astronomy, Nielsen Hall, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
5
|
de Paula GT, Melo WGDP, de Castro I, Menezes C, Paludo CR, Rosa CA, Pupo MT. Further evidences of an emerging stingless bee-yeast symbiosis. Front Microbiol 2023; 14:1221724. [PMID: 37637114 PMCID: PMC10450959 DOI: 10.3389/fmicb.2023.1221724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Symbiotic interactions between microorganisms and social insects have been described as crucial for the maintenance of these multitrophic systems, as observed for the stingless bee Scaptotrigona depilis and the yeast Zygosaccharomyces sp. SDBC30G1. The larvae of S. depilis ingest fungal filaments of Zygosaccharomyces sp. SDBC30G1 to obtain ergosterol, which is the precursor for the biosynthesis of ecdysteroids that modulate insect metamorphosis. In this work, we find a similar insect-microbe interaction in other species of stingless bees. We analyzed brood cell samples from 19 species of stingless bees collected in Brazil. The osmophilic yeast Zygosaccharomyces spp. was isolated from eight bee species, namely Scaptotrigona bipunctata, S. postica, S. tubiba, Tetragona clavipes, Melipona quadrifasciata, M. fasciculata, M. bicolor, and Partamona helleri. These yeasts form pseudohyphae and also accumulate ergosterol in lipid droplets, similar to the pattern observed for S. depilis. The phylogenetic analyses including various Zygosaccharomyces revealed that strains isolated from the brood cells formed a branch separated from the previously described Zygosaccharomyces species, suggesting that they are new species of this genus and reinforcing the symbiotic interaction with the host insects.
Collapse
Affiliation(s)
- Gabriela Toninato de Paula
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Weilan Gomes da Paixão Melo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Center for Agricultural and Natural Sciences and Letters, State University of the Tocantina Region of Maranhão, Estreito, Brazil
| | - Ivan de Castro
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Camila Raquel Paludo
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Carlos Augusto Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mônica Tallarico Pupo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
6
|
Santos ACC, Borges LDF, Rocha NDC, de Carvalho Azevedo VA, Bonetti AM, Dos Santos AR, da Rocha Fernandes G, Dantas RCC, Ueira-Vieira C. Bacteria, yeasts, and fungi associated with larval food of Brazilian native stingless bees. Sci Rep 2023; 13:5147. [PMID: 36991089 PMCID: PMC10060228 DOI: 10.1038/s41598-023-32298-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Stingless bees are a diverse group with a relevant role in pollinating native species. Its diet is rich in carbohydrates and proteins, by collecting pollen and nectar supplies the development of its offspring. Fermentation of these products is associated with microorganisms in the colony. However, the composition of microorganisms that comprise this microbiome and its fundamental role in colony development is still unclear. To characterize the colonizing microorganisms of larval food in the brood cells of stingless bees Frieseomelitta varia, Melipona quadrifasciata, Melipona scutellaris, and Tetragonisca angustula, we have utilized molecular and culture-based techniques. Bacteria of the phyla Firmicutes, Proteobacteria, Actinobacteria, and fungi of the phyla Ascomycota, Basidiomycota, Mucoromycota, and Mortierellomycota were found. Diversity analysis showed that F. varia had a greater diversity of bacteria in its microbiota, and T. angustula had a greater diversity of fungi. The isolation technique allowed the identification of 189 bacteria and 75 fungi. In summary, this research showed bacteria and fungi associated with the species F. varia, M. quadrifasciata, M. scutellaris, and T. angustula, which may play an essential role in the survival of these organisms. Besides that, a biobank with bacteria and fungus isolates from LF of Brazilian stingless bees was created, which can be used for different studies and the prospection of biotechnology compounds.
