1
|
Bergman ME, Huang XQ, Baudino S, Caissard JC, Dudareva N. Plant volatile organic compounds: Emission and perception in a changing world. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102706. [PMID: 40153896 DOI: 10.1016/j.pbi.2025.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Volatile organic compounds (VOCs) are produced by all kingdoms of life and play crucial roles in mediating the communication between organisms and their environment through emission and perception. Plants, in particular, produce and emit an exceptional variety of VOCs that together serve as a complex chemical language facilitating intra-plant, inter-plant, plant-animal, and plant-microbe interactions. VOC signals are perceived and decrypted by receiver plants; however, the emission, composition, distribution and effective range, as well as uptake of these infochemicals depend on temperature and atmospheric chemistry in addition to their physicochemical properties. Since both emission and perception are directly affected by ongoing climate change, research into these processes is urgently needed to develop mitigation strategies against this threat to plant communication networks. In this brief review, we highlight the recent advances about plant VOC emission and perception, emphasizing the effect of the current climate crisis on these processes. Despite some progress in understanding VOC emission and perception, significant gaps remain in elucidating their molecular mechanisms in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Xing-Qi Huang
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Sylvie Baudino
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales Appliquées Aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-Etienne F-42023, France
| | - Jean-Claude Caissard
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales Appliquées Aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-Etienne F-42023, France
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA; Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr., West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Ma B, Chang H, Guo M, Ai D, Wang J, Chen R, Liu X, Ren B, Hansson BS, Wang G. Yeast-derived volatiles orchestrate an insect-yeast mutualism with oriental armyworm moths. Nat Commun 2025; 16:1479. [PMID: 39929802 PMCID: PMC11811291 DOI: 10.1038/s41467-025-56354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Interactions among insects, plants, and microorganisms are fundamental to ecosystem dynamics, with floral nectar and pollen serving as key resources for various organisms. Yeasts, such as Metschnikowia reukaufii, commonly found in nectar, influence nectarial attraction through volatile compounds (VOCs), yet the underlying biological mechanisms remain elusive. Here, we show that isoamyl alcohol, a prominent yeast VOC, attracts oriental armyworm moths (Mythimna separata) to pollen-rich, yeast-fermented nectar. In a series of electrophysiological and behavioral assays, we show that isoamyl alcohol activates a single class of highly specific olfactory sensory neurons expressing the olfactory receptor MsepOR8. In the moth antennal lobe, these neurons target the AM2 glomerulus, which responds to isoamyl alcohol. Genetic disruption of MsepOR8 leads to complete abolition of both physiological and behavioral responses to isoamyl alcohol, resulting in an impaired ability to locate nectar sources. Moreover, we show that isoamyl alcohol-induced foraging behavior fosters a mutualistic relationship between yeast and moths to some extent, enhancing yeast dispersal and increasing moth reproductive success. Our results unveil a highly specific mechanism by which a yeast-derived VOC facilitates insect-yeast mutualism, providing insights into insect-microbe interactions within pollination ecosystems.
Collapse
Affiliation(s)
- Baiwei Ma
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Hetan Chang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mengbo Guo
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects; Department of Plant Protection, Advanced College of Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Dong Ai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiayu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Run Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaolan Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745, Jena, Germany
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Synthetic Biology Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Ryalls JMW, Bromfield LM, Mullinger NJ, Langford B, Mofikoya AO, Pfrang C, Nemitz E, Blande JD, Girling RD. Diesel exhaust and ozone adversely affect pollinators and parasitoids within flying insect communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177802. [PMID: 39667156 DOI: 10.1016/j.scitotenv.2024.177802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
The effects of air pollution on human and animal health, and on the functioning of terrestrial ecosystems, are wide-ranging. This potentially includes the disruption of valuable services provided by flying insects (e.g. pollination and biological control). However, quantifying the extent of this disruption requires a clearer understanding of insect community responses at field-scale. By elevating diesel exhaust and ozone (O3) pollutants, individually and in combination, over two summers, we investigated the field-scale effects of air pollution on the abundance and diversity of flying insects from pan traps. We quantified which groups of insects were more at risk of air pollution-mediated decline and whether responses to air pollution were influenced by the presence of flowering plants. In addition, a common pest of Brassicaceae, the large cabbage white butterfly (Pieris brassicae L.) was used to investigate the effects on oviposition success of the two interacting air pollutants. Air pollution had the most detrimental effects on pollinators and parasitoids, compared with other insect groups, lowering their abundance by up to 48 % and 32 %, respectively. The adverse effects of O3 and diesel exhaust on pollinators occurred only when flowers were available, indicating the relative importance of floral odors compared with visual cues. Air pollutants resulted in either increased insect herbivore abundance or had no effect, potentially increasing the threat air pollution poses to food security. However, both pollutants resulted in decreased oviposition by cabbage white butterflies, which, if demonstrated to be a more ubiquitous phenomenon, may result in reduced larval pest damage. Quantifying the relative changes in composition and abundance among feeding guilds is valuable for predicting the effects of air pollution on insect communities. Of the groups identified, pollinators are likely to be at the greatest risk of air pollution-mediated decline due to their use of floral odour cues for foraging.
