1
|
Liu C, Hirakawa H, Katsube T, Fang Y, Tanaka K, Nenoi M, Fujimori A, Wang B. Altered Induction of Reactive Oxygen Species by X-rays in Hematopoietic Cells of C57BL/6-Tg (CAG-EGFP) Mice. Int J Mol Sci 2021; 22:6929. [PMID: 34203224 PMCID: PMC8268547 DOI: 10.3390/ijms22136929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Previous work pointed to a critical role of excessive production of reactive oxygen species (ROS) in increased radiation hematopoietic death in GFP mice. Meanwhile, enhanced antioxidant capability was not demonstrated in the mouse model of radio-induced adaptive response (RAR) using rescue of radiation hematopoietic death as the endpoint. ROS induction by ex vivo X-irradiation at a dose ranging from 0.1 to 7.5 Gy in the nucleated bone marrow cells was comparatively studied using GFP and wild type (WT) mice. ROS induction was also investigated in the cells collected from mice receiving a priming dose (0.5 Gy) efficient for RAR induction in WT mice. Significantly elevated background and increased induction of ROS in the cells from GFP mice were observed compared to those from WT mice. Markedly lower background and decreased induction of ROS were observed in the cells collected from WT mice but not GFP mice, both receiving the priming dose. GFP overexpression could alter background and induction of ROS by X-irradiation in hematopoietic cells. The results provide a reasonable explanation to the previous study on the fate of cells and mice after X-irradiation and confirm enhanced antioxidant capability in RAR. Investigations involving GFP overexpression should be carefully interpreted.
Collapse
Affiliation(s)
- Cuihua Liu
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Hirokazu Hirakawa
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Takanori Katsube
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Yaqun Fang
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Kaoru Tanaka
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Mitsuru Nenoi
- Human Resources Development Center, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Bing Wang
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| |
Collapse
|
2
|
Liu C, Tanaka K, Katsube T, Varès G, Maruyama K, Ninomiya Y, Fardous Z, Sun C, Fujimori A, Moreno SG, Nenoi M, Wang B. Altered Response to Total Body Irradiation of C57BL/6-Tg (CAG-EGFP) Mice. Dose Response 2020; 18:1559325820951332. [PMID: 32922229 PMCID: PMC7453463 DOI: 10.1177/1559325820951332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Application of green fluorescent protein (GFP) in a variety of biosystems as a unique bioindicator or biomarker has revolutionized biological research and made groundbreaking achievements, while increasing evidence has shown alterations in biological properties and physiological functions of the cells and animals overexpressing transgenic GFP. In this work, response to total body irradiation (TBI) was comparatively studied in GFP transgenic C57BL/6-Tg (CAG-EGFP) mice and C57BL/6 N wild type mice. It was demonstrated that GFP transgenic mice were more sensitive to radiation-induced bone marrow death, and no adaptive response could be induced. In the nucleated bone marrow cells of GFP transgenic mice exposed to a middle dose, there was a significant increase in both the percentage of cells expressing pro-apoptotic gene Bax and apoptotic cell death. While in wild type cells, lower expression of pro-apoptotic gene Bax and higher expression of anti-apoptotic gene Bcl-2, and significant lower induction of apoptosis were observed compared to GFP transgenic cells. Results suggest that presence of GFP could alter response to TBI at whole body, cellular and molecular levels in mice. These findings indicate that there could be a major influence on the interpretation of the results obtained in GFP transgenic mice.
Collapse
Affiliation(s)
- Cuihua Liu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Guillaume Varès
- Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Kouichi Maruyama
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Zeenath Fardous
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, People’s Republic of Bangladesh
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Stéphanie G. Moreno
- LRTS—François Jacob Institute of Biology, Fundamental Research Division, Atomic Energy and Alternative Energies Commission, Inserm, Fontenay-aux-Roses Cedex, France
| | - Mitsuru Nenoi
- Department of Safety Administration, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
3
|
Li Y, Sun Q, Feng Y, Liu X, Gao H. An improved immunofluorescence staining method for chloroplast proteins. PLANT CELL REPORTS 2016; 35:2285-2293. [PMID: 27473527 DOI: 10.1007/s00299-016-2034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
An improved immunofluorescence staining method significantly facilitates the visualization of the subcellular localization of interested proteins in chloroplasts. As an important technical approach, immunofluorescence staining is widely used in the subcellular localization study of interested proteins. During the study of the functions of chloroplast division proteins, immunofluorescence staining was frequently adopted. Previously, a method has been developed to study the localization of a chloroplast division protein, FtsZ. However, it is laborious and time-consuming. In this study, we report a modified immunofluorescence staining method, in which protoplasts were isolated from leaf tissues, and then fixed for immunofluorescence staining. The time of the experiment was significantly reduced to several hours. Furthermore, we used correction pen in the fixation procedure and a new way to coat the slide, which greatly saved the cost of the experiment. With the chloroplast division protein ARC6 as an example, we can get a good fluorescence signal. Moreover, the localization of ARC6 in two chloroplast division mutants, arc3 and arc5, and three other plant species, such as cabbage, radish and pea, was also successfully analyzed with our new method. Overall, the immunofluorescence staining method we reported here is very practical, and it significantly facilitates the visualization of the subcellular localization of interested proteins in plant cells.
Collapse
Affiliation(s)
- Yiqiong Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yue Feng
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Hongbo Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Kam WWY, Lake V, Banos C, Davies J, Banati R. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers. Int J Mol Sci 2013; 14:11544-59. [PMID: 23722662 PMCID: PMC3709747 DOI: 10.3390/ijms140611544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/18/2013] [Accepted: 05/16/2013] [Indexed: 12/12/2022] Open
Abstract
Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.
Collapse
Affiliation(s)
- Winnie W. Y. Kam
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +61-2-9717-7241; Fax: +61-2-9717-9262
| | - Vanessa Lake
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
| | - Connie Banos
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- School of Physics, University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Sydney, New South Wales 2234, Australia; E-Mails: (V.L.); (C.B.); (J.D.); (R.B.)
- Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Cumberland, Sydney, New South Wales 2141, Australia
- National Imaging Facility at Brain and Mind Research Institute (BMRI), University of Sydney, Camperdown, Sydney, New South Wales 2050, Australia
| |
Collapse
|