Collapse
Affiliation(s)
- Ana Carolina Costa Santos
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.
| | | | - Nina Dias Coelho Rocha
- Laboratory of Molecular and Cellular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Molecular and Cellular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Bonetti
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | | | | | | - Carlos Ueira-Vieira
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
7
|
Rosa-Fontana AS, Dorigo AS, Malaquias JB, Pachú JKS, Nocelli RCF, Tosi S, Malaspina O. Fungivorous mites enhance the survivorship and development of stingless bees even when exposed to pesticides. Sci Rep 2022; 12:20948. [PMID: 36470975 PMCID: PMC9722777 DOI: 10.1038/s41598-022-25482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Stingless bees are the largest group of eusocial bees in the world. They play an essential role as crop pollinators and have been considered for inclusion in pesticide risk assessments (RAs). Beyond the mutualism involving stingless bee larvae and fungi, the fungivorous mite Proctotydaeus (Neotydeolus) alvearii proved to be interesting for studies of associations with stingless bees. Their presence is related to colony strength and health, showing a permanent-host-association level. Here, we tested whether the coexistence with P. (N.) alvearii affects stingless bee larvae survivorship and development, including when fed pesticide-dosed food. We chose dimethoate, the reference standard for toxicity tests, and thiamethoxam, widely used in neotropical crops and listed to be reassessed in RAs. Bees associated with the mites showed higher larval survivorship rates, even in the dosed ones, and revealed changes in the developmental time and body size. Our study represents the first approach to stingless bee responses to the coexistence of fungivorous mites inside brood cells, leading us to believe that these mites play a beneficial role in stingless bees, including when they are exposed to pesticides.
Collapse
Affiliation(s)
- Annelise S. Rosa-Fontana
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| | - Adna Suelen Dorigo
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| | - José Bruno Malaquias
- grid.11899.380000 0004 1937 0722Escola Superior de Agricultura “Luiz de Queiroz”, University of Sao Paulo, Piracicaba, SP Brazil
| | - Jéssica K. S. Pachú
- grid.11899.380000 0004 1937 0722Escola Superior de Agricultura “Luiz de Queiroz”, University of Sao Paulo, Piracicaba, SP Brazil
| | - Roberta C. F. Nocelli
- grid.411247.50000 0001 2163 588XCentre of Agrarian Science, Federal University of Sao Carlos, Araras, SP Brazil ,grid.7605.40000 0001 2336 6580Department of Agricultural, Forest, and Food Sciences, University of Torino, Grugliasco, Italy
| | - Simone Tosi
- grid.7605.40000 0001 2336 6580Department of Agricultural, Forest, and Food Sciences, University of Torino, Grugliasco, Italy
| | - Osmar Malaspina
- grid.410543.70000 0001 2188 478XState University of Sao Paulo Júlio de Mesquita Filho, Rio Claro, SP Brazil
| |
Collapse
|
8
|
Leite MOG, Alves DA, Lecocq A, Malaquias JB, Delalibera I, Jensen AB. Laboratory Risk Assessment of Three Entomopathogenic Fungi Used for Pest Control toward Social Bee Pollinators. Microorganisms 2022; 10:1800. [PMID: 36144402 PMCID: PMC9501116 DOI: 10.3390/microorganisms10091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The use of fungal-based biopesticides to reduce pest damage and protect crop quality is often considered a low-risk control strategy. Nevertheless, risk assessment of mycopesticides is still needed since pests and beneficial insects, such as pollinators, co-exist in the same agroecosystem where mass use of this strategy occurs. In this context, we evaluated the effect of five concentrations of three commercial entomopathogenic fungi, Beauveria bassiana, Metarhizium anisopliae, and Cordyceps fumosorosea, by direct contact and ingestion, on the tropical stingless bees Scaptotrigona depilis and Tetragonisca angustula, temperate bee species, the honey bee Apis mellifera, and the bumble bee Bombus terrestris, at the individual level. Furthermore, we studied the potential of two infection routes, either by direct contact or ingestion. In general, all three fungi caused considerable mortalities in the four bee species, which differed in their response to the different fungal species. Scaptotrigona depilis and B. terrestris were more susceptible to B. bassiana than the other fungi when exposed topically, and B. terrestris and A. mellifera were more susceptible to M. anisopliae when exposed orally. Interestingly, increased positive concentration responses were not observed for all fungal species and application methods. For example, B. terrestris mortalities were similar at the lowest and highest fungal concentrations for both exposure methods. This study demonstrates that under laboratory conditions, the three fungal species can potentially reduce the survival of social bees at the individual level. However, further colony and field studies are needed to elucidate the susceptibility of these fungi towards social bees to fully assess the ecological risks.