Collapse
Affiliation(s)
- James M W Ryalls
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berkshire RG6 6EU, UK.
| | - Lisa M Bromfield
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berkshire RG6 6EU, UK
| | - Neil J Mullinger
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian EH26 0QB, UK
| | - Ben Langford
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian EH26 0QB, UK
| | - Adedayo O Mofikoya
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berkshire RG6 6EU, UK
| | - Christian Pfrang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Meteorology, University of Reading, Whiteknights, Reading, Berkshire RG6 6BB, UK
| | - Eiko Nemitz
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian EH26 0QB, UK
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Robbie D Girling
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berkshire RG6 6EU, UK; Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
| |
Collapse
|
4
|
Pinto-Zevallos DM, Blande JD. Challenges of climate change and air pollution for volatile-mediated plant-parasitoid signalling. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101290. [PMID: 39471911 DOI: 10.1016/j.cois.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Herbivore-induced plant volatiles (HIPVs) are reliable cues that parasitoids can use to locate host patches. Interactions mediated by plant volatile organic compounds (VOCs) are vulnerable to disturbance by predicted climate change and air pollution scenarios. Abiotic stress-induced VOCs may act as false signals to parasitoids. Air pollutants can disrupt signalling by degrading HIPVs at different rates and preventing the perception of olfactory signals by reducing the sensitivity of olfactory receptors or by occluding insect sensillae. As essential components of biological control programmes, efforts should be made to assess how different parasitoid species respond and adapt to HIPVs in predicted scenarios. Since providing parasitoid food sources is a promising practice for boosting biological control, parasitoid-flower interactions deserve attention.
Collapse
Affiliation(s)
- Delia M Pinto-Zevallos
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, PL 1627, 70211 Kuopio, Finland.
| | - James D Blande
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, PL 1627, 70211 Kuopio, Finland
| |
Collapse
|
5
|
Zaman R, Shah A, Ishangulyyeva G, Erbilgin N. Exploring behavioural and physiological adaptations in mountain pine beetle in response to elevated ozone concentrations. CHEMOSPHERE 2024; 362:142751. [PMID: 38960047 DOI: 10.1016/j.chemosphere.2024.142751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Elevated ozone (eO3) concentrations pose a threat to insect populations by potentially altering their behaviour and physiology. This study investigates the effects of eO3 concentrations on the mountain pine beetle which is a major tree-killing species of conifers in northwestern North America. We are particularly interested in understanding the effects of eO3 concentrations on beetle behaviour and physiology and possible transgenerational impacts on bark beetle broods. We conducted O3-enrichment experiments in a controlled laboratory setting using different O3 concentrations (100-200 ppb; projected for 2050-2100) and assessed various beetle responses, including CO2 respiration, mating behaviour, survival probability, locomotion, and attraction behaviour. Transgenerational impacts on the first and second generations were also analyzed by studying brood morphology, mating behaviour, survival, and pheromone production. We found that beetles exposed to eO3 concentrations had shorter oviposition galleries and reduced brood production. Beetle pheromones were also degraded by eO3 exposure. However, exposure to eO3 also prompted various adaptive responses in beetles. Despite reduced respiration, eO3 improved locomotor activity and the olfactory response of beetles. Surprisingly, beetle survival probability was also improved both in the parents and their broods. We also observed transgenerational plasticity in the broods of eO3-exposed parents, suggesting potential stress resistance mechanisms. This was evident by similar mating success, oviposition gallery length, and brood numbers produced in both control and eO3 concentration treatments. This study demonstrates the sensitivity of mountain pine beetles to increased O3 concentrations, contributing crucial insights into the ecological implications of eO3 concentrations on their populations. Overall, the outcome of this study contributes to informed climate change mitigation strategies and adaptive management practices for the development of resilient forests in response to emerging forest insect pests worldwide.
Collapse
Affiliation(s)
- Rashaduz Zaman
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| | - Ateeq Shah
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
6
|
Ryalls JMW, Bishop J, Mofikoya AO, Bromfield LM, Nakagawa S, Girling RD. Air pollution disproportionately impairs beneficial invertebrates: a meta-analysis. Nat Commun 2024; 15:5447. [PMID: 38992007 PMCID: PMC11239652 DOI: 10.1038/s41467-024-49729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Air pollution has the potential to disrupt ecologically- and economically-beneficial services provided by invertebrates, including pollination and natural pest regulation. To effectively predict and mitigate this disruption requires an understanding of how the impacts of air pollution vary between invertebrate groups. Here we conduct a global meta-analysis of 120 publications comparing the performance of different invertebrate functional groups in unpolluted and polluted atmospheres. We focus on the pollutants ozone, nitrogen oxides, sulfur dioxide and particulate matter. We show that beneficial invertebrate performance is reduced by air pollution, whereas the performance of plant pest invertebrates is not significantly affected. Ozone pollution has the most detrimental impacts, and these occur at concentrations below national and international air quality standards. Changes in invertebrate performance are not dependent on air pollutant concentrations, indicating that even low levels of pollution are damaging. Predicted increases in tropospheric ozone could result in unintended consequences to global invertebrate populations and their valuable ecological services.
Collapse
Affiliation(s)
- James M W Ryalls
- School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6EU, UK.
| | - Jacob Bishop
- School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6EU, UK
| | - Adedayo O Mofikoya
- School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6EU, UK
| | - Lisa M Bromfield
- School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6EU, UK
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological and Environmental Science, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Robbie D Girling
- School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6EU, UK
- Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| |
Collapse
|
7
|
Dubuisson C, Wortham H, Garinie T, Hossaert-McKey M, Lapeyre B, Buatois B, Temime-Roussel B, Ormeño E, Staudt M, Proffit M. Ozone alters the chemical signal required for plant - insect pollination: The case of the Mediterranean fig tree and its specific pollinator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170861. [PMID: 38354792 DOI: 10.1016/j.scitotenv.2024.170861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Tropospheric ozone (O3) is likely to affect the chemical signal emitted by flowers to attract their pollinators through its effects on the emission of volatile organic compounds (VOCs) and its high reactivity with these compounds in the atmosphere. We investigated these possible effects using a plant-pollinator interaction where the VOCs responsible for pollinator attraction are known and which is commonly exposed to high O3 concentration episodes: the Mediterranean fig tree (Ficus carica) and its unique pollinator, the fig wasp (Blastophaga psenes). In controlled conditions, we exposed fig trees bearing receptive figs to a high-O3 episode (5 h) of 200 ppb and analyzed VOC emission. In addition, we investigated the chemical reactions occurring in the atmosphere between O3 and pollinator-attractive VOCs using real-time monitoring. Finally, we tested the response of fig wasps to the chemical signal when exposed to increasing O3 mixing ratios (0, 40, 80, 120 and 200 ppb). The exposure of the fig tree to high O3 levels induced a significant decrease in leaf stomatal conductance, a limited change in the emission by receptive figs of VOCs not involved in pollinator attraction, but a major change in the relative abundances of the compounds among pollinator-attractive VOCs in O3-enriched atmosphere. Fig VOCs reacted with O3 in the atmosphere even at the lowest level tested (40 ppb) and the resulting changes in VOC composition significantly disrupted the attraction of the specific pollinator. These results strongly suggest that current O3 episodes are probably already affecting the interaction between the fig tree and its specific pollinator.
Collapse
Affiliation(s)
- Candice Dubuisson
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | - Henri Wortham
- LCE, Aix Marseille Université, CNRS, Marseille, France
| | - Tessie Garinie
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | - Martine Hossaert-McKey
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | - Benoit Lapeyre
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | - Bruno Buatois
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | | | - Elena Ormeño
- IMBE, CNRS, Aix Marseille Univ, IRD, Avignon Univ, Marseille, France
| | - Michael Staudt
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France
| | - Magali Proffit
- CEFE, Université de Montpellier, CNRS, EPHE, IRD - 1919 route de Mende - 34293, Montpellier Cedex 5, France.
| |
Collapse
|
8
|
Chan JK, Parasurama S, Atlas R, Xu R, Jongebloed UA, Alexander B, Langenhan JM, Thornton JA, Riffell JA. Olfaction in the Anthropocene: NO 3 negatively affects floral scent and nocturnal pollination. Science 2024; 383:607-611. [PMID: 38330103 DOI: 10.1126/science.adi0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
There is growing concern about sensory pollutants affecting ecological communities. Anthropogenically enhanced oxidants [ozone (O3) and nitrate radicals (NO3)] rapidly degrade floral scents, potentially reducing pollinator attraction to flowers. However, the physiological and behavioral impacts on pollinators and plant fitness are unknown. Using a nocturnal flower-moth system, we found that atmospherically relevant concentrations of NO3 eliminate flower visitation by moths, and the reaction of NO3 with a subset of monoterpenes is what reduces the scent's attractiveness. Global atmospheric models of floral scent oxidation reveal that pollinators in certain urban areas may have a reduced ability to perceive and navigate to flowers. These results illustrate the impact of anthropogenic pollutants on an animal's olfactory ability and indicate that such pollutants may be critical regulators of global pollination.