Collapse
Affiliation(s)
- Mariana O G Leite
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba 13418-900, SP, Brazil
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Denise A Alves
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba 13418-900, SP, Brazil
| | - Antoine Lecocq
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - José Bruno Malaquias
- Department of Biostatistics, Institute of Biosciences, São Paulo State University, Rua Prof. Dr. Antônio Celso Wagner Zanin 250, Botucatu 18618-689, SP, Brazil
| | - Italo Delalibera
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba 13418-900, SP, Brazil
| | - Annette B Jensen
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
9
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
10
|
da Silva JA, Barchuk AR, Wolowski M. Protocol for the in vitro rearing of Frieseomelitta varia workers (Hymenoptera: Apidae: Meliponini). ZOOLOGIA 2022. [DOI: 10.1590/s1984-4689.v39.e22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Almeida FCR, Magalhães DM, Favaris AP, Rodríguez J, Azevedo KEX, Bento JMS, Alves DA. Side effects of a fungus-based biopesticide on stingless bee guarding behaviour. CHEMOSPHERE 2022; 287:132147. [PMID: 34492415 DOI: 10.1016/j.chemosphere.2021.132147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Pathogenic fungi have been used worldwide to control crop pests and are assumed to pose negligible threats to the survival of pollinators. Although eusocial stingless bees provide essential pollination services and might be exposed to these biopesticides in tropical agroecosystems, there is a substantial knowledge gap regarding the side effects of fungal pathogens on behavioural traits that are crucial for colony functioning, such as guarding behaviour. Here, we evaluated the effect of Beauveria bassiana on the sophisticated kin recognition system of Tetragonisca angustula, a bee with morphologically specialized entrance guards. By combining behavioural assays and chemical analyses, we show that guards detect pathogen-exposed nestmates, preventing them from accessing nests. Furthermore, cuticular profiles of pathogen-exposed foragers contained significantly lower amounts of linear alkanes than the unexposed ones. Such chemical cues associated with fungal conidia may potentially trigger aggression towards pathogen-exposed bees, preventing pathogen spread into and among colonies. This is the first demonstration that this highly abundant native bee seems to respond in a much more adaptive way to a potentially infectious threat, outweighing the costs of losing foraging workforce when reducing the chances of fungal pathogen outbreaks within their colonies, than honeybees do.
Collapse
Affiliation(s)
- Felipe Chagas Rocha Almeida
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Diego Martins Magalhães
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Arodí Prado Favaris
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Jonathan Rodríguez
- Laboratory of Pathology and Microbial Control, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Kamila Emmanuella Xavier Azevedo
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - José Maurício Simões Bento
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Denise Araujo Alves
- Laboratory of Chemical Ecology and Insect Behaviour, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil.
| |
Collapse
|
12
|
Costa-Lotufo LV, Colepicolo P, Pupo MT, Palma MS. Bioprospecting macroalgae, marine and terrestrial invertebrates & their associated microbiota. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The present review aims the discussion of the impact of the bioprospection initiative developed by the projects associated to BIOprospecTA, a subprogram of the program BIOTA, supported by FAPESP. This review brings a summary of the main results produced by the projects investigating natural products (NPs) from non-plants organisms, as examples of the success of this initiative, focusing on the progresses achieved by the projects related to NPs from macroalgae, marine invertebrates, arthropods and associated microorganisms. Macroalgae are one of the most studied groups in Brazil with the isolation of many bioactive compounds including lipids, carotenoids, phycocolloids, lectins, mycosporine-like amino acids and halogenated compounds. Marine invertebrates and associated microorganisms have been more systematically studied in the last thirty years, revealing unique compounds, with potent biological activities. The venoms of Hymenopteran insects were also extensively studied, resulting in the identification of hundreds of peptides, which were used to create a chemical library that contributed for the identification of leader models for the development of antifungal, antiparasitic, and anticancer compounds. The built knowledge of Hymenopteran venoms permitted the development of an equine hyperimmune serum anti honeybee venom. Amongst the microorganisms associated with insects the bioprospecting strategy was to understand the molecular basis of intra- and interspecies interactions (Chemical Ecology), translating this knowledge to possible biotechnological applications. The results discussed here reinforce the importance of BIOprospecTA program on the development of research with highly innovative potential in Brazil.