Collapse
Affiliation(s)
- J K Chan
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - S Parasurama
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - R Atlas
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - R Xu
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
- Center for Earth System Science, Tsinghua University, Beijing 100084, China
| | - U A Jongebloed
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - B Alexander
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - J M Langenhan
- Department of Chemistry, Seattle University, Seattle, WA 98122, USA
| | - J A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - J A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
9
|
Démares F, Gibert L, Lapeyre B, Creusot P, Renault D, Proffit M. Ozone exposure induces metabolic stress and olfactory memory disturbance in honey bees. CHEMOSPHERE 2024; 346:140647. [PMID: 37949186 DOI: 10.1016/j.chemosphere.2023.140647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Human activities, urbanization, and industrialization contribute to pollution that affects climate and air quality. A main atmospheric pollutant, the tropospheric ozone (O3), can damage living organisms by generating oxidative radicals, causing respiratory problems in humans and reducing yields and growth in plants. Exposure to high concentrations of O3 can result in oxidative stress in plants and animals, eventually leading to substantial ecological consequences. Plants produce volatile organic compounds (VOCs) emitted in the environment and detected by pollinators (mainly by their antennae), foraging for nutritious resources. Several pollinators, including honey bees, recognize and discriminate flowers through olfactory cues and memory. Exposure to different concentrations of O3 was shown to alter the emission of floral VOCs by plants as well as their lifetime in the atmosphere, potentially impacting plant-pollinator interactions. In this report, we assessed the impacts of exposure to field-realistic concentrations of O3 on honey bees' antennal response to floral VOCs, on their olfactory recall and discriminative capacity and on their antioxidant responses. Antennal activity is altered depending on VOCs structure and O3 concentrations. During the behavioral tests, we first check consistency between olfactory learning rates and memory scores after 15 min. Then bees exposed to 120 and 200 ppb of ozone do not exert specific recall responses with rewarded VOCs 90 min after learning, compared to controls whose specific recall responses were consistent between time points. We also report for the first time in honey bees how the superoxide dismutase enzyme, an antioxidant defense against oxidative stress, saw its enzymatic activity rate decreases after exposure to 80 ppb of ozone. This work tends to demonstrate how hurtful can be the impact of air pollutants upon pollinators themselves and how this type of pollution needs to be addressed in future studies aiming at characterizing plant-insect interactions more accurately.
Collapse
Affiliation(s)
- Fabien Démares
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France.
| | - Laëtitia Gibert
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Benoit Lapeyre
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Pierre Creusot
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - David Renault
- Écosystèmes, Biodiversité, Évolution (EcoBio) CNRS - UMR 6553, Université de Rennes 1, 35042 Rennes, France
| | - Magali Proffit
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| |
Collapse
|
10
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
11
|
Venkateswaran V, Alali I, Unni AP, Weißflog J, Halitschke R, Hansson BS, Knaden M. Carbonyl products of ozone oxidation of volatile organic compounds can modulate olfactory choice behavior in insects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122542. [PMID: 37717892 DOI: 10.1016/j.envpol.2023.122542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Insects are a diverse group of organisms that provide important ecosystem services like pollination, pest control, and decomposition and rely on olfaction to perform these services. In the Anthropocene, increasing concentrations of oxidant pollutants such as ozone have been shown to corrupt odor-driven behavior in insects by chemically degrading e.g. flower signals or insect pheromones. The degradation, however, does not only result in a loss of signals, but also in a potential enrichment of oxidation products, predominantly small carbonyls. Whether and how these oxidation products affect insect olfactory perception remains unclear. We examined the effects of ozone-generated small carbonyls on the olfactory behavior of the vinegar fly Drosophila melanogaster. We compiled a broad collection of neurophysiologically relevant odorants for the fly from databases and literature and predicted the formation of the types of stable small carbonyl products resulting from the odorant's oxidation by ozone. Based on these predictions, we evaluated the olfactory detection and behavioral impact of the ten most frequently predicted carbonyl products in the fly using single sensillum recordings (SSRs) and behavioral tests. Our results demonstrate that the fly's olfactory system can detect the oxidation products, which then elicit either attractive or neutral behavioral responses, rather than repulsion. However, certain products alter behavioral choices to an attractive odor source of balsamic vinegar. Our findings suggest that the enrichment of small carbonyl oxidation products due to increased ozone levels can affect olfactory guided insect behavior. Our study underscores the implications for odor-guided foraging in insects and the essential ecosystem services they offer under carbonyl enriched environments.
Collapse
Affiliation(s)
- Vignesh Venkateswaran
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany; Next Generation Insect Chemical Ecology,Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Ibrahim Alali
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Anjana P Unni
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Jerrit Weißflog
- Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Rayko Halitschke
- Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany; Next Generation Insect Chemical Ecology,Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany; Next Generation Insect Chemical Ecology,Max Planck Centre, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745, Jena, Germany.
| |
Collapse
|
12
|
Dahake A, Raguso RA, Goyret J. Context and the functional use of information in insect sensory ecology. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101058. [PMID: 37217002 DOI: 10.1016/j.cois.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Context-specific behaviors emerge from the interaction between an animal's internal state and its external environment. Although the importance of context is acknowledged in the field of insect sensory ecology, there is a lack of synthesis on this topic stemming from challenges in conceptualizing 'context'. We address this challenge by gleaning over the recent findings on the sensory ecology of mosquitoes and other insect pollinators. We discuss internal states and their temporal dynamics, from those lasting minutes to hours (host-seeking) to those lasting days to weeks (diapause, migration). Of the many patterns reviewed, at least three were common to all taxa studied. First, different sensory cues gain prominence depending on the insect's internal state. Second, similar sensory circuits between related species can result in different behavioral outcomes. And third, ambient conditions can dramatically alter internal states and behaviors.
Collapse
Affiliation(s)
- Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Joaquin Goyret
- Department of Biological Sciences, University of Tennessee Martin, Martin, TN, USA.
| |
Collapse
|
13
|
Ozone exposure disrupts insect sexual communication. Nat Commun 2023; 14:1186. [PMID: 36918554 PMCID: PMC10014992 DOI: 10.1038/s41467-023-36534-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
Insect sexual communication often relies upon sex pheromones. Most insect pheromones, however, contain carbon-carbon double bonds and potentially degrade by oxidation. Here, we show that frequently reported increased levels of Anthropocenic ozone can oxidize all described male-specific pheromones of Drosophila melanogaster, resulting in reduced amounts of pheromones such as cis-Vaccenyl Acetate and (Z)-7-Tricosene. At the same time female acceptance of ozone-exposed males is significantly delayed. Interestingly, groups of ozone-exposed males also exhibit significantly increased levels of male-male courtship behaviour. When repeating similar experiments with nine other drosophilid species, we observe pheromone degradation and/or disrupted sex recognition in eight of them. Our data suggest that Anthropocenic levels of ozone can extensively oxidize double bonds in a variety of insect pheromones, thereby leading to deviations in sexual recognition.
Collapse
|
14
|
Fabian B, Sachse S. Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects. Front Cell Neurosci 2023; 17:1130091. [PMID: 36923450 PMCID: PMC10010147 DOI: 10.3389/fncel.2023.1130091] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is long known that the nervous system of vertebrates can be shaped by internal and external factors. On the other hand, the nervous system of insects was long assumed to be stereotypic, although evidence for plasticity effects accumulated for several decades. To cover the topic comprehensively, this review recapitulates the establishment of the term "plasticity" in neuroscience and introduces its original meaning. We describe the basic composition of the insect olfactory system using Drosophila melanogaster as a representative example and outline experience-dependent plasticity effects observed in this part of the brain in a variety of insects, including hymenopterans, lepidopterans, locusts, and flies. In particular, we highlight recent advances in the study of experience-dependent plasticity effects in the olfactory system of D. melanogaster, as it is the most accessible olfactory system of all insect species due to the genetic tools available. The partly contradictory results demonstrate that morphological, physiological and behavioral changes in response to long-term olfactory stimulation are more complex than previously thought. Different molecular mechanisms leading to these changes were unveiled in the past and are likely responsible for this complexity. We discuss common problems in the study of experience-dependent plasticity, ways to overcome them, and future directions in this area of research. In addition, we critically examine the transferability of laboratory data to natural systems to address the topic as holistically as possible. As a mechanism that allows organisms to adapt to new environmental conditions, experience-dependent plasticity contributes to an animal's resilience and is therefore a crucial topic for future research, especially in an era of rapid environmental changes.
Collapse
Affiliation(s)
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
15
|
Saunier A, Grof-Tisza P, Blande JD. Effect of ozone exposure on the foraging behaviour of Bombus terrestris. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120573. [PMID: 36334775 DOI: 10.1016/j.envpol.2022.120573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Tropospheric ozone (O3) mixing ratios have increased substantially since preindustrial times and high O3 peaks are increasingly common. Plant-pollinator interactions are central to natural ecosystem functioning and food production systems but could be negatively affected by unfavourable environmental conditions such as elevated O3. Ecosystem functioning is threatened by O3, which can degrade floral volatile organic compounds (VOCs) used by pollinators as olfactory cues during foraging. It can also exert oxidative stress on VOC-emitting plants and receiving organisms, potentially disturbing the sending and receiving of VOC signals. The aim of this study was to determine the effects of elevated ozone on the foraging behaviour of Bombus terrestris on three species of the Brassicaceae, with a particular focus on bumblebee choices and the mechanisms underpinning differences observed. Moreover, the study was designed to fill a gap between observations in small-scale laboratory experiments and large-scale modelling through empirical observations in polytunnels that represent a medium-large-scale artificial environment. Using 10 × 3 × 2 m polytunnels the effects of O3 on pollinator foraging parameters on Sinapis alba, Sinapis arvensis and Raphanus raphanistrum were assessed. Significant effects of elevated O3 (100 ± 10 ppb) on the time taken for the first bee to alight on a flower and the cumulative amount of time spent on flowers was observed. To further investigate the underlying mechanisms, a laboratory test was conducted to determine the effects of ozone on the VOC blend composition of S. alba flowers. Synthetic VOC blends representing O3-altered and unaltered profiles were reconstituted and utilized in polytunnel and olfactometry experiments. The results indicated that a reduction of olfaction-mediated orientation, probably via VOC-degradation or direct effects of O3 on bees, was responsible for the altered foraging parameters of B. terrestris, suggesting that the presence of elevated O3 could have negative effects on the foraging efficiency of important pollinator species.