Collapse
|
13
|
Misra N, Clavaud C, Guinot F, Bourokba N, Nouveau S, Mezzache S, Palazzi P, Appenzeller BMR, Tenenhaus A, Leung MHY, Lee PKH, Bastien P, Aguilar L, Cavusoglu N. Multi-omics analysis to decipher the molecular link between chronic exposure to pollution and human skin dysfunction. Sci Rep 2021; 11:18302. [PMID: 34526566 PMCID: PMC8443591 DOI: 10.1038/s41598-021-97572-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Environmental pollution is composed of several factors, namely particulate matter (PM2.5, PM10), ozone and Ultra Violet (UV) rays among others and first and the most exposed tissue to these substances is the skin epidermis. It has been established that several skin disorders such as eczema, acne, lentigines and wrinkles are aggravated by exposure to atmospheric pollution. While pollutants can interact with skin surface, contamination of deep skin by ultrafine particles or Polycyclic aromatic hydrocarbons (PAH) might be explained by their presence in blood and hair cortex. Molecular mechanisms leading to skin dysfunction due to pollution exposure have been poorly explored in humans. In addition to various host skin components, cutaneous microbiome is another target of these environment aggressors and can actively contribute to visible clinical manifestation such as wrinkles and aging. The present study aimed to investigate the association between pollution exposure, skin microbiota, metabolites and skin clinical signs in women from two cities with different pollution levels. Untargeted metabolomics and targeted proteins were analyzed from D-Squame samples from healthy women (n = 67 per city), aged 25-45 years and living for at least 15 years in the Chinese cities of Baoding (used as a model of polluted area) and Dalian (control area with lower level of pollution). Additional samples by swabs were collected from the cheeks from the same population and microbiome was analysed using bacterial 16S rRNA as well as fungal ITS1 amplicon sequencing and metagenomics analysis. The level of exposure to pollution was assessed individually by the analysis of polycyclic aromatic hydrocarbons (PAH) and their metabolites in hair samples collected from each participant. All the participants of the study were assessed for the skin clinical parameters (acne, wrinkles, pigmented spots etc.). Women from the two cities (polluted and less polluted) showed distinct metabolic profiles and alterations in skin microbiome. Profiling data from 350 identified metabolites, 143 microbes and 39 PAH served to characterize biochemical events that correlate with pollution exposure. Finally, using multiblock data analysis methods, we obtained a potential molecular map consisting of multi-omics signatures that correlated with the presence of skin pigmentation dysfunction in individuals living in a polluted environment. Overall, these signatures point towards macromolecular alterations by pollution that could manifest as clinical sign of early skin pigmentation and/or other imperfections.
Collapse
Affiliation(s)
- Namita Misra
- Research and Innovation, L'Oréal SA, Aulnay Sous Bois, France.