Collapse
Affiliation(s)
- Amélie Saunier
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland.
| | - Patrick Grof-Tisza
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland; Institute of Biology, Laboratory of Evolutionary Entomology, University of Neuchâtel, Neuchâtel, Switzerland
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
16
|
Ozone pollution disrupts plant-pollinator systems. Trends Ecol Evol 2022; 37:939-941. [PMID: 36184389 DOI: 10.1016/j.tree.2022.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Ozone pollution disrupts floral visual and volatile signals, olfactory perception of volatile communication signals, and learning, memory, and behavior of pollinators. These changes could have implications for plant-pollinator systems.
Collapse
|
17
|
Li T, Girling RD. Editorial: Impacts of pollution on volatile-mediated interactions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.973983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Bertram MG, Martin JM, McCallum ES, Alton LA, Brand JA, Brooks BW, Cerveny D, Fick J, Ford AT, Hellström G, Michelangeli M, Nakagawa S, Polverino G, Saaristo M, Sih A, Tan H, Tyler CR, Wong BB, Brodin T. Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biol Rev Camb Philos Soc 2022; 97:1346-1364. [PMID: 35233915 PMCID: PMC9543409 DOI: 10.1111/brv.12844] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Animal behaviour is remarkably sensitive to disruption by chemical pollution, with widespread implications for ecological and evolutionary processes in contaminated wildlife populations. However, conventional approaches applied to study the impacts of chemical pollutants on wildlife behaviour seldom address the complexity of natural environments in which contamination occurs. The aim of this review is to guide the rapidly developing field of behavioural ecotoxicology towards increased environmental realism, ecological complexity, and mechanistic understanding. We identify research areas in ecology that to date have been largely overlooked within behavioural ecotoxicology but which promise to yield valuable insights, including within- and among-individual variation, social networks and collective behaviour, and multi-stressor interactions. Further, we feature methodological and technological innovations that enable the collection of data on pollutant-induced behavioural changes at an unprecedented resolution and scale in the laboratory and the field. In an era of rapid environmental change, there is an urgent need to advance our understanding of the real-world impacts of chemical pollution on wildlife behaviour. This review therefore provides a roadmap of the major outstanding questions in behavioural ecotoxicology and highlights the need for increased cross-talk with other disciplines in order to find the answers.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Jake M. Martin
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Erin S. McCallum
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Lesley A. Alton
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Jack A. Brand
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Bryan W. Brooks
- Department of Environmental ScienceBaylor UniversityOne Bear PlaceWacoTexas76798‐7266U.S.A.
| | - Daniel Cerveny
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in Ceske BudejoviceZátiší 728/IIVodnany389 25Czech Republic
| | - Jerker Fick
- Department of ChemistryUmeå UniversityLinnaeus väg 10UmeåVästerbottenSE‐907 36Sweden
| | - Alex T. Ford
- Institute of Marine SciencesUniversity of PortsmouthWinston Churchill Avenue, PortsmouthHampshirePO1 2UPU.K.
| | - Gustav Hellström
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South Wales, Biological Sciences West (D26)SydneyNSW2052Australia
| | - Giovanni Polverino
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western Australia35 Stirling HighwayPerthWA6009Australia
- Department of Ecological and Biological SciencesTuscia UniversityVia S.M. in Gradi n.4ViterboLazio01100Italy
| | - Minna Saaristo
- Environment Protection Authority VictoriaEPA Science2 Terrace WayMacleodVictoria3085Australia
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Hung Tan
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterDevonEX4 4QDU.K.
| | - Bob B.M. Wong
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| |
Collapse
|
19
|
Renou M. Is the evolution of insect odorscapes under anthropic pressures a risk for herbivorous insect invasions? CURRENT OPINION IN INSECT SCIENCE 2022; 52:100926. [PMID: 35489680 DOI: 10.1016/j.cois.2022.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Olfaction is directly involved in the insect capacity to exploit new habitats by guiding foraging behaviors. We searched in the literature whether some traits of olfactory systems and behaviors are associated with invasiveness and the impact of anthropogenic activities thereof. Human activities dramatically modify habitats and alter insect odorscapes. Air pollution, for instance, decreases lifetime and active range of semiochemicals. Plasticity and behavioral adaptability of invasive species are decisive by allowing host shifts and adaptative responses to new habitats. Changes in biophysical environments also impact on the use of semiochemicals in biocontrol. Although no evidence for a unique ensemble of olfactory traits associated with invasiveness was found, a growing number of case studies reveal characteristics with risk-predicting value, opening the paths to better invasion-control strategies.
Collapse
Affiliation(s)
- Michel Renou
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France.
| |
Collapse
|
20
|
Knaden M, Anderson P, Andersson MN, Hill SR, Sachse S, Sandgren M, Stensmyr MC, Löfstedt C, Ignell R, Hansson BS. Human Impacts on Insect Chemical Communication in the Anthropocene. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.791345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The planet is presently undergoing dramatic changes caused by human activities. We are living in the era of the Anthropocene, where our activities directly affect all living organisms on Earth. Insects constitute a major part of the world’s biodiversity and currently, we see dwindling insect biomass but also outbreaks of certain populations. Most insects rely on chemical communication to locate food, mates, and suitable oviposition sites, but also to avoid enemies and detrimental microbes. Emissions of, e.g., CO2, NOx, and ozone can all affect the chemical communication channel, as can a rising temperature. Here, we present a review of the present state of the art in the context of anthropogenic impact on insect chemical communication. We concentrate on present knowledge regarding fruit flies, mosquitoes, moths, and bark beetles, as well as presenting our views on future developments and needs in this emerging field of research. We include insights from chemical, physiological, ethological, and ecological directions and we briefly present a new international research project, the Max Planck Centre for Next Generation Insect Chemical Ecology (nGICE), launched to further increase our understanding of the impact of human activities on insect olfaction and chemical communication.
Collapse
|
21
|
Ryalls JMW, Langford B, Mullinger NJ, Bromfield LM, Nemitz E, Pfrang C, Girling RD. Anthropogenic air pollutants reduce insect-mediated pollination services. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118847. [PMID: 35063287 DOI: 10.1016/j.envpol.2022.118847] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Common air pollutants, such as nitrogen oxides (NOx), emitted in diesel exhaust, and ozone (O3), have been implicated in the decline of pollinating insects. Reductionist laboratory assays, focused upon interactions between a narrow range of flowering plant and pollinator species, in combination with atmospheric chemistry models, indicate that such pollutants can chemically alter floral odors, disrupting the cues that foraging insects use to find and pollinate flowers. However, odor environments in nature are highly complex and pollination services are commonly provided by suites of insect species, each exhibiting different sensitivities to different floral odors. Therefore, the potential impacts of pollution-induced foraging disruption on both insect ecology, and the pollination services that insects provide, are currently unknown. We conducted in-situ field studies to investigate whether such pollutants could reduce pollinator foraging and as a result the pollination ecosystem service that those insects provide. Using free-air fumigation, we show that elevating diesel exhaust and O3, individually and in combination, to levels lower than is considered safe under current air quality standards, significantly reduced counts of locally-occurring wild and managed insect pollinators by 62-70% and their flower visits by 83-90%. These reductions were driven by changes in specific pollinator groups, including bees, flies, moths and butterflies, and coincided with significant reductions (14-31%) in three different metrics of pollination and yield of a self-fertile test plant. Quantifying such effects provides new insights into the impacts of human-induced air pollution on the natural ecosystem services upon which we depend.
Collapse
Affiliation(s)
- James M W Ryalls
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Earley Gate, Reading, RG6 6EU, UK.
| | - Ben Langford
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian, EH26 0QB, UK
| | - Neil J Mullinger
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian, EH26 0QB, UK
| | - Lisa M Bromfield
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Earley Gate, Reading, RG6 6EU, UK
| | - Eiko Nemitz
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian, EH26 0QB, UK
| | - Christian Pfrang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; Department of Meteorology, University of Reading, Whiteknights, Earley Gate, Reading, RG6 6BB, UK
| | - Robbie D Girling
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Earley Gate, Reading, RG6 6EU, UK
| |
Collapse
|
22
|
Duque L, Poelman EH, Steffan-Dewenter I. Plant age at the time of ozone exposure affects flowering patterns, biotic interactions and reproduction of wild mustard. Sci Rep 2021; 11:23448. [PMID: 34873217 PMCID: PMC8648743 DOI: 10.1038/s41598-021-02878-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
Exposure of plants to environmental stressors can modify their metabolism, interactions with other organisms and reproductive success. Tropospheric ozone is a source of plant stress. We investigated how an acute exposure to ozone at different times of plant development affects reproductive performance, as well as the flowering patterns and the interactions with pollinators and herbivores, of wild mustard plants. The number of open flowers was higher on plants exposed to ozone at earlier ages than on the respective controls, while plants exposed at later ages showed a tendency for decreased number of open flowers. The changes in the number of flowers provided a good explanation for the ozone-induced effects on reproductive performance and on pollinator visitation. Ozone exposure at earlier ages also led to either earlier or extended flowering periods. Moreover, ozone tended to increase herbivore abundance, with responses depending on herbivore taxa and the plant age at the time of ozone exposure. These results suggest that the effects of ozone exposure depend on the developmental stage of the plant, affecting the flowering patterns in different directions, with consequences for pollination and reproduction of annual crops and wild species.