| | - Cécile Clavaud
- Research and Innovation, L'Oréal SA, Aulnay Sous Bois, France
| | - Florent Guinot
- Research and Innovation, L'Oréal SA, Aulnay Sous Bois, France
| | | | | | - Sakina Mezzache
- Research and Innovation, L'Oréal SA, Aulnay Sous Bois, France
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, Strassen, Luxemburg
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, Strassen, Luxemburg
| | - Arthur Tenenhaus
- CentraleSupelec Laboratoire des Signaux et Systemes, Université Paris-Saclay, CNRS, Gif-sur-Yvette, France
- Brain and Spine Institute, Paris, France
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | | - Luc Aguilar
- Research and Innovation, L'Oréal SA, Aulnay Sous Bois, France
| | | |
Collapse
|
14
|
10-hydroxy-2E-decenoic acid (10HDA) does not promote caste differentiation in Melipona scutellaris stingless bees. Sci Rep 2021; 11:9882. [PMID: 33972627 PMCID: PMC8110752 DOI: 10.1038/s41598-021-89212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
In bees from genus Melipona, differential feeding is not enough to fully explain female polyphenism. In these bees, there is a hypothesis that in addition to the environmental component (food), a genetic component is also involved in caste differentiation. This mechanism has not yet been fully elucidated and may involve epigenetic and metabolic regulation. Here, we verified that the genes encoding histone deacetylases HDAC1 and HDAC4 and histone acetyltransferase KAT2A were expressed at all stages of Melipona scutellaris, with fluctuations between developmental stages and castes. In larvae, the HDAC genes showed the same profile of Juvenile Hormone titers-previous reported-whereas the HAT gene exhibited the opposite profile. We also investigated the larvae and larval food metabolomes, but we did not identify the putative queen-fate inducing compounds, geraniol and 10-hydroxy-2E-decenoic acid (10HDA). Finally, we demonstrated that the histone deacetylase inhibitor 10HDA-the major lipid component of royal jelly and hence a putative regulator of honeybee caste differentiation-was unable to promote differentiation in queens in Melipona scutellaris. Our results suggest that epigenetic and hormonal regulations may act synergistically to drive caste differentiation in Melipona and that 10HDA is not a caste-differentiation factor in Melipona scutellaris.
Collapse
|
15
|
Menegatti C, Fukuda TTH, Pupo MT. Chemical Ecology in Insect-microbe Interactions in the Neotropics. PLANTA MEDICA 2021; 87:38-48. [PMID: 32854122 DOI: 10.1055/a-1229-9435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Small molecules frequently mediate symbiotic interactions between microorganisms and their hosts. Brazil harbors the highest diversity of insects in the world; however, just recently, efforts have been directed to deciphering the chemical signals involved in the symbioses of microorganisms and social insects. The current scenario of natural products research guided by chemical ecology is discussed in this review. Two groups of social insects have been prioritized in the studies, fungus-farming ants and stingless bees, leading to the identification of natural products involved in defensive and nutritional symbioses. Some of the compounds also present potential pharmaceutical applications as antimicrobials, and this is likely related to their ecological roles. Microbial symbioses in termites and wasps are suggested promising sources of biologically active small molecules. Aspects related to public policies for insect biodiversity preservation are also highlighted.
Collapse
Affiliation(s)
- Carla Menegatti
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Taise T H Fukuda
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mônica T Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Voulgari-Kokota A, Steffan-Dewenter I, Keller A. Susceptibility of Red Mason Bee Larvae to Bacterial Threats Due to Microbiome Exchange with Imported Pollen Provisions. INSECTS 2020; 11:E373. [PMID: 32549328 PMCID: PMC7348846 DOI: 10.3390/insects11060373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 12/22/2022]
Abstract
Solitary bees are subject to a variety of pressures that cause severe population declines. Currently, habitat loss, temperature shifts, agrochemical exposure, and new parasites are identified as major threats. However, knowledge about detrimental bacteria is scarce, although they may disturb natural microbiomes, disturb nest environments, or harm the larvae directly. To address this gap, we investigated 12 Osmia bicornis nests with deceased larvae and 31 nests with healthy larvae from the same localities in a 16S ribosomal RNA (rRNA) gene metabarcoding study. We sampled larvae, pollen provisions, and nest material and then contrasted bacterial community composition and diversity in healthy and deceased nests. Microbiomes of pollen provisions and larvae showed similarities for healthy larvae, whilst this was not the case for deceased individuals. We identified three bacterial taxa assigned to Paenibacillus sp. (closely related to P. pabuli/amylolyticus/xylanexedens), Sporosarcina sp., and Bacillus sp. as indicative for bacterial communities of deceased larvae, as well as Lactobacillus for corresponding pollen provisions. Furthermore, we performed a provisioning experiment, where we fed larvae with untreated and sterilized pollens, as well as sterilized pollens inoculated with a Bacillus sp. isolate from a deceased larva. Untreated larval microbiomes were consistent with that of the pollen provided. Sterilized pollen alone did not lead to acute mortality, while no microbiome was recoverable from the larvae. In the inoculation treatment, we observed that larval microbiomes were dominated by the seeded bacterium, which resulted in enhanced mortality. These results support that larval microbiomes are strongly determined by the pollen provisions. Further, they underline the need for further investigation of the impact of detrimental bacterial acquired via pollens and potential buffering by a diverse pollen provision microbiome in solitary bees.
Collapse
Affiliation(s)
- Anna Voulgari-Kokota
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
- Center for Computational and Theoretical Biology, Biocenter, University of Würzburg, Hubland Nord, 97074 Würzburg, Germany
- Current Address: Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Alexander Keller
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
- Center for Computational and Theoretical Biology, Biocenter, University of Würzburg, Hubland Nord, 97074 Würzburg, Germany
| |
Collapse
|
17
|
Menegatti C, Lourenzon VB, Rodríguez-Hernández D, da Paixão Melo WG, Ferreira LLG, Andricopulo AD, do Nascimento FS, Pupo MT. Meliponamycins: Antimicrobials from Stingless Bee-Associated Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2020; 83:610-616. [PMID: 32073851 DOI: 10.1021/acs.jnatprod.9b01011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Social insects establish complex interactions with microorganisms, some of which play defensive roles in colony protection. The important role of pollinators such as the stingless bee Melipona scutellaris in nature encouraged us to pursue efforts to study its associated microbiota. Here we describe the discovery of two novel cyclic hexadepsipeptides, meliponamycin A (1) and meliponamycin B (2), from Streptomyces sp. ICBG1318 isolated from M. scutellaris nurse bees. Their structures were established by interpretation of NMR and MS data, and the absolute configuration of the constituent amino acids was determined by the advanced Marfey's method. Compounds 1 and 2 showed strong activity against the entomopathogen Paenibacillus larvae and human pathogens Staphylococcus aureus and Leishmania infantum.
Collapse
Affiliation(s)
- Carla Menegatti
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Vitor Bruno Lourenzon
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Diego Rodríguez-Hernández
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Weilan Gomes da Paixão Melo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone, 1100, 13563-120, São Carlos, SP, Brazil
| | - Adriano Defini Andricopulo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone, 1100, 13563-120, São Carlos, SP, Brazil
| | - Fabio Santos do Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Mônica Tallarico Pupo
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|
18
|
Fukuda TTH, Cassilly CD, Gerdt JP, Henke MT, Helfrich EJN, Mevers E. Research Tales from the Clardy Laboratory: Function-Driven Natural Product Discovery. JOURNAL OF NATURAL PRODUCTS 2020; 83:744-755. [PMID: 32105475 DOI: 10.1021/acs.jnatprod.9b01086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past 70 years, the search for small molecules from nature has transformed biomedical research: natural products are the basis for half of all pharmaceuticals; the quest for total synthesis of natural products fueled development of methodologies for organic synthesis; and their biosynthesis presented unprecedented biochemical transformations, expanding our chemo-enzymatic toolkit. Initially, the discovery of small molecules was driven by bioactivity-guided fractionation. However, this approach yielded the frequent rediscovery of already known metabolites. As a result, focus shifted to identifying novel scaffolds through either structure-first methods or genome mining, relegating function as a secondary concern. Over the past two decades, the laboratory of Jon Clardy has taken an alternative route and focused on an ecology-driven, function-first approach in pursuit of uncovering bacterial small molecules with biological activity. In this review, we highlight several examples that showcase this ecology-first approach. Though the highlighted systems are diverse, unifying themes are (1) to understand how microbes interact with their host or environment, (2) to gain insights into the environmental roles of microbial metabolites, and (3) to explore pharmaceutical potential from these ecologically relevant metabolites.
Collapse
Affiliation(s)
- Taise T H Fukuda
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Matthew T Henke
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Eric J N Helfrich
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Voulgari-Kokota A, McFrederick QS, Steffan-Dewenter I, Keller A. Drivers, Diversity, and Functions of the Solitary-Bee Microbiota. Trends Microbiol 2019; 27:1034-1044. [PMID: 31451346 DOI: 10.1016/j.tim.2019.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Abstract
Accumulating reports of global bee declines have drawn much attention to the bee microbiota and its importance. Most research has focused on social bees, while solitary species have received scant attention despite their enormous biodiversity, ecological importance, and agroeconomic value. We review insights from several recent studies on diversity, function, and drivers of the solitary-bee microbiota, and compare these factors with those relevant to the social-bee microbiota. Despite basic similarities, the social-bee model, with host-specific core microbiota and social transmission, is not representative of the vast majority of bee species. The solitary-bee microbiota exhibits greater variability and biodiversity, with a strong impact of environmental acquisition routes. Our synthesis identifies outstanding questions that will build understanding of these interactions, responses to environmental threats, and consequences for health.