Collapse
Affiliation(s)
- Laura Duque
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Affiliation(s)
- Jakub Szymkowiak
- Population Ecology Research Unit, Faculty of Biology, Adam Mickiewicz Univ. Poznań Poland
| | | |
Collapse
|
24
|
Host Plant Constancy in Ovipositing Manduca sexta. J Chem Ecol 2021; 47:1042-1048. [PMID: 34546516 PMCID: PMC8642259 DOI: 10.1007/s10886-021-01309-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 10/25/2022]
Abstract
Many pollinating insects exhibit flower constancy, i.e. they target flower species they have already experienced and fed from. While the insects might profit from reduced handling costs when revisiting similar flowers, flower constancy, in addition, is of benefit for the plants as it guarantees pollen transfer to conspecifics. Here we investigate whether the previous experience of an insect can also result in oviposition constancy, i.e. whether ovipositing on a given plant species will drive future oviposition preference in a female insect. We show that female hawkmoths (Manduca sexta), after having oviposited on a given plant species only once, indeed will prefer this plant in future oviposition choices. As oviposition preference is even affected 24 h after the moth has oviposited on a given plant, long term memory seems to be involved in this oviposition constancy. Our data furthermore suggest that, as shown for flower constancy, ovipositing moths increase their handling efficiency by targeting those host plants they have already experienced.
Collapse
|
25
|
Adam E, Hansson BS, Knaden M. Moths sense but do not learn flower odors with their proboscis during flower investigation. J Exp Biol 2021; 224:271919. [PMID: 34427309 PMCID: PMC8467027 DOI: 10.1242/jeb.242780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
Insect pollinators, such as the tobacco hawkmoth Manduca sexta, are known for locating flowers and learning floral odors by using their antennae. A recent study revealed, however, that the tobacco hawkmoth additionally possesses olfactory sensilla at the tip of its proboscis. Here, we asked whether this second ‘nose’ of the hawkmoth is involved in odor learning, similar to the antennae. We first show that M. sexta foraging efficiency at Nicotiana attenuata flowers increases with experience. This raises the question whether olfactory learning with the proboscis plays a role during flower handling. By rewarding the moths at an artificial flower, we show that, although moths learn an odor easily when they perceive it with their antennae, experiencing the odor just with the proboscis is not sufficient for odor learning. Furthermore, experiencing the odor with the antennae during training does not affect the behavior of the moths when they later detect the learned odor with the proboscis only. Therefore, there seems to be no cross-talk between the antennae and proboscis, and information learnt by the antennae cannot be retrieved by the proboscis. Highlighted Article: The hawkmoth Manduca sexta is able to detect odors with the tip of its tongue: this ‘second nose’ is not used for olfactory learning during flower investigation.
Collapse
Affiliation(s)
- Elisabeth Adam
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745Jena, Germany
| |
Collapse
|
26
|
Hinze A, Lantz J, Hill SR, Ignell R. Mosquito Host Seeking in 3D Using a Versatile Climate-Controlled Wind Tunnel System. Front Behav Neurosci 2021; 15:643693. [PMID: 33776664 PMCID: PMC7991727 DOI: 10.3389/fnbeh.2021.643693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Future anthropogenic climate change is predicted to impact sensory-driven behaviors. Building on recent improvements in computational power and tracking technology, we have developed a versatile climate-controlled wind tunnel system, in which to study the effect of climate parameters, including temperature, precipitation, and elevated greenhouse gas levels, on odor-mediated behaviors in insects. To establish a baseline for future studies, we here analyzed the host-seeking behavior of the major malaria vector mosquito, Anopheles gambiae sensu strico, to human odor and carbon dioxide (CO2), under tightly controlled climatic conditions, and isolated from potential background contamination by the presence of an experimenter. When presented with a combination of human foot odor and CO2 (case study I), mosquitoes engaged in faster crosswind flight, spent more time in the filamentous odor plume and targeted the odor source more successfully. In contrast, female An. gambiae s. s. presented with different concentrations of CO2 alone, did not display host-seeking behavior (case study II). These observations support previous findings on the role of human host-associated cues in host seeking and confirm the role of CO2 as a synergist, but not a host-seeking cue on its own. Future studies are aimed at investigating the effect of climate change on odor-mediated behavior in mosquitoes and other insects. Moreover, the system will be used to investigate detection and processing of olfactory information in various behavioral contexts, by providing a fine-scale analysis of flight behavior.
Collapse
Affiliation(s)
- Annika Hinze
- Disease Vector Group, Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Jörgen Lantz
- Jörgen Lantz Engineering Consulting Firm, Alnarp, Sweden
| | - Sharon R Hill
- Disease Vector Group, Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Max Planck Centre Next Generation Chemical Ecology, Uppsala, Sweden
| | - Rickard Ignell
- Disease Vector Group, Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Max Planck Centre Next Generation Chemical Ecology, Uppsala, Sweden
| |
Collapse
|