Collapse
Affiliation(s)
- Anna Voulgari-Kokota
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord, Emil-Fischer Straße, 97074 Würzburg, Germany
| | - Quinn S McFrederick
- Department of Entomology, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexander Keller
- Department of Bioinformatics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord, Emil-Fischer Straße, 97074 Würzburg, Germany.
| |
Collapse
|
20
|
Paludo CR, Pishchany G, Andrade-Dominguez A, Silva-Junior EA, Menezes C, Nascimento FS, Currie CR, Kolter R, Clardy J, Pupo MT. Microbial community modulates growth of symbiotic fungus required for stingless bee metamorphosis. PLoS One 2019; 14:e0219696. [PMID: 31344052 PMCID: PMC6657851 DOI: 10.1371/journal.pone.0219696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
The Brazilian stingless bee Scaptotrigona depilis requires the brood cells-associated fungus Zygosaccharomyces sp. as steroid source for metamorphosis. Besides the presence of Zygosaccharomyces sp., other fungi inhabit S. depilis brood cells, but their biological functions are unknown. Here we show that Candida sp. and Monascus ruber, isolated from cerumen of S. depilis brood provisions, interact with Zygosaccharomyces sp. and modulate its growth. Candida sp. produces volatile organic compounds (VOCs) that stimulate Zygosacchromyces sp. development. Monascus ruber inhibits Zygosacchromyces sp. growth by producing lovastatin, which blocks steroid biosynthesis. We also observed that in co-cultures M. ruber inhibits Candida sp. through the production of monascin. The modulation of Zygosaccharomyces sp. growth by brood cell-associated fungi suggests their involvement in S. depilis larval development. This tripartite fungal community opens new perspectives in the research of microbial interactions with bees.
Collapse
Affiliation(s)
- Camila Raquel Paludo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gleb Pishchany
- Department of Microbiology, Harvard Medical School, Boston, MA, United States of America
| | | | | | - Cristiano Menezes
- Brazilian Agricultural Research Corporation, Embrapa Meio Ambiente, Jaguariúna, SP, Brazil
| | | | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States of America
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA, United States of America
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States of America
| | - Mônica Tallarico Pupo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
21
|
Rodríguez-Hernández D, Melo WGP, Menegatti C, Lourenzon VB, do Nascimento FS, Pupo MT. Actinobacteria associated with stingless bees biosynthesize bioactive polyketides against bacterial pathogens. NEW J CHEM 2019. [DOI: 10.1039/c9nj01619h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Strong activity against the bacteria Paenibacillus larvae ATCC9545, the causative agent of the American Foulbrood disease of honey bees.
Collapse
Affiliation(s)
- Diego Rodríguez-Hernández
- Departamento de Ciências Farmacêuticas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto
- Universidade de São Paulo
- 14040-903 Ribeirão Preto
- Brazil
| | - Weilan G. P. Melo
- Departamento de Ciências Farmacêuticas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto
- Universidade de São Paulo
- 14040-903 Ribeirão Preto
- Brazil
| | - Carla Menegatti
- Departamento de Ciências Farmacêuticas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto
- Universidade de São Paulo
- 14040-903 Ribeirão Preto
- Brazil
| | - Vitor B. Lourenzon
- Departamento de Ciências Farmacêuticas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto
- Universidade de São Paulo
- 14040-903 Ribeirão Preto
- Brazil
| | - Fábio S. do Nascimento
- Departamento de Biologia
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- 14040-901 Ribeirão Preto
| | - Mônica T. Pupo
- Departamento de Ciências Farmacêuticas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto
- Universidade de São Paulo
- 14040-903 Ribeirão Preto
- Brazil
| |
Collapse
|